Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Endocrinology

  • 292 Articles
  • 5 Posts
  • ← Previous
  • 1
  • 2
  • 3
  • 4
  • …
  • 29
  • 30
  • Next →
Attenuated kidney oxidative metabolism in young adults with type 1 diabetes
Ye Ji Choi, … , Matthias Kretzler, Petter Bjornstad
Ye Ji Choi, … , Matthias Kretzler, Petter Bjornstad
Published October 22, 2024
Citation Information: J Clin Invest. 2024. https://doi.org/10.1172/JCI183984.
View: Text | PDF

Attenuated kidney oxidative metabolism in young adults with type 1 diabetes

  • Text
  • PDF
Abstract

BACKGROUND. In type 1 diabetes (T1D), impaired insulin sensitivity may contribute to the development of diabetic kidney disease (DKD) through alterations in kidney oxidative metabolism. METHODS. Young adults with T1D (n = 30) and healthy controls (HC, n = 20) underwent hyperinsulinemic-euglycemic clamp studies, MRI, 11C-acetate PET, kidney biopsies, single-cell RNA sequencing, and spatial metabolomics to assess this relationship. RESULTS. Participants with T1D had significantly higher glomerular basement membrane thickness compared to HC. T1D participants exhibited lower insulin sensitivity and cortical oxidative metabolism, correlating with higher insulin sensitivity. Proximal tubular transcripts of TCA cycle and oxidative phosphorylation enzymes were lower in T1D. Spatial metabolomics showed reductions in tubular TCA cycle intermediates, indicating mitochondrial dysfunction. The Slingshot algorithm identified a lineage of proximal tubular cells progressing from stable to adaptive/maladaptive subtypes, using pseudotime trajectory analysis, which computationally orders cells along a continuum of states. This analysis revealed distinct distribution patterns between T1D and HC, with attenuated oxidative metabolism in T1D attributed to a greater proportion of adaptive/maladaptive subtypes with low expression of TCA cycle and oxidative phosphorylation transcripts. Pseudotime progression associated with higher HbA1c, BMI, GBM, and lower insulin sensitivity and cortical oxidative metabolism. CONCLUSION. These early structural and metabolic changes in T1D kidneys may precede clinical DKD. TRIAL REGISTRATION. ClinicalTrials.gov NCT04074668

Authors

Ye Ji Choi, Gabriel Richard, Guanshi Zhang, Jeffrey B. Hodgin, Dawit S. Demeke, Yingbao Yang, Jennifer A. Schaub, Ian M. Tamayo, Bhupendra K. Gurung, Abhijit S. Naik, Viji Nair, Carissa Birznieks, Alexis MacDonald, Phoom Narongkiatikhun, Susan Gross, Lynette Driscoll, Maureen Flynn, Kalie Tommerdahl, Kristen J. Nadeau, Viral N. Shah, Tim Vigers, Janet K. Snell-Bergeon, Jessica Kendrick, Daniel H. van Raalte, Lu-Ping Li, Pottumarthi Prasad, Patricia Ladd, Bennett B. Chin, David Z. Cherney, Phillip J. McCown, Fadhl Alakwaa, Edgar A. Otto, Frank C. Brosius, Pierre Jean Saulnier, Victor G. Puelles, Jesse A. Goodrich, Kelly Street, Manjeri A. Venkatachalam, Aaron Ruiz, Ian H. de Boer, Robert G. Nelson, Laura Pyle, Denis P. Blondin, Kumar Sharma, Matthias Kretzler, Petter Bjornstad

×

Activation of Gs signaling in mouse enteroendocrine K-cells greatly improves obesity- and diabetes-related metabolic deficits
Antwi-Boasiako Oteng, … , Frank Reimann, Jürgen Wess
Antwi-Boasiako Oteng, … , Frank Reimann, Jürgen Wess
Published October 22, 2024
Citation Information: J Clin Invest. 2024. https://doi.org/10.1172/JCI182325.
View: Text | PDF

Activation of Gs signaling in mouse enteroendocrine K-cells greatly improves obesity- and diabetes-related metabolic deficits

  • Text
  • PDF
Abstract

Following a meal, glucagon-like peptide-1 (GLP1) and glucose-dependent insulinotropic polypeptide (GIP), the two major incretins promoting insulin release, are secreted from specialized enteroendocrine cells (L- and K-cells, respectively). Although GIP is the dominant incretin in humans, the detailed molecular mechanisms governing its release remain to be explored. GIP secretion is regulated by the activity of G protein-coupled receptors (GPCRs) expressed by K-cells. GPCRs couple to one or more specific classes of heterotrimeric G proteins. In the present study, we focused on the potential metabolic roles of K-cell Gs. First, we generated a mouse model that allowed us to selectively stimulate K-cell Gs signaling. Second, we generated a mouse strain harboring an inactivating mutation of Gnas, the gene encoding the alpha-subunit of Gs, selectively in K-cells. Metabolic phenotyping studies showed that acute or chronic stimulation of K-cell Gs signaling greatly improved impaired glucose homeostasis in obese mice and in a mouse model of type 2 diabetes, due to enhanced GIP secretion. In contrast, K-cell-specific Gnas knockout mice displayed markedly reduced plasma GIP levels. These data strongly suggest that strategies aimed at enhancing K-cell Gs signaling may prove useful for the treatment of diabetes and related metabolic diseases.

Authors

Antwi-Boasiako Oteng, Liu Liu, Yinghong Cui, Oksana Gavrilova, Huiyan Lu, Min Chen, Lee S. Weinstein, Jonathan E. Campbell, Jo E. Lewis, Fiona M. Gribble, Frank Reimann, Jürgen Wess

×

Survival of men with metastatic hormone-sensitive prostate cancer and adrenal-permissive HSD3B1 inheritance
Nima Sharifi, … , Ian D. Davis, Christopher J. Sweeney
Nima Sharifi, … , Ian D. Davis, Christopher J. Sweeney
Published September 17, 2024
Citation Information: J Clin Invest. 2024;134(18):e183583. https://doi.org/10.1172/JCI183583.
View: Text | PDF

Survival of men with metastatic hormone-sensitive prostate cancer and adrenal-permissive HSD3B1 inheritance

  • Text
  • PDF
Abstract

BACKGROUND Metastatic hormone-sensitive prostate cancer (mHSPC) is androgen dependent, and its treatment includes androgen deprivation therapy (ADT) with gonadal testosterone suppression. Since 2014, overall survival (OS) has been prolonged with addition of other systemic therapies, such as adrenal androgen synthesis blockers, potent androgen receptor blockers, or docetaxel, to ADT. HSD3B1 encodes the rate-limiting enzyme for nongonadal androgen synthesis, 3β-hydroxysteroid dehydrogenase-1, and has a common adrenal-permissive missense-encoding variant that confers increased synthesis of potent androgens from nongonadal precursor steroids and poorer prostate cancer outcomes.METHODS Our prespecified hypothesis was that poor outcome associated with inheritance of the adrenal-permissive HSD3B1 allele with ADT alone is reversed in patients with low-volume (LV) mHSPC with up-front ADT plus addition of androgen receptor (AR) antagonists to inhibit the effect of adrenal androgens. HSD3B1 genotype was obtained in 287 patients with LV disease treated with ADT + AR antagonist only in the phase III Enzalutamide in First Line Androgen Deprivation Therapy for Metastatic Prostate Cancer (ENZAMET) trial and was associated with clinical outcomes.RESULTS Patients who inherited the adrenal-permissive HSD3B1 allele had more favorable 5-year clinical progression-free survival and OS when treated with ADT plus enzalutamide or ADT plus nonsteroidal antiandrogen compared with their counterparts who did not have adrenal-permissive HSD3B1 inheritance. HSD3B1 was also associated with OS after accounting for known clinical variables. Patients with both genotypes benefited from early enzalutamide.CONCLUSION These data demonstrated an inherited physiologic driver of prostate cancer mortality is associated with clinical outcomes and is potentially pharmacologically reversible.FUNDING National Cancer Institute, NIH; Department of Defense; Prostate Cancer Foundation, Australian National Health and Medical Research Council.

Authors

Nima Sharifi, Robert Diaz, Hui-Ming Lin, Evan Roberts, Lisa G. Horvath, Andrew Martin, Martin R. Stockler, Sonia Yip, Vinod V. Subhash, Neil Portman, Ian D. Davis, Christopher J. Sweeney

×

Postprandial metabolomics analysis reveals disordered serotonin metabolism in post-bariatric hypoglycemia
Rafael Ferraz-Bannitz, … , Darleen A. Sandoval, Mary-Elizabeth Patti
Rafael Ferraz-Bannitz, … , Darleen A. Sandoval, Mary-Elizabeth Patti
Published September 12, 2024
Citation Information: J Clin Invest. 2024. https://doi.org/10.1172/JCI180157.
View: Text | PDF

Postprandial metabolomics analysis reveals disordered serotonin metabolism in post-bariatric hypoglycemia

  • Text
  • PDF
Abstract

BACKGROUND. Bariatric surgery is a potent therapeutic approach for obesity and type 2 diabetes but can be complicated by post-bariatric hypoglycemia (PBH). PBH typically occurs 1 to 3 hours after meals, in association with exaggerated postprandial levels of incretins and insulin. METHODS. To identify mediators of disordered metabolism in PBH, we analyzed plasma metabolome in fasting state and 30 and 120 minutes after mixed meal in 3 groups: PBH (n = 13), asymptomatic post-RYGB (n = 10), and non-surgical controls (n = 8). RESULTS. In the fasting state, multiple tricarboxylic acid cycle intermediates and the ketone beta-hydroxybutyrate were increased by 30% to 80% in PBH vs. asymptomatic. Conversely, multiple amino acids (BCAA, tryptophan) and polyunsaturated lipids were reduced by 20% to 50% in PBH versus asymptomatic. Tryptophan-related metabolites, including kynurenate, xanthurenate, and serotonin, were reduced by 2- to 10-fold in PBH in fasting state. Postprandially, plasma serotonin was uniquely increased by 1.9-fold in PBH versus asymptomatic post-RYGB. In mice, serotonin administration lowered glucose and increased plasma insulin and GLP-1. Moreover, serotonin-induced hypoglycemia in mice was blocked by the nonspecific serotonin receptor antagonist cyproheptadine and the specific serotonin receptor 2 antagonist ketanserin. CONCLUSION. Together these data suggest that increased postprandial serotonin may contribute to the pathophysiology of PBH and provide a potential therapeutic target. FUNDING. NIH grant R01 DK121995, NIH grant P30 DK036836 (Diabetes Research Center grant, Joslin Diabetes Center), and Fundação de Amparo à Pesquisa do Estado de São Paulo-FAPESP grant 2018/22111-2.

Authors

Rafael Ferraz-Bannitz, Berkcan Ozturk, Cameron J. Cummings, Vissarion Efthymiou, Pilar Casanova Querol, Lindsay Poulos, Hanna J. Wang, Valerie Navarrete, Hamayle Saeed, Christopher M. Mulla, Hui Pan, Jonathan M. Dreyfuss, Donald C. Simonson, Darleen A. Sandoval, Mary-Elizabeth Patti

×

Teplizumab induces persistent changes in the antigen‐specific repertoire in individuals at‐risk for type 1 diabetes
Ana Lledó-Delgado, … , John S. Tsang, Kevan C. Herold
Ana Lledó-Delgado, … , John S. Tsang, Kevan C. Herold
Published August 13, 2024
Citation Information: J Clin Invest. 2024. https://doi.org/10.1172/JCI177492.
View: Text | PDF

Teplizumab induces persistent changes in the antigen‐specific repertoire in individuals at‐risk for type 1 diabetes

  • Text
  • PDF
Abstract

BACKGROUND. Teplizumab, a FcR non-binding anti-CD3 mAb, is approved to delay progression of type 1 diabetes (T1D) at-risk patients. Previous investigations described the immediate effects of the 14-day treatment, but longer-term effects of the drug remain unknown. METHODS. With an extended analysis of study participants, we found that 36% were undiagnosed or remained clinical diabetes free after 5 years suggesting operational tolerance. Using single cell RNA-seq, we compared the phenotypes, transcriptome, and repertoire of peripheral blood CD8+ T cells including autoreactive T cells from study participants before and after teplizumab and features of responders and non-responders. RESULTS. At 3 months, there were transcriptional signatures of cell activation in CD4+ and CD8+ T cells including signaling that was reversed at 18 months. At that time, there was reduced expression of genes in T cell receptor and activation pathways in clinical responders. In CD8+ T cells, we found increased expression of genes associated with exhaustion and immune regulation with teplizumab treatment. These transcriptional features were further confirmed in an independent cohort. Pseudotime analysis showed differentiation of CD8+ exhausted and memory cells with teplizumab treatment. IL7R expression was reduced and patients with lower expression of CD127 had longer diabetes free intervals. In addition, the frequency of autoantigen reactive CD8+ T cells, that expanded in the placebo group over 18 months, did not increase in the teplizumab group. CONCLUSION. These findings indicate that teplizumab promotes operational tolerance in T1D, involving activation followed by exhaustion and regulation and prevents expansion of autoreactive T cells. TRIAL REGISTRATION. ClinicalTrials.gov: NCT01030861. FUNDING. NIDDK/NIH, Juvenile Diabetes Research Foundation.

Authors

Ana Lledó-Delgado, Paula Preston-Hurlburt, Sophia Currie, Pamela Clark, Peter S. Linsley, S. Alice Long, Can Liu, Galina Koroleva, Andrew J. Martins, John S. Tsang, Kevan C. Herold

×

White adipocytes in subcutaneous fat depots require KLF15 for maintenance in preclinical models
Liang Li, Brian J. Feldman
Liang Li, Brian J. Feldman
Published July 1, 2024
Citation Information: J Clin Invest. 2024;134(13):e172360. https://doi.org/10.1172/JCI172360.
View: Text | PDF

White adipocytes in subcutaneous fat depots require KLF15 for maintenance in preclinical models

  • Text
  • PDF
Abstract

Healthy adipose tissue is essential for normal physiology. There are 2 broad types of adipose tissue depots: brown adipose tissue (BAT), which contains adipocytes poised to burn energy through thermogenesis, and white adipose tissue (WAT), which contains adipocytes that store lipids. However, within those types of adipose, adipocytes possess depot and cell-specific properties that have important implications. For example, the subcutaneous and visceral WAT confers divergent risk for metabolic disease. Further, within a depot, different adipocytes can have distinct properties; subcutaneous WAT can contain adipocytes with either white or brown-like (beige) adipocyte properties. However, the pathways that regulate and maintain this cell and depot-specificity are incompletely understood. Here, we found that the transcription factor KLF15 is required for maintaining white adipocyte properties selectively within the subcutaneous WAT. We revealed that deletion of Klf15 is sufficient to induce beige adipocyte properties and that KLF15’s direct regulation of Adrb1 is a critical molecular mechanism for this process. We uncovered that this activity is cell autonomous but has systemic implications in mouse models and is conserved in primary human adipose cells. Our results elucidate a pathway for depot-specific maintenance of white adipocyte properties that could enable the development of therapies for obesity and associated diseases.

Authors

Liang Li, Brian J. Feldman

×

Myostatin regulates energy homeostasis through autocrine- and paracrine-mediated microenvironment communications
Hui Wang, … , Tiemin Liu, Xingxing Kong
Hui Wang, … , Tiemin Liu, Xingxing Kong
Published June 18, 2024
Citation Information: J Clin Invest. 2024. https://doi.org/10.1172/JCI178303.
View: Text | PDF

Myostatin regulates energy homeostasis through autocrine- and paracrine-mediated microenvironment communications

  • Text
  • PDF
Abstract

Myostatin (MSTN) has long been recognized as a critical regulator of muscle mass. Recently, there has been an increasing interest in its role in metabolism. In our study, we specifically knocked out MSTN in brown adipose tissue (BAT) from mice (MSTNΔUCP1) and found that the mice gained more weight than controls when fed a high-fat diet, with progressive hepatosteatosis and impaired skeletal muscle activity. RNA-seq analysis indicated signatures of mitochondrial dysfunction and inflammation in the MSTN-ablation BAT. Further studies demonstrated that the the Kruppel-like factor 4 (KLF4) was responsible for the metabolic phenotypes observed, while FGF21 contributed to the microenvironment communication between adipocytes and macrophages induced by the loss of MSTN. Moreover, the MSTN-SMAD2/3-p38 signaling pathway mediated the expression of KLF4 and FGF21 in adipocytes. In summary, our findings suggest that brown adipocytes-derived MSTN regulates BAT thermogenesis via autocrine and paracrine effects on adipocytes or macrophages, ultimately regulating systemic energy homeostasis.

Authors

Hui Wang, Shanshan Guo, Huanqing Gao, Jiyang Ding, Hongyun Li, Xingyu Kong, Shuang Zhang, Muyang He, Yonghao Feng, Wei Wu, Kexin Xu, Yuxuan Chen, Hanyin Zhang, Tiemin Liu, Xingxing Kong

×

Inhibition of the eukaryotic initiation factor-2-α kinase PERK decreases risk of autoimmune diabetes in mice
Charanya Muralidharan, … , Sarah A. Tersey, Raghavendra G. Mirmira
Charanya Muralidharan, … , Sarah A. Tersey, Raghavendra G. Mirmira
Published June 18, 2024
Citation Information: J Clin Invest. 2024. https://doi.org/10.1172/JCI176136.
View: Text | PDF

Inhibition of the eukaryotic initiation factor-2-α kinase PERK decreases risk of autoimmune diabetes in mice

  • Text
  • PDF
Abstract

Preventing the onset of autoimmune type 1 diabetes (T1D) is feasible through pharmacological interventions that target molecular stress-responsive mechanisms. Cellular stresses, such as nutrient deficiency, viral infection, or unfolded proteins, trigger the integrated stress response (ISR), which curtails protein synthesis by phosphorylating eIF2α. In T1D, maladaptive unfolded protein response (UPR) in insulin-producing beta cells renders these cells susceptible to autoimmunity. We found that inhibition of the eIF2α kinase PERK, a common component of the UPR and ISR, reversed the mRNA translation block in stressed human islets and delayed the onset of diabetes, reduced islet inflammation, and preserved β cell mass in T1D-susceptible mice. Single-cell RNA sequencing of islets from PERK-inhibited mice showed reductions in the UPR and PERK signaling pathways and alterations in antigen processing and presentation pathways in β cells. Spatial proteomics of islets from these mice showed an increase in the immune checkpoint protein PD-L1 in β cells. Golgi membrane protein 1, whose levels increased following PERK inhibition in human islets and EndoC-βH1 human β cells, interacted with and stabilized PD-L1. Collectively, our studies show that PERK activity enhances β cell immunogenicity, and inhibition of PERK may offer a strategy to prevent or delay the development of T1D.

Authors

Charanya Muralidharan, Fei Huang, Jacob R. Enriquez, Jiayi E. Wang, Jennifer B. Nelson, Titli Nargis, Sarah C. May, Advaita Chakraborty, Kayla T. Figatner, Svetlana Navitskaya, Cara M. Anderson, Veronica Calvo, David Surguladze, Mark J. Mulvihill, Xiaoyan Yi, Soumyadeep Sarkar, Scott A. Oakes, Bobbie-Jo M. Webb-Robertson, Emily K. Sims, Kirk A. Staschke, Decio L. Eizirik, Ernesto S. Nakayasu, Michael E. Stokes, Sarah A. Tersey, Raghavendra G. Mirmira

×

RNA-binding protein PCBP2 regulates pancreatic β cell function and adaptation to glucose
Matthew W. Haemmerle, … , Louis R. Ghanem, Doris A. Stoffers
Matthew W. Haemmerle, … , Louis R. Ghanem, Doris A. Stoffers
Published June 17, 2024
Citation Information: J Clin Invest. 2024;134(12):e172436. https://doi.org/10.1172/JCI172436.
View: Text | PDF

RNA-binding protein PCBP2 regulates pancreatic β cell function and adaptation to glucose

  • Text
  • PDF
Abstract

Glucose plays a key role in shaping pancreatic β cell function. Thus, deciphering the mechanisms by which this nutrient stimulates β cells holds therapeutic promise for combating β cell failure in type 2 diabetes (T2D). β Cells respond to hyperglycemia in part by rewiring their mRNA metabolism, yet the mechanisms governing these changes remain poorly understood. Here, we identify a requirement for the RNA-binding protein PCBP2 in maintaining β cell function basally and during sustained hyperglycemic challenge. PCBP2 was induced in primary mouse islets incubated with elevated glucose and was required to adapt insulin secretion. Transcriptomic analysis of primary Pcbp2-deficient β cells revealed impacts on basal and glucose-regulated mRNAs encoding core components of the insulin secretory pathway. Accordingly, Pcbp2-deficient β cells exhibited defects in calcium flux, insulin granule ultrastructure and exocytosis, and the amplification pathway of insulin secretion. Further, PCBP2 was induced by glucose in primary human islets, was downregulated in islets from T2D donors, and impacted genes commonly altered in islets from donors with T2D and linked to single-nucleotide polymorphisms associated with T2D. Thus, these findings establish a paradigm for PCBP2 in governing basal and glucose-adaptive gene programs critical for shaping the functional state of β cells.

Authors

Matthew W. Haemmerle, Andrea V. Scota, Mina Khosravifar, Matthew J. Varney, Sabyasachi Sen, Austin L. Good, Xiaodun Yang, Kristen L. Wells, Lori Sussel, Andrea V. Rozo, Nicolai M. Doliba, Louis R. Ghanem, Doris A. Stoffers

×

Kisspeptin signaling in astrocytes modulates the reproductive axis
Encarnacion Torres, … , Manuel Tena-Sempere, Antonio Romero-Ruiz
Encarnacion Torres, … , Manuel Tena-Sempere, Antonio Romero-Ruiz
Published June 11, 2024
Citation Information: J Clin Invest. 2024. https://doi.org/10.1172/JCI172908.
View: Text | PDF

Kisspeptin signaling in astrocytes modulates the reproductive axis

  • Text
  • PDF
Abstract

Reproduction is safeguarded by multiple, often cooperative regulatory networks. Kisspeptin signaling, via KISS1R, plays a fundamental role in reproductive control, primarily by regulation of hypothalamic GnRH neurons. We disclose herein a pathway for direct kisspeptin actions in astrocytes that contributes to central reproductive modulation. Protein-protein-interaction and ontology analyses of hypothalamic proteomic profiles after kisspeptin stimulation revealed that glial/astrocyte markers are regulated by kisspeptin in mice. This glial-kisspeptin pathway was validated by the demonstrated expression of Kiss1r in mouse astrocytes in vivo and astrocyte cultures from humans, rats and mice, where kisspeptin activated canonical intracellular signaling-pathways. Cellular co-expression of Kiss1r with the astrocyte markers, GFAP and S100-β, occurred in different brain regions, with higher percentage in Kiss1- and GnRH-enriched areas. Conditional ablation of Kiss1r in GFAP-positive cells, in the G-KiRKO mouse, altered gene expression of key factors in PGE2 synthesis in astrocytes, and perturbed astrocyte-GnRH neuronal appositions, as well as LH responses to kisspeptin and LH pulsatility, as surrogate marker of GnRH secretion. G-KiRKO mice also displayed changes in reproductive responses to metabolic stress induced by high-fat diet, affecting female pubertal onset, estrous cyclicity and LH-secretory profiles. Our data unveil a non-neuronal pathway for kisspeptin actions in astrocytes, which cooperates in fine-tuning the reproductive axis and its responses to metabolic stress.

Authors

Encarnacion Torres, Giuliana Pellegrino, Melissa Granados-Rodríguez, Antonio C. Fuentes-Fayos, Inmaculada Velasco, Adrian Coutteau-Robles, Amandine Legrand, Marya Shanabrough, Cecilia Perdices-Lopez, Silvia Leon, Shel H. Yeo, Stephen M. Manchishi, Maria J. Sánchez-Tapia, Victor M. Navarro, Rafael Pineda, Juan Roa, Frederick Naftolin, Jesús Argente, Raúl M. Luque, Julie A. Chowen, Tamas L. Horvath, Vicent Prevot, Ariane Sharif, William H. Colledge, Manuel Tena-Sempere, Antonio Romero-Ruiz

×
  • ← Previous
  • 1
  • 2
  • 3
  • 4
  • …
  • 29
  • 30
  • Next →
Dynamin 2 prevents insulin granule traffic jams
Fan Fan and colleagues demonstrate that dynamin 2 is important for maintaining insulin secretion dynamics in β cells…
Published September 28, 2015
Scientific Show StopperEndocrinology

UPR stress gets β cells going
Rohit Sharma and colleagues reveal that insulin demand-induced β cell proliferation is regulated by the unfolded protein response…
Published September 21, 2015
Scientific Show StopperEndocrinology

Restricting β cell growth
Sung Hee Um and colleagues reveal that S6K1-dependent alterations of β cell size and function are independent of intrauterine growth restriction…
Published June 15, 2015
Scientific Show StopperEndocrinology

Insight into Kallmann syndrome
Anna Cariboni and colleagues demonstrate that dysfunctional SEMA3E results in gonadotropin-releasing hormone neuron deficiency…
Published May 18, 2015
Scientific Show StopperEndocrinology

L cells to the rescue
Natalia Peterson and colleagues demonstrate that increasing L cell populations in the gut improves insulin responses and glucose tolerance in a murine type 2 diabetes model…
Published December 15, 2014
Scientific Show StopperEndocrinology
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts