Impaired wound healing associated with recurrent Staphylococcus aureus infection and unresolved inflammation are hallmarks of non-healing diabetic foot ulcers (DFU). Perforin-2, an innate immunity molecule against intracellular bacteria, limits cutaneous infection and dissemination of S. aureus in mice. Here we report the intracellular accumulation of S. aureus in the epidermis of DFU with no clinical signs of infection due to marked suppression of Perforin-2. S. aureus residing within the epidermis of DFU triggers AIM2-inflammasome activation and pyroptosis. These findings were corroborated in mice lacking Perforin-2. The effects of pyroptosis on DFU clinical outcomes were further elucidated in a 4-week longitudinal clinical study in DFU patients undergoing standard of care. Increased AIM2-inflammasome and ASC-pyroptosome coupled with induction of IL-1β were found in non-healing when compared to healing DFU. Our findings reveal novel mechanism that includes Perforin-2 suppression, intracellular S. aureus accumulation and associated induction of pyroptosis that contribute to healing inhibition and prolonged inflammation in patients with DFU.
Irena Pastar, Andrew P. Sawaya, Jelena Marjanovic, Jamie L. Burgess, Natasa Strbo, Katelyn E. Rivas, Tongyu C. Wikramanayake, Cheyanne R. Head, Rivka C. Stone, Ivan Jozic, Olivera Stojadinovic, Eran Y. Kornfeld, Robert S. Kirsner, Hadar Lev-Tov, Marjana Tomic-Canic
Inflammatory disorders of the skin are frequently associated with inflammatory bowel diseases (IBDs). To explore mechanisms by which these organs communicate, we performed single-cell RNA-Seq analysis on fibroblasts from humans and mice with IBD. This analysis revealed that intestinal inflammation promoted differentiation of a subset of intestinal stromal fibroblasts into preadipocytes with innate antimicrobial host defense activity. Furthermore, this process of reactive adipogenesis was exacerbated if mouse skin was inflamed as a result of skin wounding or infection. Since hyaluronan (HA) catabolism is activated during skin injury and fibroblast-to-adipocyte differentiation is dependent on HA, we tested the hypothesis that HA fragments could alter colon fibroblast function by targeted expression of human hyaluronidase-1 in basal keratinocytes from mouse skin. Hyaluronidase expression in the skin activated intestinal stromal fibroblasts, altered the fecal microbiome, and promoted excessive reactive adipogenesis and increased inflammation in the colon after challenge with dextran sodium sulfate. The response to digested HA was dependent on expression of TLR4 by preadipocytes. Collectively, these results suggest that the association between skin inflammation and IBD may be due to recognition by mesenchymal fibroblasts in the colon of HA released during inflammation of the skin.
Tatsuya Dokoshi, Jason S. Seidman, Kellen J. Cavagnero, Fengwu Li, Marc C. Liggins, Bryn C. Taylor, Jocelyn Olvera, Rob Knight, John T. Chang, Nita H. Salzman, Richard L. Gallo
BACKGROUND. The loss of insulin-like growth factor-1 (IGF-1) expression in senescent dermal fibroblasts during aging is associated with an increased risk of non-melanoma skin cancer (NMSC). We tested how IGF-1 signaling can influence photocarcinogenesis during chronic UVB exposure to determine if fractionated laser resurfacing (FLR) of aged skin which upregulates dermal IGF-1 levels can prevent the occurrence of actinic keratosis (AK) and NMSC. METHODS. A human skin/immunodeficient mouse xenografting model was used to test the effects of a small molecule inhibitor of the IGF-1 receptor on chronic UVB radiation. Subsequently, the durability of FLR treatment was tested on a cohort of human subjects aged ≥65. Finally, 48 subjects aged 60 and older with considerable actinic damage were enrolled in a prospective randomized clinical trial in which they underwent a single unilateral FLR treatment of one lower arm. Numbers of AKs/NMSCs were recorded on both extremities for up to 36 months in blinded fashion. RESULTS. Xenografting studies revealed chronic UVB treatment with a topical IGF-1R inhibitor resulted in a pro-carcinogenic response. A single FLR treatment was durable in restoring appropriate UVB response in geriatric skin for at least two years. FLR resulted in sustained reduction in numbers of AKs and decreased numbers of NMSC in the treated (24) versus untreated (2) arms. INTERPRETATION. The elimination of senescent fibroblasts via FLR reduced the pro-carcinogenic UVB response of aged skin. Thus, wounding therapies are potentially effective prophylaxis for managing high-risk populations. TRIAL REGISTRATION. ClinicalTrials.gov NCT03906253. FUNDING. National Institutes of Health, Veterans Administration.
Dan F. Spandau, Roy Chen, Jeffrey J. Wargo, Craig A. Rohan, David Southern, Angela Zhang, Mathew Loesch, Jonathan Weyerbacher, Sunil S. Tholpady, Davina Anne Lewis, Matthew Kuhar, Kenneth Y. Tsai, Amber J. Castellanos, Michael G. Kemp, Michael Markey, Elizabeth Cates, Amy R. Williams, Christina Knisely, Sabina Bashir, Ryan Gabbard, Robert Hoopes, Jeffrey B. Travers
A complete carcinogen, Ultraviolet B radiation (290-320 nm; UVB), is the major cause of skin cancer. UVB-induced systemic immunosuppression that contributes to photocarcinogenesis is due to the glycerophosphocholine-derived lipid mediator Platelet-activating factor. A major question in photobiology is how UVB radiation, which only absorbs appreciably in the epidermal layers of skin, can generate systemic effects. UVB exposure and PAF Receptor (PAFR) activation in keratinocytes induce large amounts of microvesicle particle (extracellular vesicles 100-1000nm; MVP) release. MVPs released from skin keratinocytes in vitro in response to UVB (UVB-MVP) are dependent upon the keratinocyte PAFR. The present studies used both pharmacologic and genetic approaches in cells and mice to determine that both the PAFR and enzyme acid sphingomyelinase (aSMase) were necessary for UVB-MVP generation. Discovery that the calcium-sensing receptor is a keratinocyte-selective MVP marker allowed us to determine that UVB-MVP leaving the keratinocyte can be found systemically in mice and in human subjects following UVB. Moreover, UVB-MVP contain bioactive contents including PAFR agonists which allow them to serve as effectors for UVB downstream effects, in particular UVB-mediated systemic immunosuppression.
Langni Liu, Azeezat A. Awoyemi, Katherine E. Fahy, Pariksha Thapa, Christina Borchers, Benita Y. Wu, Cameron L. McGlone, Benjamin Schmeusser, Zafer Sattouf, Craig A. Rohan, Amy R. Williams, Elizabeth E. Cates, Christina Knisely, Lisa E. Kelly, Ji C. Bihl, David R. Cool, Ravi P. Sahu, Jinju Wang, Yanfang Chen, Christine M. Rapp, Michael G. Kemp, R. Michael Johnson, Jeffrey B. Travers
CD1a-autoreactive T cells contribute to skin disease, but the identity of immunodominant self-lipid antigens and their mode of recognition are not yet solved. In most models, MHC and CD1 proteins serve as display platforms for smaller antigens. Here, we showed that CD1a tetramers without added antigen stained large T cell pools in every subject tested, accounting for approximately 1% of skin T cells. The mechanism of tetramer binding to T cells did not require any defined antigen. Binding occurred with approximately 100 lipid ligands carried by CD1a proteins, but could be tuned upward or downward with certain natural self-lipids. TCR recognition mapped to the outer A′ roof of CD1a at sites remote from the antigen exit portal, explaining how TCRs can bind CD1a rather than carried lipids. Thus, a major antigenic target of CD1a T cell autoreactivity in vivo is CD1a itself. Based on their high frequency and prevalence among donors, we conclude that CD1a-specific, lipid-independent T cells are a normal component of the human skin T cell repertoire. Bypassing the need to select antigens and effector molecules, CD1a tetramers represent a simple method to track such CD1a-specific T cells from tissues and in any clinical disease.
Rachel N. Cotton, Tan-Yun Cheng, Marcin Wegrecki, Jérôme Le Nours, Dennis P. Orgill, Bohdan Pomahac, Simon G. Talbot, Richard A. Willis, John D. Altman, Annemieke de Jong, Graham Ogg, Ildiko Van Rhijn, Jamie Rossjohn, Rachael A. Clark, D. Branch Moody
Psoriasis is a chronic inflammatory skin disease characterized by inflammatory cell infiltration, as well as hyperproliferation of keratinocytes in skin lesions, and is considered a metabolic syndrome. We found that the expression of galectin-7 is reduced in the skin lesions of patients with psoriasis. IL-17A and TNF-α, two cytokines intimately involved in the development of psoriatic lesions, suppressed galectin-7 expression in human primary keratinocytes (HEKn cells) and the immortalized human keratinocyte cell line HaCaT. A galectin-7 knockdown in these cells elevated the production of IL-6 and IL-8 and enhanced ERK signaling when the cells were stimulated with IL-17A. Galectin-7 attenuated IL-17A–induced production of inflammatory mediators by keratinocytes via the miR-146a–ERK pathway. Moreover, galectin-7–deficient mice showed enhanced epidermal hyperplasia and skin inflammation in response to intradermal IL-23 injection. We identified fluvastatin as an inducer of galectin-7 expression by connectivity map (cMAP) analysis, confirmed this effect in keratinocytes, and demonstrated that fluvastatin attenuated IL-6 and IL-8 production induced by IL-17A. Thus, we validate a role of galectin-7 in the pathogenesis of psoriasis, in both epidermal hyperplasia and keratinocyte-mediated inflammatory responses, and formulated a rationale for the use of statins in the treatment of psoriasis.
Hung-Lin Chen, Chia-Hui Lo, Chi-Chun Huang, Meng-Ping Lu, Po-Yuan Hu, Chang-Shan Chen, Di-Yen Chueh, Peilin Chen, Teng-Nan Lin, Yuan-Hsin Lo, Yu-Ping Hsiao, Daniel K. Hsu, Fu-Tong Liu
Psoriasis is a severe disease associated with the disturbance of metabolism and inflammation, but the molecular mechanisms underlying these aspects of psoriasis pathology are poorly understood. Here, we report that glutaminase 1–mediated (GLS1-mediated) glutaminolysis was aberrantly activated in patients with psoriasis and in psoriasis-like mouse models, which promoted Th17 and γδ T17 (IL-17A–producing γδ T) cell differentiation through enhancement of histone H3 acetylation of the Il17a promoter, thereby contributing to the immune imbalance and development of psoriasis. We further demonstrate that mucosa-associated lymphoid tissue lymphoma translocation protein 1 (MALT1) protease was constitutively active in psoriatic CD4+ and γδ T cells, thereby supporting GLS1 expression by stabilizing c-Jun, which directly binds to the GLS1 promoter region. Blocking the activity of either GLS1 or MALT1 protease resolved Th17 and γδ T17 cell differentiation and epidermal hyperplasia in the psoriasis-like mouse models. Finally, IL-17A enhanced GLS1 expression via the MALT1/cJun pathway in keratinocytes, resulting in hyperproliferation of and chemokine production by keratinocytes. Our findings identify the role of the MALT1/cJun/GLS1/glutaminolysis/H3 acetylation/T17 axis in psoriasis pathogenesis and reveal potential therapeutic targets for this disease.
Xichun Xia, Guangchao Cao, Guodong Sun, Leqing Zhu, Yixia Tian, Yueqi Song, Chengbin Guo, Xiao Wang, Jingxiang Zhong, Wei Zhou, Peng Li, Hua Zhang, Jianlei Hao, Zhizhong Li, Liehua Deng, Zhinan Yin, Yunfei Gao
Psoriasis is a frequent inflammatory skin disease characterized by keratinocyte hyperproliferation and a disease-related infiltration of immune cells. Here, we identified a novel pro-inflammatory signaling pathway driven by the cyclin-dependent kinases (CDK) 4 and 6 and the methyltransferase EZH2 as a valid target for psoriasis therapy. Delineation of the pathway revealed that CDK4/6 phosphorylated EZH2 in keratinocytes, thereby triggering a methylation-induced activation of STAT3. Subsequently, active STAT3 resulted in the induction of IκBζ (IkappaBzeta), which is a key pro-inflammatory transcription factor required for cytokine synthesis in psoriasis. Pharmacological or genetic inhibition of CDK4/6 or EZH2 abrogated psoriasis-related pro-inflammatory gene expression by suppressing IκBζ induction in keratinocytes. Importantly, topical application of CDK4/6 or EZH2 inhibitors on the skin was sufficient to fully prevent the development of psoriasis in various mouse models by suppressing STAT3-mediated IκBζ expression. Moreover, we found a hyperactivation of the CDK4/6-EZH2 pathway in human and mouse psoriatic skin lesions. Thus, this study not only identifies a novel psoriasis-relevant pro-inflammatory pathway, but also proposes the repurposing of CDK4/6 or EZH2 inhibitors as a new therapeutic option for psoriasis patients.
Anne Müller, Antje Dickmanns, Claudia Resch, Knut Schäkel, Stephan Hailfinger, Matthias Dobbelstein, Klaus Schulze-Osthoff, Daniela Kramer
The biology of harlequin ichthyosis (HI), a devastating skin disorder, caused by loss of function mutations in the gene ABCA12, is poorly understood and to date no satisfactory treatment has been developed. We sought to investigate pathomechanisms of HI which could lead to the identification of new treatments to improve patients’ quality of life. In this study, RNA-Seq and functional assays were performed to define the effects of loss of ABCA12, using HI patient skin samples and an engineered CRISPR-Cas9 ABCA12 KO cell line. The HI living skin equivalent (3D model) recapitulated the HI skin phenotype. The cytokines IL-36α and IL-36γ were upregulated in HI skin whereas the innate immune inhibitor, IL-37, was strongly downregulated. We also identified STAT1 and its downstream target inducible nitric oxide synthase (NOS2) to be upregulated in the in vitro HI 3D model and HI patient skin samples. Inhibition of NOS2 using the inhibitor, 1400W, or the JAK inhibitor, tofacitinib, dramatically improved the in vitro HI phenotype by restoring the lipid barrier in the HI 3D model. Our study has identified dysregulated pathways in HI skin that are feasible therapeutic targets.
Florence Enjalbert, Priya Dewan, Matthew P. Caley, Eleri M. Jones, Mary A. Morse, David P. Kelsell, Anton J. Enright, Edel A. O'Toole
Hidradenitis suppurativa (HS) is a chronic, relapsing, inflammatory skin disease. HS appears to be a primary abnormality in the pilosebaceous-apocrine unit. In this work, we characterized hair follicle stem cells isolated from HS patients and more precisely the Outer Root Sheath Cells (ORS). We show that hair follicles from HS patients have an increased number of proliferating progenitor cells and lose quiescent stem cells. Remarkably, we also show that the progression of replication forks is altered in HS-ORS and activates the ATR-CHK1 pathway. These alterations are associated with an increased number of micronuclei and with the presence of cytoplasmic ssDNA, leading to the activation of IFI16-STING pathway and the production of type I IFNs. This mechanistic analysis of the etiology of HS in the hair follicle stem cells compartment establishes a formal link between the genetic predisposition and skin inflammation observed in HS.
Cindy Orvain, Yea-Lih Lin, Francette Jean-Louis, Hakim Hocini, Barbara Hersant, Yamina Bennasser, Nicolas Ortonne, Claire Hotz, Pierre Wolkenstein, Michele Boniotto, Pascaline Tisserand, Cecile Lefebvre, Jean-Daniel Lelievre, Monsef Benkirane, Philippe Pasero, Yves Levy, Sophie Hue