Lymph nodes (LNs) filter lymph to mount effective immune responses. Small soluble lymph-borne molecules from the periphery enter the draining LNs via a reticular conduit system. Intact antibodies and other larger molecules, in contrast, are physically unable to enter the conduits, and they are thought to be transported to the LNs only within migratory DCs after proteolytic degradation. Here, we discovered that lymph-borne antibodies and other large biomolecules enter within seconds into the parenchyma of the draining LN in an intact form. Mechanistically, we found that the uptake of large molecules is a receptor-independent, fluid-phase process that takes place by dynamin-dependent vesicular transcytosis through the lymphatic endothelial cells in the subcapsular sinus of the LN. Physiologically, this pathway mediates a very fast transfer of large protein antigens from the periphery to LN-resident DCs and macrophages. We show that exploitation of the transcytosis system allows enhanced whole-organ imaging and spatially controlled lymphocyte activation by s.c. administered antibodies in vivo. Transcytosis through the floor of the subcapsular sinus thus represents what we believe to be a new physiological and targetable mode of lymph filtering.
Laura Kähäri, Ruth Fair-Mäkelä, Kaisa Auvinen, Pia Rantakari, Sirpa Jalkanen, Johanna Ivaska, Marko Salmi
Induction of memory CD8 T cells is important for controlling infections such as malaria HIV/AIDS, and for cancer immunotherapy. Accurate assessment of antigen (Ag)-specific CD8 T-cells is critical for vaccine optimization and defining correlates of protection. However, conditions for determining Ag-specific CD8 T-cell responses ex-vivo using ICS may be variable, especially in humans with complex antigens. Here, we used an attenuated whole parasite malaria vaccine model in humans and various experimental infections in mice to show that the duration of antigenic stimulation and timing of brefeldin A (BFA) addition influences the magnitude of Ag-specific and bystander T cell responses. Indeed, following immunization with an attenuated whole sporozoite malaria vaccine in humans, significantly higher numbers of IFN-γ producing memory CD8 T-cells comprised of antigen specific and bystander responses were detected by increasing the duration of Ag-stimulation prior to addition of BFA. Mechanistic analyses of virus-specific CD8 T-cells in mice revealed that the increase in IFNg producing CD8 T-cells was due to bystander activation of Ag-experienced memory CD8 T-cells, and correlated with the proportion of Ag-experienced CD8 T-cells in the stimulated populations. Incubation with anti-cytokine antibodies (ex. IL-12) improved accuracy in detecting bona-fide memory CD8 T-cell responses suggesting this as the mechanism for the bystander activation. These data have important implications for accurate assessment of immune responses generated by vaccines intended to elicit protective memory CD8 T-cells.
Matthew D. Martin, Isaac J. Jensen, Andrew S. Ishizuka, Mitchell Lefebvre, Qiang Shan, Hai-Hui Xue, John T. Harty, Robert A. Seder, Vladimir P. Badovinac
A population of Natural Killer (NK) cells expressing the activating receptor NKG2C and the maturation marker CD57 expands in response to human cytomegalovirus (HCMV) infection. CD3–CD56dimCD57+NKG2C+ NK cells are similar to CD8+ memory T cells with rapid and robust effector function upon re-stimulation, persistence, and epigenetic remodeling of the IFNG locus. Chronic antigen stimulation drives CD8+ memory T cell proliferation while also inducing genome-wide epigenetic reprograming and dysfunction. We hypothesized that chronic stimulation could similarly induce epigenetic reprograming and dysfunction in NK cells. Here we show that chronic stimulation of adaptive NK cells through NKG2C using plate-bound agonistic antibodies in combination with IL-15 drove robust proliferation and activation of CD3–CD56dimCD57+NKG2C+ NK cells while simultaneously inducing high expression of the checkpoint inhibitory receptors LAG-3 and PD-1. Marked induction of checkpoint inhibitory receptors was also observed on the surface of adaptive NK cells co-cultured with HCMV-infected endothelial cells. Chronically stimulated adaptive NK cells were dysfunctional when challenged with tumor targets. These cells exhibited a pattern of epigenetic reprograming, with genome-wide alterations in DNA methylation. Our study has important implications for cancer immunotherapy and suggest that exhausted NK cells could be targeted with inhibitory checkpoint receptor blockade.
Aimee M. Merino, Bin Zhang, Phillip R. Dougherty, Xianghua Luo, Jinhua Wang, Bruce R. Blazar, Jeffrey S. Miller, Frank Cichocki
Resident microbiota activate regulatory cells that modulate intestinal inflammation and promote and maintain intestinal homeostasis. IL-10 is a key mediator of immune regulatory function. Our studies described the functional importance and mechanisms by which gut microbiota and specific microbial components influenced the development of intestinal IL-10-producing B cells. We used fecal transplant to germ-free (GF) Il10+/EGFP reporter and Il10-/- mice to demonstrate that microbiota from specific pathogen-free mice primarily stimulated IL-10-producing colon-specific B cells and T regulatory-1 cells in ex-GF mice. IL-10 in turn down-regulated microbiota-activated mucosal inflammatory cytokines. TLR2/9 ligands and enteric bacterial lysates preferentially induced IL-10 production and regulatory capacity of intestinal B cells. Analysis of Il10+/EGFP mice crossed with additional gene-deficient strains and B cell co-transfer studies demonstrated that microbiota-induced IL-10-producing intestinal B cells ameliorated chronic T cell-mediated colitis in a TLR2, MyD88 and PI3K-dependent fashion. In vitro studies implicated PI3Kp110δ and AKT downstream signaling. These studies demonstrated that resident enteric bacteria activated intestinal IL-10-producing B cells through TLR2, MyD88 and PI3K pathways. These B cells reduced colonic T cell activation and maintained mucosal homeostasis in response to intestinal microbiota.
Yoshiyuki Mishima, Akihiko Oka, Bo Liu, Jeremy W. Herzog, Chang Soo Eun, Ting-Jia Fan, Emily Bulik-Sullivan, Ian M. Carroll, Jonathan J. Hansen, Liang Chen, Justin E. Wilson, Nancy C. Fisher, Jenny P. Y. Ting, Tomonori Nochi, Angela Wahl, J. Victor Garcia, Christopher L. Karp, R. Balfour Sartor
Recent studies have demonstrated that CD4+ T cells can efficiently reject MHC-II–negative tumors. This requires indirect presentation of tumor-associated antigens on surrounding antigen-presenting cells. We hypothesized that intercellular transfer of proteins is not the sole consequence of cell death–mediated protein release, but depends on heat-shock cognate protein 70 (HSC70) and its KFERQ-like binding motif on substrate proteins. Using human Y chromosome antigen DBY, we showed that mutation of one of its 2 putative binding motifs markedly diminished T cell activation after indirect presentation and reduced protein-protein interaction with HSC70. Intercellular antigen transfer was shown to be independent of cell-cell contact, but relied on engulfment within secreted microvesicles. In vivo, alterations of the homologous KFERQ-like motif in murine DBY hampered tumor rejection, T cell activation, and migration into the tumor and substantially impaired survival. Collectively, we show that intercellular antigen transfer of DBY is tightly regulated via binding to HSC70 and that this mechanism influences recognition and rejection of MHC-II–negative tumors in vivo.
Sascha Kretschmann, Stefanie Herda, Heiko Bruns, Josefine Russ, Edith D. van der Meijden, Ursula Schlötzer-Schrehardt, Marieke Griffioen, Il-Kang Na, Andreas Mackensen, Anita N. Kremer
Invasive fungal infection is a serious health threat with high morbidity and mortality. Current antifungal drugs only demonstrate partial success in improving prognosis. Furthermore, mechanisms regulating host defense against fungal pathogens remain elusive. Here, we report that the downstream of kinase 3 (Dok3) adaptor negatively regulates antifungal immunity in neutrophils. Our data revealed that Dok3 deficiency increased phagocytosis, proinflammatory cytokine production, and netosis in neutrophils, thereby enhancing mutant mouse survival against systemic infection with a lethal dose of the pathogenic fungus Candida albicans. Biochemically, Dok3 recruited protein phosphatase 1 (PP1) to dephosphorylate Card9, an essential player in innate antifungal defense, to dampen downstream NF-κB and JNK activation and immune responses. Thus, Dok3 suppresses Card9 signaling, and disrupting Dok3-Card9 interaction or inhibiting PP1 activity represents therapeutic opportunities to develop drugs to combat candidaemia.
Jia Tong Loh, Shengli Xu, Jian Xin Huo, Susana Soo-Yeon Kim, Yue Wang, Kong-Peng Lam
Environmental triggers, including those from pathogens, are thought to play an important role in triggering autoimmune diseases, such as vasculitis, in genetically susceptible individuals. The mechanism by which activation of the innate immune system contributes to vessel-specific autoimmunity in vasculitis is not known. Systemic administration of Candida albicans water-soluble extract (CAWS) induces vasculitis in the aortic root and coronary arteries of mice that mimics human Kawasaki disease. We found that Dectin-2 signaling in macrophages resident in the aortic root of the heart induced early CCL2 production and the initial recruitment of CCR2+ inflammatory monocytes (iMo) into the aortic root and coronary arteries. iMo differentiated into monocyte-derived dendritic cells (Mo-DC) in the vessel wall and were induced to release IL-1β in a Dectin-2-Syk-NLRP3 inflammasome dependent pathway. IL-1β then activated cardiac endothelial cells to express CXCL1 and CCL2 and adhesion molecules that induced neutrophil and further iMo recruitment and accumulation in the aortic root and coronary arteries. Our findings demonstrate that Dectin-2-mediated induction of CCL2 production by macrophages resident in the aortic root and coronary arteries initiates vascular inflammation in a model of Kawasaki disease, suggesting an important role for the innate immune system in initiating vasculitis.
Chie Miyabe, Yoshishige Miyabe, Laura Moreno, Jeffrey Lian, Rod A. Rahimi, Noriko N. Miura, Naohito Ohno, Yoichiro Iwakura, Tamihiro Kawakami, Andrew D. Luster
Physiological effects of cellular hypoxia are sensed by prolyl hydroxylase (PHD) enzymes which regulate HIFs. Genetic interventions on HIF/PHD pathways reveal multiple phenotypes that extend the known biology of hypoxia. Recent studies unexpectedly implicate HIF in aspects of multiple immune and inflammatory pathways. However such studies are often limited by systemic lethal effects and/or use tissue-specific recombination systems, which are inherently irreversible, un-physiologically restricted and difficult to time. To study these processes better we developed recombinant mice which express tetracycline-regulated shRNAs broadly targeting the main components of the HIF/PHD pathway, permitting timed bi-directional intervention. We have shown that stabilization of HIF levels in adult mice through PHD2 enzyme silencing by RNA interference, or inducible recombination of floxed alleles, results in multi-lineage leukocytosis and features of autoimmunity. This phenotype was rapidly normalized on re-establishment of the hypoxia-sensing machinery when shRNA expression was discontinued. In both situations these effects were mediated principally through the Hif2a isoform. Assessment of cells bearing regulatory T cell markers from these mice revealed defective function and pro-inflammatory effects in vivo. We believe our findings have shown a new role for the PHD2/Hif2a couple in the reversible regulation of T cell and immune activity.
Atsushi Yamamoto, Joanna Hester, Philip S. Macklin, Kento Kawai, Masateru Uchiyama, Daniel Biggs, Tammie Bishop, Katherine Bull, Xiaotong Cheng, Eleanor Cawthorne, Mathew L. Coleman, Tanya L. Crockford, Ben Davies, Lukas E. Dow, Rob Goldin, Kamil Kranc, Hiromi Kudo, Hannah Lawson, James McAuliffe, Kate Milward, Cheryl L. Scudamore, Elizabeth Soilleux, Fadi Issa, Peter J. Ratcliffe, Chris W. Pugh
Resistance to immunotherapy is one of the biggest problems of current oncotherapeutics. WhileT cell abundance is essential for tumor responsiveness to immunotherapy, factors that define the T cell inflamed tumor microenvironment are not fully understood. We conducted an unbiased approach to identify tumor-intrinsic mechanisms shaping the immune tumor microenvironment(TME), focusing on pancreatic adenocarcinoma because it is refractory to immunotherapy and excludes T cells from the TME. From human tumors, we identified EPHA2 as a candidate tumor intrinsic driver of immunosuppression. Epha2 deletion reversed T cell exclusion and sensitized tumors to immunotherapy. We found that PTGS2, the gene encoding cyclooxygenase-2, lies downstream of EPHA2 signaling through TGFβ and is associated with poor patient survival. Ptgs2 deletion reversed T cell exclusion and sensitized tumors to immunotherapy; pharmacological inhibition of PTGS2 was similarly effective. Thus, EPHA2-PTGS2 signaling in tumor cells regulates tumor immune phenotypes; blockade may represent a novel therapeutic avenue for immunotherapy-refractory cancers. Our findings warrant clinical trials testing the effectiveness of therapies combining EPHA2-TGFβ-PTGS2 pathway inhibitors with anti-tumor immunotherapy, and may change the treatment of notoriously therapy-resistant pancreatic adenocarcinoma.
Nune Markosyan, Jinyang Li, Yu H. Sun, Lee P. Richman, Jeffrey H. Lin, Fangxue Yan, Liz Quinones, Yogev Sela, Taiji Yamazoe, Naomi Gordon, John W. Tobias, Katelyn T. Byrne, Andrew J. Rech, Garret A. FitzGerald, Ben Z. Stanger, Robert H. Vonderheide
Background: While the human fetal immune system defaults to a program of tolerance, there is concurrent need for protective immunity to meet the antigenic challenges encountered after birth. Activation of T cells in utero is associated with the fetal inflammatory response with broad implications for the health of the fetus and of the pregnancy. However, the characteristics of the fetal effector T cells that contribute to this process are largely unknown. Methods: We analyzed primary human fetal lymphoid and mucosal tissues and performed phenotypic, functional, and transcriptional analysis to identify T cells with pro-inflammatory potential. The frequency and function of fetal-specific effector T cells was assessed in the cord blood of infants with localized and systemic inflammatory pathologies and compared to healthy term controls. Results: We identified a transcriptionally distinct population of CD4+ T cells characterized by expression of the transcription factor Promyelocytic Leukemia Zinc Finger (PLZF). PLZF+ CD4+ T cells were specifically enriched in the fetal intestine, possessed an effector memory phenotype, and rapidly produced pro-inflammatory cytokines. Engagement of the C-type lectin CD161 on these cells inhibited TCR-dependent production of IFNγ in a fetal-specific manner. IFNγ-producing PLZF+ CD4+ T cells were enriched in the cord blood of infants with gastroschisis, a natural model of chronic inflammation originating from the intestine, as well as in preterm birth, suggesting these cells contribute to fetal systemic immune activation. Conclusion: Our work reveals a fetal-specific program of protective immunity whose dysregulation is associated with fetal and neonatal inflammatory pathologies.
Joanna Halkias, Elze Rackaityte, Sara L. Hillman, Dvir Aran, Ventura F. Mendoza, Lucy R. Marshall, Tippi C. MacKenzie, Trevor D. Burt