Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact
  • Current Issue
  • Past Issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • 100th Anniversary of Insulin's Discovery (Jan 2021)
    • Hypoxia-inducible factors in disease pathophysiology and therapeutics (Oct 2020)
    • Latency in Infectious Disease (Jul 2020)
    • Immunotherapy in Hematological Cancers (Apr 2020)
    • Big Data's Future in Medicine (Feb 2020)
    • Mechanisms Underlying the Metabolic Syndrome (Oct 2019)
    • Reparative Immunology (Jul 2019)
    • View all review series ...
  • Viewpoint
  • Collections
    • Recently published
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • Recently published
  • In-Press Preview
  • Commentaries
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact

Endocrinology

  • 207 Articles
  • 5 Posts
  • ← Previous
  • 1
  • 2
  • 3
  • 4
  • …
  • 20
  • 21
  • Next →
Increased expression of anion transporter SLC26A9 delays diabetes onset in cystic fibrosis
Anh-Thu N. Lam, … , Scott M. Blackman, Garry R. Cutting
Anh-Thu N. Lam, … , Scott M. Blackman, Garry R. Cutting
Published October 3, 2019
Citation Information: J Clin Invest. 2019. https://doi.org/10.1172/JCI129833.
View: Text | PDF

Increased expression of anion transporter SLC26A9 delays diabetes onset in cystic fibrosis

  • Text
  • PDF
Abstract

Diabetes is a common complication of cystic fibrosis (CF) that affects approximately 20% of adolescents and 40% to 50% of adults with CF. The age-at-onset of CF-related diabetes (marked by clinical diagnosis and treatment initiation) is an important measure of the disease process. DNA variants associated with age-at-onset of CFRD reside in and near SLC26A9. Deep sequencing of the SLC26A9 gene in 762 individuals with CF revealed that two common DNA haplotypes formed by the risk variants account for the association with diabetes (high risk, P-value: 4.34E-3; low risk, P-value: 1.14E-3). Single-cell RNA (scRNA) sequencing indicated that SLC26A9 is predominantly expressed in pancreatic ductal cells, and frequently co-expressed with CFTR along with transcription factors that have binding sites 5′ of SLC26A9. These findings replicated upon re-analysis of scRNA data from 4 independent studies. DNA fragments derived from the 5′ region of SLC26A9 bearing variants from the low risk haplotype generated 12% to 20% higher levels of expression in PANC-1 and CFPAC-1 cells compared to the high risk haplotype (P-values: 2.00E-3 to 5.15E-9). Taken together, our findings indicate that an increase in SLC26A9 expression in ductal cells of the pancreas delays the age-at-onset of diabetes, thereby suggesting a CFTR-agnostic treatment for a major complication of CF.

Authors

Anh-Thu N. Lam, Melis A. Aksit, Briana Vecchio-Pagan, Celeste A. Shelton, Derek L. Osorio, Arianna F. Anzmann, Loyal A. Goff, David C. Whitcomb, Scott M. Blackman, Garry R. Cutting

×

Regulation of hepatic mitochondrial oxidation by glucose-alanine cycling during starvation in humans
Kitt Falk Petersen, … , Gary W. Cline, Gerald I. Shulman
Kitt Falk Petersen, … , Gary W. Cline, Gerald I. Shulman
Published September 23, 2019
Citation Information: J Clin Invest. 2019. https://doi.org/10.1172/JCI129913.
View: Text | PDF

Regulation of hepatic mitochondrial oxidation by glucose-alanine cycling during starvation in humans

  • Text
  • PDF
Abstract

In order to determine whether the glucose-alanine cycle regulates rates of hepatic mitochondrial oxidation in humans, we applied positional isotopomer NMR tracer analysis (PINTA) to assess rates of hepatic mitochondrial oxidation and pyruvate carboxylase flux in healthy volunteers following both an overnight (12 hours) and a 60-hour fast. Following the 60-hour fast, rates of endogenous glucose production and mitochondrial oxidation decreased, whereas rates of hepatic pyruvate carboxylase flux remained unchanged. These reductions were associated with reduced rates of alanine turnover, assessed by [3-13C]alanine, in a subgroup of participants under similar fasting conditions. In order to determine whether this reduction in alanine turnover was responsible for the reduced rates of hepatic mitochondrial oxidation, we infused unlabeled alanine into another subgroup of 60-hour fasted subjects to increase rates of alanine turnover, similar to what was measured after a 12-hour fast, and found that this perturbation increased rates of hepatic mitochondrial oxidation. Taken together, these studies demonstrate that 60 hours of starvation induce marked reductions in rates of hepatic mitochondrial oxidation, which in turn can be attributed to reduced rates of glucose-alanine cycling, and reveal a heretofore undescribed role for glucose-alanine in the regulation of hepatic mitochondrial oxidation in humans.

Authors

Kitt Falk Petersen, Sylvie Dufour, Gary W. Cline, Gerald I. Shulman

×

PAHSAs enhance hepatic and systemic insulin sensitivity through direct and indirect mechanisms
Peng Zhou, … , Dionicio Siegel, Barbara B. Kahn
Peng Zhou, … , Dionicio Siegel, Barbara B. Kahn
Published August 26, 2019
Citation Information: J Clin Invest. 2019. https://doi.org/10.1172/JCI127092.
View: Text | PDF

PAHSAs enhance hepatic and systemic insulin sensitivity through direct and indirect mechanisms

  • Text
  • PDF
Abstract

Palmitic acid esters of hydroxy stearic acids (PAHSAs) are bioactive lipids with antiinflammatory and antidiabetic effects. PAHSAs reduce ambient glycemia and improve glucose tolerance and insulin sensitivity in insulin-resistant aged chow- and high-fat diet–fed (HFD-fed) mice. Here, we aimed to determine the mechanisms by which PAHSAs improve insulin sensitivity. Both acute and chronic PAHSA treatment enhanced the action of insulin to suppress endogenous glucose production (EGP) in chow- and HFD-fed mice. Moreover, chronic PAHSA treatment augmented insulin-stimulated glucose uptake in glycolytic muscle and heart in HFD-fed mice. The mechanisms by which PAHSAs enhanced hepatic insulin sensitivity included direct and indirect actions involving intertissue communication between adipose tissue and liver. PAHSAs inhibited lipolysis directly in WAT explants and enhanced the action of insulin to suppress lipolysis during the clamp in vivo. Preventing the reduction of free fatty acids during the clamp with Intralipid infusion reduced PAHSAs’ effects on EGP in HFD-fed mice but not in chow-fed mice. Direct hepatic actions of PAHSAs may also be important, as PAHSAs inhibited basal and glucagon-stimulated EGP directly in isolated hepatocytes through a cAMP-dependent pathway involving Gαi protein–coupled receptors. Thus, this study advances our understanding of PAHSA biology and the physiologic mechanisms by which PAHSAs exert beneficial metabolic effects.

Authors

Peng Zhou, Anna Santoro, Odile D. Peroni, Andrew T. Nelson, Alan Saghatelian, Dionicio Siegel, Barbara B. Kahn

×

Salt-inducible kinases dictate parathyroid hormone receptor action in bone development and remodeling
Shigeki Nishimori, … , Henry M. Kronenberg, Marc N. Wein
Shigeki Nishimori, … , Henry M. Kronenberg, Marc N. Wein
Published August 20, 2019
Citation Information: J Clin Invest. 2019. https://doi.org/10.1172/JCI130126.
View: Text | PDF

Salt-inducible kinases dictate parathyroid hormone receptor action in bone development and remodeling

  • Text
  • PDF
Abstract

The parathyroid hormone receptor (PTH1R) mediates the biologic actions of parathyroid hormone (PTH) and parathyroid hormone related protein (PTHrP). Here, we showed that salt inducible kinases (SIKs) are key kinases that control the skeletal actions downstream of PTH1R and that this GPCR, when activated, inhibited cellular SIK activity. Sik gene deletion led to phenotypic changes that were remarkably similar to models of increased PTH1R signaling. In growth plate chondrocytes, PTHrP inhibited SIK3 and ablation of this kinase in proliferating chondrocytes rescued perinatal lethality of PTHrP-null mice. Combined deletion of Sik2/Sik3 in osteoblasts and osteocytes led to a dramatic increase in bone mass that closely resembled the skeletal and molecular phenotypes observed when these bone cells express a constitutively active PTH1R that causes Jansen’s metaphyseal chondrodysplasia. Finally, genetic evidence demonstrated that class IIa HDACs were key PTH1R-regulated SIK substrates in both chondrocytes and osteocytes. Taken together, our findings established that SIK inhibition is central to PTH1R action in bone development and remodeling. Furthermore, this work highlighted the key role of cAMP-regulated salt inducible kinases downstream of GPCR action.

Authors

Shigeki Nishimori, Maureen J. O'Meara, Christian Castro, Hiroshi Noda, Murat Cetinbas, Janaina da Silva Martins, Ugur Ayturk, Daniel J. Brooks, Michael Bruce, Mizuki Nagata, Wanida Ono, Christopher J. Janton, Mary L. Bouxsein, Marc Foretz, Rebecca Berdeaux, Ruslan I. Sadreyev, Thomas J. Gardella, Harald Jüppner, Henry M. Kronenberg, Marc N. Wein

×

LEAP2 changes with body mass and food intake in humans and mice
Bharath K. Mani, … , Anthony P. Goldstone, Jeffrey M. Zigman
Bharath K. Mani, … , Anthony P. Goldstone, Jeffrey M. Zigman
Published August 19, 2019
Citation Information: J Clin Invest. 2019. https://doi.org/10.1172/JCI125332.
View: Text | PDF

LEAP2 changes with body mass and food intake in humans and mice

  • Text
  • PDF
Abstract

Acyl-ghrelin administration increases food intake, body weight, and blood glucose. In contrast, mice lacking ghrelin or ghrelin receptors (GHSRs) exhibit life-threatening hypoglycemia during starvation-like conditions, but do not consistently exhibit overt metabolic phenotypes when given ad libitum food access. These results, and findings of ghrelin resistance in obese states, imply nutritional state dependence of ghrelin’s metabolic actions. Here, we hypothesized that liver-enriched antimicrobial peptide-2 (LEAP2), a recently characterized endogenous GHSR antagonist, blunts ghrelin action during obese states and postprandially. To test this hypothesis, we determined changes in plasma LEAP2 and acyl-ghrelin due to fasting, eating, obesity, Roux-en-Y gastric bypass (RYGB), vertical sleeve gastrectomy (VSG), oral glucose administration, and type 1 diabetes mellitus (T1DM) using humans and/or mice. Our results suggest that plasma LEAP2 is regulated by metabolic status: its levels increased with body mass and blood glucose and decreased with fasting, RYGB, and in postprandial states following VSG. These changes were mostly opposite of those of acyl-ghrelin. Furthermore, using electrophysiology, we showed that LEAP2 both hyperpolarizes and prevents acyl-ghrelin from activating arcuate NPY neurons. We predict that the plasma LEAP2/acyl-ghrelin molar ratio may be a key determinant modulating acyl-ghrelin activity in response to body mass, feeding status, and blood glucose.

Authors

Bharath K. Mani, Nancy Puzziferri, Zhenyan He, Juan A. Rodriguez, Sherri Osborne-Lawrence, Nathan P. Metzger, Navpreet Chhina, Bruce Gaylinn, Michael O. Thorner, E. Louise Thomas, Jimmy D. Bell, Kevin W. Williams, Anthony P. Goldstone, Jeffrey M. Zigman

×

Degradation of splicing factor SRSF3 contributes to progressive liver disease
Deepak Kumar, … , Olivia Osborn, Nicholas J.G. Webster
Deepak Kumar, … , Olivia Osborn, Nicholas J.G. Webster
Published August 8, 2019
Citation Information: J Clin Invest. 2019. https://doi.org/10.1172/JCI127374.
View: Text | PDF

Degradation of splicing factor SRSF3 contributes to progressive liver disease

  • Text
  • PDF
Abstract

Serine rich splicing factor 3 (SRSF3) plays a critical role in liver function and its loss promotes chronic liver damage and regeneration. As a consequence, genetic deletion of SRSF3 in hepatocytes caused progressive liver disease and ultimately led to hepatocellular carcinoma. Here we show that SRSF3 is decreased in human liver samples with non-alcoholic fatty liver disease (NAFLD), non-alcoholic steatohepatitis (NASH), or cirrhosis that was associated with alterations in RNA splicing of known SRSF3 target genes. Hepatic SRSF3 expression was similarly decreased and RNA splicing dysregulated in mouse models of NAFLD and NASH. We showed that palmitic acid-induced oxidative stress caused conjugation of the ubiquitin like NEDD8 protein to SRSF3 and proteasome mediated degradation. SRSF3 was selectively neddylated at lysine11 and mutation of this residue (SRSF3-K11R) was sufficient to prevent both SRSF3 degradation and alterations in RNA splicing. Finally prevention of SRSF3 degradation in vivo partially protected mice from hepatic steatosis, fibrosis and inflammation. These results highlight a neddylation-dependent mechanism regulating gene expression in the liver that is disrupted in early metabolic liver disease and may contribute to the progression to NASH, cirrhosis and ultimately hepatocellular carcinoma.

Authors

Deepak Kumar, Manasi Das, Consuelo Sauceda, Lesley G. Ellies, Karina Kuo, Purva Parwal, Mehak Kaur, Lily Jih, Gautam K. Bandyopadhyay, Douglas Burton, Rohit Loomba, Olivia Osborn, Nicholas J.G. Webster

×

Supraphysiological androgens suppress prostate cancer growth through androgen receptor-mediated DNA damage
Payel Chatterjee, … , Samuel R. Denmeade, Peter S. Nelson
Payel Chatterjee, … , Samuel R. Denmeade, Peter S. Nelson
Published July 16, 2019
Citation Information: J Clin Invest. 2019. https://doi.org/10.1172/JCI127613.
View: Text | PDF

Supraphysiological androgens suppress prostate cancer growth through androgen receptor-mediated DNA damage

  • Text
  • PDF
Abstract

Prostate cancer (PC) is initially dependent on androgen receptor (AR) signaling for survival and growth. Therapeutics designed to suppress AR activity serve as the primary intervention for advanced disease. However, supraphysiological androgen (SPA) concentrations can produce paradoxical responses leading to PC growth inhibition. We sought to discern the mechanisms by which SPA inhibits PC and to determine if molecular context associates with anti-tumor activity. SPA produced an AR-mediated, dose-dependent induction of DNA double-strand breaks (DSBs), G0/G1 cell cycle arrest and cellular senescence. SPA repressed genes involved in DNA repair and delayed the restoration of damaged DNA which was augmented by PARP1 inhibition. SPA-induced DSBs were accentuated in BRCA2-deficient PCs, and combining SPA with PARP or DNA-PKcs inhibition further repressed growth. Next-generation sequencing was performed on biospecimens from PC patients receiving SPA as part of ongoing Phase II clinical trials. Patients with mutations in genes mediating homology-directed DNA repair were more likely to exhibit clinical responses to SPA. These results provide a mechanistic rationale for directing SPA therapy to PCs with AR amplification or DNA repair deficiency, and for combining SPA therapy with PARP inhibition.

Authors

Payel Chatterjee, Michael T. Schweizer, Jared M. Lucas, Ilsa Coleman, Michael D. Nyquist, Sander B. Frank, Robin Tharakan, Elahe Mostaghel, Jun Luo, Colin C. Pritchard, Hung-Ming Lam, Eva Corey, Emmanuel S. Antonarakis, Samuel R. Denmeade, Peter S. Nelson

×

Residual β cell function and monogenic variants in long-duration type 1 diabetes patients
Marc Gregory Yu, … , Marcus G. Pezzolesi, George Liang King
Marc Gregory Yu, … , Marcus G. Pezzolesi, George Liang King
Published July 2, 2019
Citation Information: J Clin Invest. 2019. https://doi.org/10.1172/JCI127397.
View: Text | PDF

Residual β cell function and monogenic variants in long-duration type 1 diabetes patients

  • Text
  • PDF
Abstract

BACKGROUND In the Joslin Medalist Study (Medalists), we determined whether significant associations exist between β cell function and pathology and clinical characteristics.METHODS Individuals with type 1 diabetes (T1D) for 50 or more years underwent evaluation including HLA analysis, basal and longitudinal autoantibody (AAb) status, and β cell function by a mixed-meal tolerance test (MMTT) and a hyperglycemia/arginine clamp procedure. Postmortem analysis of pancreases from 68 Medalists was performed. Monogenic diabetes genes were screened for the entire cohort.RESULTS Of the 1019 Medalists, 32.4% retained detectable C-peptide levels (>0.05 ng/mL, median: 0.21 ng/mL). In those who underwent a MMTT (n = 516), 5.8% responded with a doubling of baseline C-peptide levels. Longitudinally (n = 181, median: 4 years), C-peptide levels increased in 12.2% (n = 22) and decreased in 37% (n = 67) of the Medalists. Among those with repeated MMTTs, 5.4% (3 of 56) and 16.1% (9 of 56) had waxing and waning responses, respectively. Thirty Medalists with baseline C-peptide levels of 0.1 ng/mL or higher underwent the clamp procedure, with HLA–/AAb– and HLA+/AAb– Medalists being most responsive. Postmortem examination of pancreases from 68 Medalists showed that all had scattered insulin-positive cells; 59 additionally had few insulin-positive cells within a few islets; and 14 additionally had lobes with multiple islets with numerous insulin-positive cells. Genetic analysis revealed that 280 Medalists (27.5%) had monogenic diabetes variants; in 80 (7.9%) of these Medalists, the variants were classified as “likely pathogenic” (rare exome variant ensemble learner [REVEL] >0.75).CONCLUSION All Medalists retained insulin-positive β cells, with many responding to metabolic stimuli even after 50 years of T1D. The Medalists were heterogeneous with respect to β cell function, and many with HLA+ diabetes risk alleles also had monogenic diabetes variants, indicating the importance of genetic testing for clinically diagnosed T1D.FUNDING Funding for this work was provided by the Dianne Nunnally Hoppes Fund; the Beatson Pledge Fund; the NIH, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK); and the American Diabetes Association (ADA).

Authors

Marc Gregory Yu, Hillary A. Keenan, Hetal S. Shah, Scott G. Frodsham, David Pober, Zhiheng He, Emily A. Wolfson, Stephanie D’Eon, Liane J. Tinsley, Susan Bonner-Weir, Marcus G. Pezzolesi, George Liang King

×

mTORC1 to AMPK switching underlies β-cell metabolic plasticity during maturation and diabetes
Rami Jaafar, … , Suneil K. Koliwad, Anil Bhushan
Rami Jaafar, … , Suneil K. Koliwad, Anil Bhushan
Published July 2, 2019
Citation Information: J Clin Invest. 2019. https://doi.org/10.1172/JCI127021.
View: Text | PDF

mTORC1 to AMPK switching underlies β-cell metabolic plasticity during maturation and diabetes

  • Text
  • PDF
Abstract

Pancreatic beta cells (β-cells) differentiate during fetal life, but only postnatally acquire the capacity for glucose-stimulated insulin secretion (GSIS). How this happens is not clear. In exploring what molecular mechanisms drive the maturation of β-cell function, we found that the control of cellular signaling in β-cells fundamentally switched from the nutrient sensor target of rapamycin (mTORC1) to the energy sensor 5'-adenosine monophosphate-activated protein kinase (AMPK), and that this was critical for functional maturation. Moreover, AMPK was activated by the dietary transition taking place during weaning, and this in turn inhibited mTORC1 activity to drive the adult β-cell phenotype. While forcing constitutive mTORC1 signaling in adult β-cells relegated them to a functionally immature phenotype with characteristic transcriptional and metabolic profiles, engineering the switch from mTORC1 to AMPK signaling was sufficient to promote β-cell mitochondrial biogenesis, a shift to oxidative metabolism, and functional maturation. We also found that type 2 diabetes, a condition marked by both mitochondrial degeneration and dysregulated GSIS, was associated with a remarkable reversion of the normal AMPK-dependent adult β-cell signature to a more neonatal one characterized by mTORC1 activation. Manipulating the way in which cellular nutrient signaling pathways regulate β-cell metabolism may thus offer new targets to improve β-cell function in diabetes.

Authors

Rami Jaafar, Stella Tran, Ajit Shah, Gao Sun, Martin Valdearcos, Piero Marchetti, Matilde Masini, Avital Swisa, Simone Giacometti, Ernesto Bernal-Mizrachi, Aleksey Matveyenko, Matthias Hebrok, Yuval Dor, Guy A. Rutter, Suneil K. Koliwad, Anil Bhushan

×

β-Cell-intrinsic β-arrestin 1 signaling enhances sulfonylurea-induced insulin secretion
Luiz F. Barella, … , Vsevolod V. Gurevich, Jürgen Wess
Luiz F. Barella, … , Vsevolod V. Gurevich, Jürgen Wess
Published June 11, 2019
Citation Information: J Clin Invest. 2019. https://doi.org/10.1172/JCI126309.
View: Text | PDF

β-Cell-intrinsic β-arrestin 1 signaling enhances sulfonylurea-induced insulin secretion

  • Text
  • PDF
Abstract

Beta-arrestin-1 and -2 (Barr1 and Barr2, respectively) are intracellular signaling molecules that regulate many important metabolic functions. We previously demonstrated that mice lacking Barr2 selectively in pancreatic beta-cells showed pronounced metabolic impairments. Here we investigated whether Barr1 plays a similar role in regulating beta-cell function and whole body glucose homeostasis. Initially, we inactivated the Barr1 gene in beta-cells of adult mice (beta-barr1-KO mice). Beta-barr1-KO mice did not display any obvious phenotypes in a series of in vivo and in vitro metabolic tests. However, glibenclamide and tolbutamide, two widely used antidiabetic drugs of the sulfonylurea (SU) family, showed greatly reduced efficacy in stimulating insulin secretion in the KO mice in vivo and in perifused KO islets in vitro. Additional in vivo and in vitro studies demonstrated that Barr1 enhanced SU-stimulated insulin secretion by promoting SU-mediated activation of Epac2. Pull-down and co-immunoprecipitation experiments showed that Barr1 can directly interact with Epac2 and that SUs such as glibenclamide promote Barr1/Epac2 complex formation, triggering enhanced Rap1 signaling and insulin secretion. These findings suggest that strategies aimed at promoting Barr1 signaling in beta-cells may prove useful for the development of efficacious antidiabetic drugs.

Authors

Luiz F. Barella, Mario Rossi, Lu Zhu, Yinghong Cui, Fang C. Mei, Xiaodong Cheng, Wei Chen, Vsevolod V. Gurevich, Jürgen Wess

×
  • ← Previous
  • 1
  • 2
  • 3
  • 4
  • …
  • 20
  • 21
  • Next →
Dynamin 2 prevents insulin granule traffic jams
Fan Fan and colleagues demonstrate that dynamin 2 is important for maintaining insulin secretion dynamics in β cells…
Published September 28, 2015
Scientific Show StopperEndocrinology

UPR stress gets β cells going
Rohit Sharma and colleagues reveal that insulin demand-induced β cell proliferation is regulated by the unfolded protein response…
Published September 21, 2015
Scientific Show StopperEndocrinology

Restricting β cell growth
Sung Hee Um and colleagues reveal that S6K1-dependent alterations of β cell size and function are independent of intrauterine growth restriction…
Published June 15, 2015
Scientific Show StopperEndocrinology

Insight into Kallmann syndrome
Anna Cariboni and colleagues demonstrate that dysfunctional SEMA3E results in gonadotropin-releasing hormone neuron deficiency…
Published May 18, 2015
Scientific Show StopperEndocrinology

L cells to the rescue
Natalia Peterson and colleagues demonstrate that increasing L cell populations in the gut improves insulin responses and glucose tolerance in a murine type 2 diabetes model…
Published December 15, 2014
Scientific Show StopperEndocrinology
Advertisement
Follow JCI:
Copyright © 2021 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts