Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • ASCI Milestone Awards
    • Video Abstracts
    • Conversations with Giants in Medicine
  • Reviews
    • View all reviews ...
    • Clinical innovation and scientific progress in GLP-1 medicine (Nov 2025)
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • ASCI Milestone Awards
  • Video Abstracts
  • Conversations with Giants in Medicine
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Research Article

  • 25,754 Articles
  • 0 Posts
  • ← Previous
  • 1
  • 2
  • …
  • 264
  • 265
  • 266
  • …
  • 2575
  • 2576
  • Next →
FoxO transcription factors are required for hepatic HDL-cholesterol clearance
Samuel X. Lee, Markus Heine, Christian Schlein, Rajasekhar Ramakrishnan, Jing Liu, Gabriella Belnavis, Ido Haimi, Alexander W. Fischer, Henry Ginsberg, Joerg Heeren, Franz Rinninger, Rebecca A. Haeusler
Samuel X. Lee, Markus Heine, Christian Schlein, Rajasekhar Ramakrishnan, Jing Liu, Gabriella Belnavis, Ido Haimi, Alexander W. Fischer, Henry Ginsberg, Joerg Heeren, Franz Rinninger, Rebecca A. Haeusler
View: Text | PDF

FoxO transcription factors are required for hepatic HDL-cholesterol clearance

  • Text
  • PDF
Abstract

Insulin resistance and type 2 diabetes are associated with low levels of high-density lipoprotein-cholesterol (HDL-C). The insulin-repressible FoxO transcription factors are potential mediators of insulin’s effect on HDL-C. FoxOs mediate a substantial portion of insulin-regulated transcription, and poor FoxO repression is thought to contribute to the excessive glucose production in diabetes. In this work, we show that mice with liver-specific triple FoxO knockout (L-FoxO1,3,4), which are known to have reduced hepatic glucose production, also have increased HDL-C. This was associated with decreased expression of HDL-C clearance factors, scavenger receptor class B type I (SR-BI) and hepatic lipase, and defective selective uptake of HDL-cholesteryl ester by the liver. The phenotype could be rescued by re-expression of SR-BI. These findings demonstrate that hepatic FoxOs are required for cholesterol homeostasis and HDL-mediated reverse cholesterol transport to the liver.

Authors

Samuel X. Lee, Markus Heine, Christian Schlein, Rajasekhar Ramakrishnan, Jing Liu, Gabriella Belnavis, Ido Haimi, Alexander W. Fischer, Henry Ginsberg, Joerg Heeren, Franz Rinninger, Rebecca A. Haeusler

×

Ribonuclease inhibitor 1 regulates erythropoiesis by controlling GATA1 mRNA translation
Vijaykumar Chennupati, Diogo F.T. Veiga, Kendle M. Maslowski, Nicola Andina, Aubry Tardivel, Eric Chi-Wang Yu, Martina Stilinovic, Cedric Simillion, Michel A. Duchosal, Manfredo Quadroni, Irene Roberts, Vijay G. Sankaran, H. Robson MacDonald, Nicolas Fasel, Anne Angelillo-Scherrer, Pascal Schneider, Trang Hoang, Ramanjaneyulu Allam
Vijaykumar Chennupati, Diogo F.T. Veiga, Kendle M. Maslowski, Nicola Andina, Aubry Tardivel, Eric Chi-Wang Yu, Martina Stilinovic, Cedric Simillion, Michel A. Duchosal, Manfredo Quadroni, Irene Roberts, Vijay G. Sankaran, H. Robson MacDonald, Nicolas Fasel, Anne Angelillo-Scherrer, Pascal Schneider, Trang Hoang, Ramanjaneyulu Allam
View: Text | PDF

Ribonuclease inhibitor 1 regulates erythropoiesis by controlling GATA1 mRNA translation

  • Text
  • PDF
Abstract

Ribosomal proteins (RP) regulate specific gene expression by selectively translating subsets of mRNAs. Indeed, in Diamond–Blackfan anaemia and 5q- syndrome, mutations in RP genes lead to a specific defect in erythroid gene translation and cause anaemia. Little is known about the molecular mechanisms of selective mRNA translation and involvement of ribosomal-associated factors in this process. Ribonuclease inhibitor (RNH1) is an ubiquitously expressed protein that binds to and inhibits pancreatic-type ribonucleases. Here we report that RNH1 binds to ribosomes and regulates erythropoiesis by controlling translation of the erythroid transcription factor GATA1. Rnh1-deficient mice die between embryonic days E8.5 to E10 due to impaired production of mature erythroid cells from progenitor cells. In Rnh1-deficient embryos, mRNA levels of Gata1 are normal, but GATA1 protein levels are decreased. At the molecular level, we found that RNH1 binds to the 40S subunit of ribosomes and facilitates polysome formation on Gata1 mRNA to confer transcript-specific translation. Further, RNH1 knock down in human CD34+ progenitor cells decreased erythroid differentiation without affecting myelopoiesis. Our results reveal an unsuspected role for RNH1 in the control of GATA1 mRNA translation and erythropoiesis.

Authors

Vijaykumar Chennupati, Diogo F.T. Veiga, Kendle M. Maslowski, Nicola Andina, Aubry Tardivel, Eric Chi-Wang Yu, Martina Stilinovic, Cedric Simillion, Michel A. Duchosal, Manfredo Quadroni, Irene Roberts, Vijay G. Sankaran, H. Robson MacDonald, Nicolas Fasel, Anne Angelillo-Scherrer, Pascal Schneider, Trang Hoang, Ramanjaneyulu Allam

×

Hippo-mediated suppression of IRS2/AKT signaling prevents hepatic steatosis and liver cancer
Sun-Hye Jeong, Han-Byul Kim, Min-Chul Kim, Ji-min Lee, Jae Ho Lee, Jeong-Hwan Kim, Jin-Woo Kim, Woong-Yang Park, Seon-Young Kim, Jae Bum Kim, Haeryoung Kim, Jin-Man Kim, Hueng-Sik Choi, Dae-Sik Lim
Sun-Hye Jeong, Han-Byul Kim, Min-Chul Kim, Ji-min Lee, Jae Ho Lee, Jeong-Hwan Kim, Jin-Woo Kim, Woong-Yang Park, Seon-Young Kim, Jae Bum Kim, Haeryoung Kim, Jin-Man Kim, Hueng-Sik Choi, Dae-Sik Lim
View: Text | PDF

Hippo-mediated suppression of IRS2/AKT signaling prevents hepatic steatosis and liver cancer

  • Text
  • PDF
Abstract

Nonalcoholic fatty liver disease (NAFLD) is a major risk factor for liver cancer; therefore, its prevention is an important clinical goal. Ablation of phosphatase and tensin homolog (PTEN) or the protein kinase Hippo signaling pathway induces liver cancer via activation of AKT or the transcriptional regulators YAP/TAZ, respectively; however, the potential for crosstalk between the PTEN/AKT and Hippo/YAP/TAZ pathways in liver tumorigenesis has thus far remained unclear. Here, we have shown that deletion of both PTEN and SAV1 in the liver accelerates the development of NAFLD and liver cancer in mice. At the molecular level, activation of YAP/TAZ in the liver of Pten–/– Sav1–/– mice amplified AKT signaling through the upregulation of insulin receptor substrate 2 (IRS2) expression. Both ablation of YAP/TAZ and activation of the Hippo pathway could rescue these phenotypes. A high level of YAP/ TAZ expression was associated with a high level of IRS2 expression in human hepatocellular carcinoma (HCC). Moreover, treatment with the AKT inhibitor MK-2206 or knockout of IRS2 by AAV-Cas9 successfully repressed liver tumorigenesis in Pten–/– Sav1–/– mice. Thus, our findings suggest that Hippo signaling interacts with AKT signaling by regulating IRS2 expression to prevent NAFLD and liver cancer progression and provide evidence that impaired crosstalk between these 2 pathways accelerates NAFLD and liver cancer.

Authors

Sun-Hye Jeong, Han-Byul Kim, Min-Chul Kim, Ji-min Lee, Jae Ho Lee, Jeong-Hwan Kim, Jin-Woo Kim, Woong-Yang Park, Seon-Young Kim, Jae Bum Kim, Haeryoung Kim, Jin-Man Kim, Hueng-Sik Choi, Dae-Sik Lim

×

Claudin-18–mediated YAP activity regulates lung stem and progenitor cell homeostasis and tumorigenesis
Beiyun Zhou, Per Flodby, Jiao Luo, Dan R. Castillo, Yixin Liu, Fa-Xing Yu, Alicia McConnell, Bino Varghese, Guanglei Li, Nyam-Osor Chimge, Mitsuhiro Sunohara, Michael N. Koss, Wafaa Elatre, Peter Conti, Janice M. Liebler, Chenchen Yang, Crystal N. Marconett, Ite A. Laird-Offringa, Parviz Minoo, Kunliang Guan, Barry R. Stripp, Edward D. Crandall, Zea Borok
Beiyun Zhou, Per Flodby, Jiao Luo, Dan R. Castillo, Yixin Liu, Fa-Xing Yu, Alicia McConnell, Bino Varghese, Guanglei Li, Nyam-Osor Chimge, Mitsuhiro Sunohara, Michael N. Koss, Wafaa Elatre, Peter Conti, Janice M. Liebler, Chenchen Yang, Crystal N. Marconett, Ite A. Laird-Offringa, Parviz Minoo, Kunliang Guan, Barry R. Stripp, Edward D. Crandall, Zea Borok
View: Text | PDF

Claudin-18–mediated YAP activity regulates lung stem and progenitor cell homeostasis and tumorigenesis

  • Text
  • PDF
Abstract

Claudins, the integral tight junction (TJ) proteins that regulate paracellular permeability and cell polarity, are frequently dysregulated in cancer; however, their role in neoplastic progression is unclear. Here, we demonstrated that knockout of Cldn18, a claudin family member highly expressed in lung alveolar epithelium, leads to lung enlargement, parenchymal expansion, increased abundance and proliferation of known distal lung progenitors, the alveolar epithelial type II (AT2) cells, activation of Yes-associated protein (YAP), increased organ size, and tumorigenesis in mice. Inhibition of YAP decreased proliferation and colony-forming efficiency (CFE) of Cldn18–/– AT2 cells and prevented increased lung size, while CLDN18 overexpression decreased YAP nuclear localization, cell proliferation, CFE, and YAP transcriptional activity. CLDN18 and YAP interacted and colocalized at cell-cell contacts, while loss of CLDN18 decreased YAP interaction with Hippo kinases p-LATS1/2. Additionally, Cldn18–/– mice had increased propensity to develop lung adenocarcinomas (LuAd) with age, and human LuAd showed stage-dependent reduction of CLDN18.1. These results establish CLDN18 as a regulator of YAP activity that serves to restrict organ size, progenitor cell proliferation, and tumorigenesis, and suggest a mechanism whereby TJ disruption may promote progenitor proliferation to enhance repair following injury.

Authors

Beiyun Zhou, Per Flodby, Jiao Luo, Dan R. Castillo, Yixin Liu, Fa-Xing Yu, Alicia McConnell, Bino Varghese, Guanglei Li, Nyam-Osor Chimge, Mitsuhiro Sunohara, Michael N. Koss, Wafaa Elatre, Peter Conti, Janice M. Liebler, Chenchen Yang, Crystal N. Marconett, Ite A. Laird-Offringa, Parviz Minoo, Kunliang Guan, Barry R. Stripp, Edward D. Crandall, Zea Borok

×

Clonally expanded γδ T cells protect against Staphylococcus aureus skin reinfection
Carly A. Dillen, Bret L. Pinsker, Alina I. Marusina, Alexander A. Merleev, Orly N. Farber, Haiyun Liu, Nathan K. Archer, Da B. Lee, Yu Wang, Roger V. Ortines, Steven K. Lee, Mark C. Marchitto, Shuting S. Cai, Alyssa G. Ashbaugh, Larissa S. May, Steven M. Holland, Alexandra F. Freeman, Loren G. Miller, Michael R. Yeaman, Scott I. Simon, Joshua D. Milner, Emanual Maverakis, Lloyd S. Miller
Carly A. Dillen, Bret L. Pinsker, Alina I. Marusina, Alexander A. Merleev, Orly N. Farber, Haiyun Liu, Nathan K. Archer, Da B. Lee, Yu Wang, Roger V. Ortines, Steven K. Lee, Mark C. Marchitto, Shuting S. Cai, Alyssa G. Ashbaugh, Larissa S. May, Steven M. Holland, Alexandra F. Freeman, Loren G. Miller, Michael R. Yeaman, Scott I. Simon, Joshua D. Milner, Emanual Maverakis, Lloyd S. Miller
View: Text | PDF

Clonally expanded γδ T cells protect against Staphylococcus aureus skin reinfection

  • Text
  • PDF
Abstract

The mechanisms that mediate durable protection against Staphylococcus aureus skin reinfections are unclear, as recurrences are common despite high antibody titers and memory T cells. Here, we developed a mouse model of S. aureus skin reinfection to investigate protective memory responses. In contrast with WT mice, IL-1β–deficient mice exhibited poor neutrophil recruitment and bacterial clearance during primary infection that was rescued during secondary S. aureus challenge. The γδ T cells from skin-draining LNs utilized compensatory T cell–intrinsic TLR2/MyD88 signaling to mediate rescue by trafficking and producing TNF and IFN-γ, which restored neutrophil recruitment and promoted bacterial clearance. RNA-sequencing (RNA-seq) of the LNs revealed a clonotypic S. aureus–induced γδ T cell expansion with a complementarity-determining region 3 (CDR3) aa sequence identical to that of invariant Vγ5+ dendritic epidermal T cells. However, this T cell receptor γ (TRG) aa sequence of the dominant CDR3 sequence was generated from multiple gene rearrangements of TRGV5 and TRGV6, indicating clonotypic expansion. TNF- and IFN-γ–producing γδ T cells were also expanded in peripheral blood of IRAK4-deficient humans no longer predisposed to S. aureus skin infections. Thus, clonally expanded γδ T cells represent a mechanism for long-lasting immunity against recurrent S. aureus skin infections.

Authors

Carly A. Dillen, Bret L. Pinsker, Alina I. Marusina, Alexander A. Merleev, Orly N. Farber, Haiyun Liu, Nathan K. Archer, Da B. Lee, Yu Wang, Roger V. Ortines, Steven K. Lee, Mark C. Marchitto, Shuting S. Cai, Alyssa G. Ashbaugh, Larissa S. May, Steven M. Holland, Alexandra F. Freeman, Loren G. Miller, Michael R. Yeaman, Scott I. Simon, Joshua D. Milner, Emanual Maverakis, Lloyd S. Miller

×

Tuberous sclerosis complex–associated CNS abnormalities depend on hyperactivation of mTORC1 and Akt
Paola Zordan, Manuela Cominelli, Federica Cascino, Elisa Tratta, Pietro L. Poliani, Rossella Galli
Paola Zordan, Manuela Cominelli, Federica Cascino, Elisa Tratta, Pietro L. Poliani, Rossella Galli
View: Text | PDF

Tuberous sclerosis complex–associated CNS abnormalities depend on hyperactivation of mTORC1 and Akt

  • Text
  • PDF
Abstract

Tuberous sclerosis complex (TSC) is a dominantly inherited disease, caused by hyperactivation of the mTORC1 pathway and characterized by the development of hamartomas and benign tumors, also in the brain. Among the neurological manifestations associated with TSC, the tumor progression of static subependymal nodules (SENs) into subependymal giant cell astrocytomas (SEGAs) is one of the major causes of morbidity and shortened life expectancy. To date, mouse modeling has failed in reproducing these two lesions. Here we report that simultaneous hyperactivation of mTORC1 and Akt pathways by codeletion of Tsc1 and Pten, selectively in postnatal neural stem cells (pNSCs), is required for the formation of bona fide SENs and SEGAs. Notably, both lesions closely recapitulate the pathognomonic morphological and molecular features of the corresponding human abnormalities. The establishment of long-term expanding pNSC lines from mouse SENs and SEGAs made possible the identification of mTORC2 as one of the mediators conferring tumorigenic potential to SEGA pNSCs. Of note, in spite of concurrent Akt hyperactivation in mouse brain lesions, single mTOR inhibition by rapamycin was sufficient to strongly impair mouse SEGA growth. This study provides the first evidence that, concomitant with mTORC1 hyperactivation, sustained activation of Akt and mTORC2 in pNSCs is a mandatory step for the induction of SENs and SEGAs and, at the same time, makes available an unprecedented NSC-based in vivo/in vitro model to be exploited for identifying actionable targets in TSC.

Authors

Paola Zordan, Manuela Cominelli, Federica Cascino, Elisa Tratta, Pietro L. Poliani, Rossella Galli

×

IRE1α RNase-dependent lipid homeostasis promotes survival in Myc-transformed cancers
Hong Xie, Chih-Hang Anthony Tang, Jun H. Song, Anthony Mancuso, Juan R. Del Valle, Jin Cao, Yan Xiang, Chi V. Dang, Roy Lan, Danielle J. Sanchez, Brian Keith, Chih-Chi Andrew Hu, M. Celeste Simon
Hong Xie, Chih-Hang Anthony Tang, Jun H. Song, Anthony Mancuso, Juan R. Del Valle, Jin Cao, Yan Xiang, Chi V. Dang, Roy Lan, Danielle J. Sanchez, Brian Keith, Chih-Chi Andrew Hu, M. Celeste Simon
View: Text | PDF

IRE1α RNase-dependent lipid homeostasis promotes survival in Myc-transformed cancers

  • Text
  • PDF
Abstract

Myc activation is a primary oncogenic event in many human cancers; however, these transcription factors are difficult to inhibit pharmacologically, suggesting that Myc-dependent downstream effectors may be more tractable therapeutic targets. Here we show that Myc overexpression induces endoplasmic reticulum (ER) stress and engages the IRE1α-XBP1 pathway through multiple molecular mechanisms in a variety of c-Myc- and N-Myc-dependent cancers. In particular, Myc-overexpressing cells require IRE1α-XBP1 signaling for sustained growth and survival in vitro and in vivo, dependent on elevated stearoyl-CoA-desaturase 1 (SCD1) activity. Pharmacological and genetic XBP1 inhibition induces Myc-dependent apoptosis, which is alleviated by exogenous unsaturated fatty acids. Of note, SCD1 inhibition phenocopies IRE1α RNase activity suppression in vivo. Furthermore, IRE1α inhibition enhances the cytotoxic effects of standard chemotherapy drugs used to treat c-Myc-overexpressing Burkitt’s lymphoma, suggesting that inhibiting the IRE1α-XBP1 pathway is a useful general strategy for treatment of Myc-driven cancers.

Authors

Hong Xie, Chih-Hang Anthony Tang, Jun H. Song, Anthony Mancuso, Juan R. Del Valle, Jin Cao, Yan Xiang, Chi V. Dang, Roy Lan, Danielle J. Sanchez, Brian Keith, Chih-Chi Andrew Hu, M. Celeste Simon

×

Hypothalamic loss of Snord116 recapitulates the hyperphagia of Prader-Willi syndrome
Joseph Polex-Wolf, Brian Y.H. Lam, Rachel Larder, John Tadross, Debra Rimmington, Fàtima Bosch, Verónica Jiménez Cenzano, Eduard Ayuso, Marcella K.L. Ma, Kara Rainbow, Anthony P. Coll, Stephen O’Rahilly, Giles S.H. Yeo
Joseph Polex-Wolf, Brian Y.H. Lam, Rachel Larder, John Tadross, Debra Rimmington, Fàtima Bosch, Verónica Jiménez Cenzano, Eduard Ayuso, Marcella K.L. Ma, Kara Rainbow, Anthony P. Coll, Stephen O’Rahilly, Giles S.H. Yeo
View: Text | PDF

Hypothalamic loss of Snord116 recapitulates the hyperphagia of Prader-Willi syndrome

  • Text
  • PDF
Abstract

Profound hyperphagia is a major disabling feature of Prader-Willi syndrome (PWS). Characterization of the mechanisms that underlie PWS-associated hyperphagia has been slowed by the paucity of animal models with increased food intake or obesity. Mice with a microdeletion encompassing the Snord116 cluster of noncoding RNAs encoded within the Prader-Willi minimal deletion critical region have previously been reported to show growth retardation and hyperphagia. Here, consistent with previous reports, we observed growth retardation in Snord116+/–P mice with a congenital paternal Snord116 deletion. However, these mice neither displayed increased food intake nor had reduced hypothalamic expression of the proprotein convertase 1 gene PCSK1 or its upstream regulator NHLH2, which have recently been suggested to be key mediators of PWS pathogenesis. Specifically, we disrupted Snord116 expression in the mediobasal hypothalamus in Snord116fl mice via bilateral stereotaxic injections of a Cre-expressing adeno-associated virus (AAV). While the Cre-injected mice had no change in measured energy expenditure, they became hyperphagic between 9 and 10 weeks after injection, with a subset of animals developing marked obesity. In conclusion, we show that selective disruption of Snord116 expression in the mediobasal hypothalamus models the hyperphagia of PWS.

Authors

Joseph Polex-Wolf, Brian Y.H. Lam, Rachel Larder, John Tadross, Debra Rimmington, Fàtima Bosch, Verónica Jiménez Cenzano, Eduard Ayuso, Marcella K.L. Ma, Kara Rainbow, Anthony P. Coll, Stephen O’Rahilly, Giles S.H. Yeo

×

Microglia are required for protection against lethal coronavirus encephalitis in mice
D. Lori Wheeler, Alan Sariol, David K. Meyerholz, Stanley Perlman
D. Lori Wheeler, Alan Sariol, David K. Meyerholz, Stanley Perlman
View: Text | PDF

Microglia are required for protection against lethal coronavirus encephalitis in mice

  • Text
  • PDF
Abstract

Recent findings have highlighted the role of microglia in orchestrating normal development and refining neural network connectivity in the healthy CNS. Microglia are not only vital cells in maintaining CNS homeostasis, but also respond to injury, infection, and disease by undergoing proliferation and changes in transcription and morphology. A better understanding of the specific role of microglia in responding to viral infection is complicated by the presence of nonmicroglial myeloid cells with potentially overlapping function in the healthy brain and by the rapid infiltration of hematopoietic myeloid cells into the brain in diseased states. Here, we used an inhibitor of colony-stimulating factor 1 receptor (CSF1R) that depletes microglia to examine the specific roles of microglia in response to infection with the mouse hepatitis virus (MHV), a neurotropic coronavirus. Our results show that microglia were required during the early days after infection to limit MHV replication and subsequent morbidity and lethality. Additionally, microglia depletion resulted in ineffective T cell responses. These results reveal nonredundant, critical roles for microglia in the early innate and virus-specific T cell responses and for subsequent host protection from viral encephalitis.

Authors

D. Lori Wheeler, Alan Sariol, David K. Meyerholz, Stanley Perlman

×

BATF-dependent IL-7RhiGM-CSF+ T cells control intestinal graft-versus-host disease
Evelyn Ullrich, Benjamin Abendroth, Johanna Rothamer, Carina Huber, Maike Büttner-Herold, Vera Buchele, Tina Vogler, Thomas Longerich, Sebastian Zundler, Simon Völkl, Andreas Beilhack, Stefan Rose-John, Stefan Wirtz, Georg F. Weber, Sakhila Ghimire, Marina Kreutz, Ernst Holler, Andreas Mackensen, Markus F. Neurath, Kai Hildner
Evelyn Ullrich, Benjamin Abendroth, Johanna Rothamer, Carina Huber, Maike Büttner-Herold, Vera Buchele, Tina Vogler, Thomas Longerich, Sebastian Zundler, Simon Völkl, Andreas Beilhack, Stefan Rose-John, Stefan Wirtz, Georg F. Weber, Sakhila Ghimire, Marina Kreutz, Ernst Holler, Andreas Mackensen, Markus F. Neurath, Kai Hildner
View: Text | PDF

BATF-dependent IL-7RhiGM-CSF+ T cells control intestinal graft-versus-host disease

  • Text
  • PDF
Abstract

Acute graft-versus-host disease (GVHD) represents a severe, T cell–driven inflammatory complication following allogeneic hematopoietic cell transplantation (allo-HCT). GVHD often affects the intestine and is associated with a poor prognosis. Although frequently detectable, proinflammatory mechanisms exerted by intestinal tissue–infiltrating Th cell subsets remain to be fully elucidated. Here, we show that the Th17-defining transcription factor basic leucine zipper transcription factor ATF-like (BATF) was strongly regulated across human and mouse intestinal GVHD tissues. Studies in complete MHC-mismatched and minor histocompatibility–mismatched (miHA-mismatched) GVHD models revealed that BATF-expressing T cells were functionally indispensable for intestinal GVHD manifestation. Mechanistically, BATF controlled the formation of colon-infiltrating, IL-7 receptor–positive (IL-7R+), granulocyte-macrophage colony-stimulating factor–positive (GM-CSF+), donor T effector memory (Tem) cells. This T cell subset was sufficient to promote intestinal GVHD, while its occurrence was largely dependent on T cell–intrinsic BATF expression, required IL-7–IL-7R interaction, and was enhanced by GM-CSF. Thus, this study identifies BATF-dependent pathogenic GM-CSF+ effector T cells as critical promoters of intestinal inflammation in GVHD and hence putatively provides mechanistic insight into inflammatory processes previously assumed to be selectively Th17 driven.

Authors

Evelyn Ullrich, Benjamin Abendroth, Johanna Rothamer, Carina Huber, Maike Büttner-Herold, Vera Buchele, Tina Vogler, Thomas Longerich, Sebastian Zundler, Simon Völkl, Andreas Beilhack, Stefan Rose-John, Stefan Wirtz, Georg F. Weber, Sakhila Ghimire, Marina Kreutz, Ernst Holler, Andreas Mackensen, Markus F. Neurath, Kai Hildner

×
  • ← Previous
  • 1
  • 2
  • …
  • 264
  • 265
  • 266
  • …
  • 2575
  • 2576
  • Next →

No posts were found with this tag.

Advertisement

Copyright © 2026 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts