Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact
  • Current Issue
  • Past Issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • 100th Anniversary of Insulin's Discovery (Jan 2021)
    • Hypoxia-inducible factors in disease pathophysiology and therapeutics (Oct 2020)
    • Latency in Infectious Disease (Jul 2020)
    • Immunotherapy in Hematological Cancers (Apr 2020)
    • Big Data's Future in Medicine (Feb 2020)
    • Mechanisms Underlying the Metabolic Syndrome (Oct 2019)
    • Reparative Immunology (Jul 2019)
    • View all review series ...
  • Viewpoint
  • Collections
    • Recently published
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • Recently published
  • In-Press Preview
  • Commentaries
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact
Chaperone protein HSC70 regulates intercellular transfer of Y chromosome antigen DBY
Sascha Kretschmann, … , Andreas Mackensen, Anita N. Kremer
Sascha Kretschmann, … , Andreas Mackensen, Anita N. Kremer
Published June 17, 2019
Citation Information: J Clin Invest. 2019;129(7):2952-2963. https://doi.org/10.1172/JCI123105.
View: Text | PDF
Research Article Immunology Oncology

Chaperone protein HSC70 regulates intercellular transfer of Y chromosome antigen DBY

  • Text
  • PDF
Abstract

Recent studies have demonstrated that CD4+ T cells can efficiently reject MHC-II–negative tumors. This requires indirect presentation of tumor-associated antigens on surrounding antigen-presenting cells. We hypothesized that intercellular transfer of proteins is not the sole consequence of cell death–mediated protein release, but depends on heat-shock cognate protein 70 (HSC70) and its KFERQ-like binding motif on substrate proteins. Using human Y chromosome antigen DBY, we showed that mutation of one of its 2 putative binding motifs markedly diminished T cell activation after indirect presentation and reduced protein-protein interaction with HSC70. Intercellular antigen transfer was shown to be independent of cell-cell contact, but relied on engulfment within secreted microvesicles. In vivo, alterations of the homologous KFERQ-like motif in murine DBY hampered tumor rejection, T cell activation, and migration into the tumor and substantially impaired survival. Collectively, we show that intercellular antigen transfer of DBY is tightly regulated via binding to HSC70 and that this mechanism influences recognition and rejection of MHC-II–negative tumors in vivo.

Authors

Sascha Kretschmann, Stefanie Herda, Heiko Bruns, Josefine Russ, Edith D. van der Meijden, Ursula Schlötzer-Schrehardt, Marieke Griffioen, Il-Kang Na, Andreas Mackensen, Anita N. Kremer

×

Full Text PDF | Download (5.37 MB)

Follow JCI:
Copyright © 2021 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts