Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Next-Generation Sequencing in Medicine (Upcoming)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • Circadian Rhythm (Oct 2021)
    • Gut-Brain Axis (Jul 2021)
    • Tumor Microenvironment (Mar 2021)
    • 100th Anniversary of Insulin's Discovery (Jan 2021)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact

Metabolism

  • 498 Articles
  • 2 Posts
  • ← Previous
  • 1
  • 2
  • 3
  • …
  • 49
  • 50
  • Next →
Upregulation of mitochondrial ATPase inhibitory factor 1 (ATPIF1) mediates increased glycolysis in mouse hearts
Bo Zhou, … , James E. Bruce, Rong Tian
Bo Zhou, … , James E. Bruce, Rong Tian
Published May 16, 2022
Citation Information: J Clin Invest. 2022;132(10):e155333. https://doi.org/10.1172/JCI155333.
View: Text | PDF

Upregulation of mitochondrial ATPase inhibitory factor 1 (ATPIF1) mediates increased glycolysis in mouse hearts

  • Text
  • PDF
Abstract

In hypertrophied and failing hearts, fuel metabolism is reprogrammed to increase glucose metabolism, especially glycolysis. This metabolic shift favors biosynthetic function at the expense of ATP production. Mechanisms responsible for the switch are poorly understood. We found that inhibitory factor 1 of the mitochondrial FoF1-ATP synthase (ATPIF1), a protein known to inhibit ATP hydrolysis by the reverse function of ATP synthase during ischemia, was significantly upregulated in pathological cardiac hypertrophy induced by pressure overload, myocardial infarction, or α-adrenergic stimulation. Chemical cross-linking mass spectrometry analysis of hearts hypertrophied by pressure overload suggested that increased expression of ATPIF1 promoted the formation of FoF1-ATP synthase nonproductive tetramer. Using ATPIF1 gain- and loss-of-function cell models, we demonstrated that stalled electron flow due to impaired ATP synthase activity triggered mitochondrial ROS generation, which stabilized HIF1α, leading to transcriptional activation of glycolysis. Cardiac-specific deletion of ATPIF1 in mice prevented the metabolic switch and protected against the pathological remodeling during chronic stress. These results uncover a function of ATPIF1 in nonischemic hearts, which gives FoF1-ATP synthase a critical role in metabolic rewiring during the pathological remodeling of the heart.

Authors

Bo Zhou, Arianne Caudal, Xiaoting Tang, Juan D. Chavez, Timothy S. McMillen, Andrew Keller, Outi Villet, Mingyue Zhao, Yaxin Liu, Julia Ritterhoff, Pei Wang, Stephen C. Kolwicz Jr., Wang Wang, James E. Bruce, Rong Tian

×

Cyclooxygenase-2 in adipose tissue macrophages limits adipose tissue dysfunction in obese mice
Yu Pan, … , Ming-Zhi Zhang, Raymond C. Harris
Yu Pan, … , Ming-Zhi Zhang, Raymond C. Harris
Published May 2, 2022
Citation Information: J Clin Invest. 2022;132(9):e152391. https://doi.org/10.1172/JCI152391.
View: Text | PDF

Cyclooxygenase-2 in adipose tissue macrophages limits adipose tissue dysfunction in obese mice

  • Text
  • PDF
Abstract

Obesity-associated complications are causing increasing morbidity and mortality worldwide. Expansion of adipose tissue in obesity leads to a state of low-grade chronic inflammation and dysregulated metabolism, resulting in insulin resistance and metabolic syndrome. Adipose tissue macrophages (ATMs) accumulate in obesity and are a source of proinflammatory cytokines that further aggravate adipocyte dysfunction. Macrophages are rich sources of cyclooxygenase (COX), the rate limiting enzyme for prostaglandin E2 (PGE2) production. When mice were fed a high-fat diet (HFD), ATMs increased expression of COX-2. Selective myeloid cell COX-2 deletion resulted in increased monocyte recruitment and proliferation of ATMs, leading to increased proinflammatory ATMs with decreased phagocytic ability. There were increased weight gain and adiposity, decreased peripheral insulin sensitivity and glucose utilization, increased adipose tissue inflammation and fibrosis, and abnormal adipose tissue angiogenesis. HFD pair-feeding led to similar increases in body weight, but mice with selective myeloid cell COX-2 still exhibited decreased peripheral insulin sensitivity and glucose utilization. Selective myeloid deletion of the macrophage PGE2 receptor subtype, EP4, produced a similar phenotype, and a selective EP4 agonist ameliorated the metabolic abnormalities seen with ATM COX-2 deletion. Therefore, these studies demonstrated that an ATM COX-2/PGE2/EP4 axis plays an important role in inhibiting adipose tissue dysfunction.

Authors

Yu Pan, Shirong Cao, Jiaqi Tang, Juan P. Arroyo, Andrew S. Terker, Yinqiu Wang, Aolei Niu, Xiaofeng Fan, Suwan Wang, Yahua Zhang, Ming Jiang, David H. Wasserman, Ming-Zhi Zhang, Raymond C. Harris

×

Carbonic anhydrase XII mediates the survival and prometastatic functions of macrophages in human hepatocellular carcinoma
Wan-Ru Ning, … , Yan Wu, Limin Zheng
Wan-Ru Ning, … , Yan Wu, Limin Zheng
Published April 1, 2022
Citation Information: J Clin Invest. 2022;132(7):e153110. https://doi.org/10.1172/JCI153110.
View: Text | PDF

Carbonic anhydrase XII mediates the survival and prometastatic functions of macrophages in human hepatocellular carcinoma

  • Text
  • PDF
Abstract

Macrophages constitute a major immune component in tumor tissues, but how these cells adapt to and survive in the nutrient-depleted and lactic acid–induced acidic tumor microenvironments is not yet fully understood. Here, we found that levels of carbonic anhydrase XII (CA12) expression were significantly and selectively upregulated on macrophages in human hepatocellular carcinoma (HCC). Transient glycolytic activation of peritumoral monocytes induced sustained expression of CA12 on tumor-infiltrating macrophages via autocrine cytokines and HIF1α pathways. On the one hand, CA12 mediated the survival of macrophages in relatively acidic tumor microenvironments, while on the other hand, it induced macrophage production of large amounts of C-C motif chemokine ligand 8 (CCL8), which enhanced cancer cell epithelial-mesenchymal transition (EMT) and facilitated tumor metastasis. Consistently, the accumulation of CA12+ macrophages in tumor tissues was associated with increased tumor metastatic potential and reduced survival of patients with HCC. Selective targeting of tumor-infiltrating macrophages with a CA12 inhibitor reduced tumor growth in mice and was sufficient to synergistically enhance the therapeutic efficacy of immune-checkpoint blockade. We suggest that CA12 activity is a previously unappreciated mechanism regulating the accumulation and functions of macrophages in tumor microenvironments and therefore represents a selective vulnerability that could be exploited in future designs for antitumor immunotherapeutic strategies.

Authors

Wan-Ru Ning, Da Jiang, Xing-Chen Liu, Yu-Fan Huang, Zhi-Peng Peng, Ze-Zhou Jiang, Tiebang Kang, Shi-Mei Zhuang, Yan Wu, Limin Zheng

×

Targeting hepatic kisspeptin receptor ameliorates non-alcoholic fatty liver disease in a mouse model
Stephania Guzman, … , Andy V. Babwah, Moshmi Bhattacharya
Stephania Guzman, … , Andy V. Babwah, Moshmi Bhattacharya
Published March 29, 2022
Citation Information: J Clin Invest. 2022. https://doi.org/10.1172/JCI145889.
View: Text | PDF

Targeting hepatic kisspeptin receptor ameliorates non-alcoholic fatty liver disease in a mouse model

  • Text
  • PDF
Abstract

Nonalcoholic fatty liver disease (NAFLD), the most common liver disease has become a silent worldwide pandemic. The incidence of NAFLD correlates with the rise in obesity, type 2 diabetes and metabolic syndrome. A hallmark feature of NAFLD is excessive hepatic fat accumulation or steatosis, due to dysregulated hepatic fat metabolism which can progress to nonalcoholic steatohepatitis (NASH), fibrosis and cirrhosis. Currently, there are no approved pharmacotherapies to treat this disease. Here we have identified that activation of the kisspeptin receptor (KISS1R) signaling pathway has therapeutic effects in NAFLD. Using high fat diet-fed mice, we demonstrated that a deletion of hepatic Kiss1r exacerbated hepatic steatosis. In contrast, enhanced stimulation of KISS1R protected against steatosis in wild-type C57BL/6J mice and decreased fibrosis using a diet-induced mouse model of NASH. Mechanistically, we found that hepatic KISS1R signaling activates the master energy regulator, AMPK, to thereby decrease lipogenesis and progression to NASH. In NAFLD patients and in HFD-fed mice, hepatic KISS1/KISS1R expression and plasma kisspeptin levels were elevated, suggesting a compensatory mechanism to reduce triglyceride synthesis. These findings establish KISS1R as a therapeutic target to treat NASH.

Authors

Stephania Guzman, Magdalena Dragan, Hyokjoon Kwon, Vanessa de Oliveira, Shivani Rao, Vrushank Bhatt, Katarzyna M. Kalemba, Ankit Shah, Vinod K. Rustgi, He Wang, Paul R. Bech, Ali Abbara, Chioma Izzi-Engbeaya, Pinelopi Manousou, Jessie Yanxiang Guo, Grace L. Guo, Sally Radovick, Waljit S. Dhillo, Fredric E. Wondisford, Andy V. Babwah, Moshmi Bhattacharya

×

PHGDH is required for germinal center formation and is a therapeutic target in MYC-driven lymphoma
Annalisa D'Avola, … , Karen H. Vousden, John C. Riches
Annalisa D'Avola, … , Karen H. Vousden, John C. Riches
Published March 22, 2022
Citation Information: J Clin Invest. 2022. https://doi.org/10.1172/JCI153436.
View: Text | PDF

PHGDH is required for germinal center formation and is a therapeutic target in MYC-driven lymphoma

  • Text
  • PDF
Abstract

The synthesis of serine from glucose is a key metabolic pathway supporting cellular proliferation in healthy and malignant cells. Despite this, the role that this aspect of metabolism plays in germinal center biology and pathology is not known. Here, we performed a comprehensive characterization of the role of the serine synthesis pathway in germinal center B cells and lymphomas derived from these cells. We demonstrated that upregulation of a functional serine synthesis pathway is a metabolic hallmark of B-cell activation and the germinal center reaction. Inhibition of phosphoglycerate dehydrogenase (PHGDH), the first and rate limiting enzyme in this pathway, led to defective germinal formation and impaired high-affinity antibody production. In addition, overexpression of enzymes involved in serine synthesis was a characteristic of germinal center B-cell derived lymphomas, with high levels of expression being predictive of reduced overall survival in diffuse large B cell lymphoma. Inhibition of PHGDH induced apoptosis in lymphoma cells reducing disease progression. These findings establish PHGDH as a critical player in humoral immunity and a clinically relevant target in lymphoma.

Authors

Annalisa D'Avola, Nathalie Legrave, Mylène Tajan, Probir Chakravarty, Ryan L. Shearer, Hamish W. King, Katarina Kluckova, Eric C. Cheung, Andrew J. Clear, Arief S. Gunawan, Lingling Zhang, Louisa K. James, James I. MacRae, John G. Gribben, Dinis P. Calado, Karen H. Vousden, John C. Riches

×

A Piezo1/KLF15/IL-6 axis mediates immobilization-induced muscle atrophy
Yu Hirata, … , Hiroaki Wake, Wataru Ogawa
Yu Hirata, … , Hiroaki Wake, Wataru Ogawa
Published March 15, 2022
Citation Information: J Clin Invest. 2022. https://doi.org/10.1172/JCI154611.
View: Text | PDF

A Piezo1/KLF15/IL-6 axis mediates immobilization-induced muscle atrophy

  • Text
  • PDF
Abstract

Whereas immobility is a common cause of muscle atrophy, the mechanism underlying this causality is unclear. We here show that KLF15 and IL-6 are up-regulated in skeletal muscle of limb-immobilized mice and that mice with KLF15 deficiency in skeletal muscle or with systemic IL-6 deficiency are protected from immobility-induced muscle atrophy. A newly developed Ca2+ bioimaging revealed that the Ca2+ concentration ([Ca2+]i) of skeletal muscle is reduced to below the basal level by immobilization, which is associated with the down-regulation of Piezo1. Acute disruption of Piezo1 in skeletal muscle induced Klf15 and Il6 expression as well as muscle atrophy, which was prevented by antibodies to IL-6. A role for the Piezo1/KLF15/IL-6 axis in immobility-induced muscle atrophy was validated by human samples. Our results thus uncover a paradigm for Ca2+ signaling in that a decrease in [Ca2+]i from the basal level triggers a defined biological event.

Authors

Yu Hirata, Kazuhiro Nomura, Daisuke Kato, Yoshihisa Tachibana, Takahiro Niikura, Kana Uchiyama, Tetsuya Hosooka, Tomoaki Fukui, Keisuke Oe, Ryosuke Kuroda, Yuji Hara, Takahiro Adachi, Koji Shibasaki, Hiroaki Wake, Wataru Ogawa

×

Electrostatic sheathing of lipoprotein lipase is essential for its movement across capillary endothelial cells
Wenxin Song, … , Loren G. Fong, Stephen G. Young
Wenxin Song, … , Loren G. Fong, Stephen G. Young
Published March 1, 2022
Citation Information: J Clin Invest. 2022;132(5):e157500. https://doi.org/10.1172/JCI157500.
View: Text | PDF

Electrostatic sheathing of lipoprotein lipase is essential for its movement across capillary endothelial cells

  • Text
  • PDF
Abstract

GPIHBP1, an endothelial cell (EC) protein, captures lipoprotein lipase (LPL) within the interstitial spaces (where it is secreted by myocytes and adipocytes) and transports it across ECs to its site of action in the capillary lumen. GPIHBP1’s 3-fingered LU domain is required for LPL binding, but the function of its acidic domain (AD) has remained unclear. We created mutant mice lacking the AD and found severe hypertriglyceridemia. As expected, the mutant GPIHBP1 retained the capacity to bind LPL. Unexpectedly, however, most of the GPIHBP1 and LPL in the mutant mice was located on the abluminal surface of ECs (explaining the hypertriglyceridemia). The GPIHBP1-bound LPL was trapped on the abluminal surface of ECs by electrostatic interactions between the large basic patch on the surface of LPL and negatively charged heparan sulfate proteoglycans (HSPGs) on the surface of ECs. GPIHBP1 trafficking across ECs in the mutant mice was normalized by disrupting LPL-HSPG electrostatic interactions with either heparin or an AD peptide. Thus, GPIHBP1’s AD plays a crucial function in plasma triglyceride metabolism; it sheathes LPL’s basic patch on the abluminal surface of ECs, thereby preventing LPL-HSPG interactions and freeing GPIHBP1-LPL complexes to move across ECs to the capillary lumen.

Authors

Wenxin Song, Anne P. Beigneux, Anne-Marie L. Winther, Kristian K. Kristensen, Anne L. Grønnemose, Ye Yang, Yiping Tu, Priscilla Munguia, Jazmin Morales, Hyesoo Jung, Pieter J. de Jong, Cris J. Jung, Kazuya Miyashita, Takao Kimura, Katsuyuki Nakajima, Masami Murakami, Gabriel Birrane, Haibo Jiang, Peter Tontonoz, Michael Ploug, Loren G. Fong, Stephen G. Young

×

HRAS germline mutations impair LKB1/AMPK signaling and mitochondrial homeostasis in Costello syndrome models
Laetitia Dard, … , Didier Lacombe, Rodrigue Rossignol
Laetitia Dard, … , Didier Lacombe, Rodrigue Rossignol
Published March 1, 2022
Citation Information: J Clin Invest. 2022. https://doi.org/10.1172/JCI131053.
View: Text | PDF

HRAS germline mutations impair LKB1/AMPK signaling and mitochondrial homeostasis in Costello syndrome models

  • Text
  • PDF
Abstract

Germline mutations that activate genes in the canonical RAS/MAPK signaling pathway are responsible for rare human developmental disorders known as RASopathies. Here, we analyzed the molecular determinants of Costello syndrome (CS) using a mouse model expressing HRAS p.G12S, patient skin fibroblasts, hiPSC-derived human cardiomyocytes, a HRAS p.G12V zebrafish model and human fibroblasts expressing lentiviral constructs carrying HRAS p.G12S or HRAS p.G12A mutations. The findings revealed alteration of mitochondrial proteostasis and defective oxidative phosphorylation in the heart and skeletal muscle of Costello mice that were also found in the cell models of the disease. The underpinning mechanisms involved the inhibition of the AMPK signaling pathway by mutant forms of HRAS, leading to alteration of mitochondrial proteostasis and bioenergetics. Pharmacological activation of mitochondrial bioenergetics and quality control restored organelle function in HRAS p.G12A and p.G12S cell models, reduced left ventricle hypertrophy in the CS mice and diminished the occurrence of developmental defects in the CS zebrafish model. Collectively, these findings highlight the importance of mitochondrial proteostasis in the pathophysiology of RASopathies and suggest that patients with Costello syndrome may benefit from treatment with mitochondrial modulators.

Authors

Laetitia Dard, Christophe Hubert, Pauline Esteves, Wendy Blanchard, Ghina Bou About, Lyla Baldasseroni, Elodie Dumon, Chloe Angelini, Mégane Delourme, Véronique Guyonnet-Duperat, Stephane Claverol, Marc Bonneu, Laura Fontenille, Karima Kissa, Pierre-Emmanuel Séguéla, Jean-Benoît Thambo, Nicolas Levy, Yann Herault, Nadège Bellance, Nivea Dias Amoedo, Frederique Magdinier, Tania Sorg, Didier Lacombe, Rodrigue Rossignol

×

Brown adipose TRX2 deficiency activates mtDNA-NLRP3 to impair thermogenesis and protect against diet-induced insulin resistance
Yanrui Huang, … , Carlos Fernandez-Hernando, Wang Min
Yanrui Huang, … , Carlos Fernandez-Hernando, Wang Min
Published February 24, 2022
Citation Information: J Clin Invest. 2022. https://doi.org/10.1172/JCI148852.
View: Text | PDF

Brown adipose TRX2 deficiency activates mtDNA-NLRP3 to impair thermogenesis and protect against diet-induced insulin resistance

  • Text
  • PDF
Abstract

Brown adipose tissue (BAT), a crucial heat-generating organ, regulate whole-body energy metabolism by mediating thermogenesis. BAT inflammation is implicated in the pathogenesis of mitochondrial dysfunction and impaired thermogenesis. However, the link between BAT inflammation and systematic metabolism remains unclear. Herein, we use mice with BAT deficiency of thioredoxin-2 (TRX2), a protein that scavenges mitochondrial reactive oxygen species (ROS), to evaluate the impact of BAT inflammation on metabolism and thermogenesis and its underlying mechanism. Our results describe that BAT-specific TRX2 ablation improves systematic metabolic performance via enhancing lipid uptake, which protects mice from diet-induced obesity, hypertriglyceridemia, and insulin resistance. TRX2 deficiency impairs adaptive thermogenesis by suppressing fatty acid oxidation. Mechanistically, loss of TRX2 induces excessive mitochondrial ROS, mitochondrial integrity disruption, and cytosolic release of mitochondrial DNA, which in turn activate aberrant innate immune responses in BAT, including the cGAS-STING and the NLRP3 inflammasome pathways. We identify NLRP3 as a key converging point, as its inhibition reverses both the thermogenesis defect and the metabolic benefits seen under nutrient overload in BAT-specific Trx2-deficient mice. In conclusion, we identify TRX2 as a critical hub integrating oxidative stress, inflammation, and lipid metabolism in BAT; uncovering an adaptive mechanism underlying the link between BAT inflammation and systematic metabolism.

Authors

Yanrui Huang, Jenny H. Zhou, Haifeng Zhang, Alberto Canfrán-Duque, Abhishek K. Singh, Rachel J. Perry, Gerald Shulman, Carlos Fernandez-Hernando, Wang Min

×

IL-9/STAT3/fatty acid oxidation-mediated lipid peroxidation contributes to Tc9 cell longevity and enhanced antitumor activity
Liuling Xiao, … , Jianfei Qian, Qing Yi
Liuling Xiao, … , Jianfei Qian, Qing Yi
Published February 22, 2022
Citation Information: J Clin Invest. 2022. https://doi.org/10.1172/JCI153247.
View: Text | PDF

IL-9/STAT3/fatty acid oxidation-mediated lipid peroxidation contributes to Tc9 cell longevity and enhanced antitumor activity

  • Text
  • PDF
Abstract

CD8+ T cell longevity regulated by metabolic activity plays important roles in cancer immunotherapy. Although in vitro polarized, transferred IL-9-secreting CD8+ Tc9 cells exert greater persistence and antitumor efficacy than Tc1/CTL cells, the underlying mechanism remains unclear. Here, we show that tumor-infiltrating Tc9 cells display significantly lower lipid peroxidation than Tc1 cells in several mouse models, which is strongly correlated with their persistence. Using RNA-sequence and functional validation, we found that Tc9 cells exhibited unique lipid metabolic programs. Tc9 cell-derived IL-9 activated STAT3, upregulated fatty acid oxidation and mitochondrial activity, and rendered Tc9 cells with reduced lipid peroxidation and resistant to tumor or ROS induced ferroptosis in TME. IL-9 signal deficiency, inhibiting STAT3 or fatty acid oxidation increased lipid peroxidation and ferroptosis of Tc9 cells, resulting in impaired longevity and antitumor ability. Similarly, human Tc9 cells also possessed lower lipid peroxidation than Tc1 cells and tumor-infiltrating CD8+ T cells expressed lower IL-9 and higher lipid peroxidation- and ferroptosis-related genes than circulating CD8+ T cells in melanoma patients. This study indicates that lipid peroxidation regulates Tc9-cell longevity and antitumor effects via IL-9-STAT3-fatty acid oxidation pathway and regulating T-cell lipid peroxidation can be used to enhance T-cell based immunotherapy in human cancer.

Authors

Liuling Xiao, Xingzhe Ma, Lingqun Ye, Pan Su, Wei Xiong, Enguang Bi, Qiang Wang, Miao Xian, Maojie Yang, Jianfei Qian, Qing Yi

×
  • ← Previous
  • 1
  • 2
  • 3
  • …
  • 49
  • 50
  • Next →
Using SORLA to sort out human obesity
Vanessa Schmidt and colleagues demonstrate that the intracellular sorting receptor SORLA is an important regulator of lipid metabolism…
Published June 20, 2016
Scientific Show StopperMetabolism

Intracellular calcium leak recasts β cell landscape
Gaetano Santulli and colleagues reveal that RyR2 calcium channels in pancreatic β cells mediate insulin release and glucose homeostasis…
Published April 6, 2015
Scientific Show StopperMetabolism
Advertisement

Copyright © 2022 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts