Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Clinical Research and Public Health

  • 395 Articles
  • 0 Posts
  • ← Previous
  • 1
  • 2
  • …
  • 16
  • 17
  • 18
  • …
  • 39
  • 40
  • Next →
Clonal hematopoiesis in sickle cell disease
L. Alexander Liggett, … , Alexander G. Bick, Vijay G. Sankaran
L. Alexander Liggett, … , Alexander G. Bick, Vijay G. Sankaran
Published January 6, 2022
Citation Information: J Clin Invest. 2022. https://doi.org/10.1172/JCI156060.
View: Text | PDF

Clonal hematopoiesis in sickle cell disease

  • Text
  • PDF
Abstract

BACKGROUND. Curative gene therapies for sickle cell disease (SCD) are currently undergoing clinical evaluation. The occurrence of myeloid malignancies in these trials has prompted safety concerns. Individuals with SCD are predisposed to myeloid malignancies, but the underlying causes remain undefined. Clonal hematopoiesis (CH) is a pre-malignant condition that also confers significant predisposition to myeloid cancers. While it has been speculated that CH may play a role in SCD-associated cancer predisposition, limited data addressing this issue have been reported. METHODS. Here, we leveraged 74,190 whole genome sequences to robustly study CH in SCD. Somatic mutation calling methods were used to assess CH in all samples and comparisons between individuals with and without SCD were performed. RESULTS. While we had sufficient power to detect a greater than 2-fold increased rate of CH, we found no detectable variation in rate or clone properties between individuals affected by SCD and controls. The rate of CH in individuals with SCD was unaltered by hydroxyurea use. CONCLUSIONS. We did not observe an increased risk for acquiring detectable CH in SCD, at least as measured by whole genome sequencing. These results should help guide ongoing efforts and further studies that seek to better define the risk factors underlying myeloid malignancy predisposition in SCD and help ensure that curative therapies can be more safely applied.FUNDING. Funding was provided by the New York Stem Cell Foundation and National Institutes of Health. The funders had no role in study design or reporting.

Authors

L. Alexander Liggett, Liam D. Cato, Joshua S. Weinstock, Yingze Zhang, S. Mehdi Nouraie, Mark T. Gladwin, Melanie E. Garrett, Allison Ashley-Koch, Marilyn Telen, Brian Custer, Shannon Kelly, Carla Dinardo, Ester C. Sabino, Paula Loureiro, Anna Carneiro-Proietti, Cláudia Maximo, Alexander P. Reiner, Gonçalo R. Abecasis, David A. Williams, Pradeep Natarajan, Alexander G. Bick, Vijay G. Sankaran

×

Rapid idiosyncratic mechanisms of clinical resistance to KRAS G12C inhibition
Yihsuan S. Tsai, … , Benjamin G Vincent, Chad V. Pecot
Yihsuan S. Tsai, … , Benjamin G Vincent, Chad V. Pecot
Published January 6, 2022
Citation Information: J Clin Invest. 2022. https://doi.org/10.1172/JCI155523.
View: Text | PDF

Rapid idiosyncratic mechanisms of clinical resistance to KRAS G12C inhibition

  • Text
  • PDF
Abstract

The KRAS proto-oncogene is among the most frequently mutated genes in cancer, yet for 40 years it remained an elusive therapeutic target. Recently, allosteric inhibitors that covalently bind to KRAS G12C mutations have been approved for use in lung adenocarcinomas. Although responses are observed they are often short-lived, thus making in-depth characterization of the mechanisms of resistance of paramount importance. Here, we present a rapid-autopsy case of a patient who had a KRASG12C-mutant lung adenocarcinoma who initially responded to a KRAS G12C inhibitor but then rapidly developed resistance. Using deep RNA and whole exome sequencing comparing pre-treatment, post-treatment and matched normal tissues, we uncover numerous mechanisms of resistance to direct KRAS inhibition. In addition to decreased KRAS G12C mutant allele frequency in refractory tumors, we also found reactivation of the MAPK pathway despite no new mutations in KRAS or its downstream mediators. Tumor cell intrinsic and non-cell autonomous mechanisms included increased complement activation, coagulation and tumor angiogenesis, and several lines of evidence of immunologic evasion. Together, our findings reveal numerous mechanisms of resistance to current KRAS G12C inhibitors through enrichment of clonal populations, KRAS-independent downstream signaling and diverse remodeling of the tumor microenvironment.

Authors

Yihsuan S. Tsai, Mark G. Woodcock, Salma H. Azam, Leigh B. Thorne, Krishna L. Kanchi, Joel S. Parker, Benjamin G Vincent, Chad V. Pecot

×

Aging-related olfactory loss is associated with olfactory stem cell transcriptional alterations in humans
Allison D. Oliva, … , Hiroaki Matsunami, Bradley J. Goldstein
Allison D. Oliva, … , Hiroaki Matsunami, Bradley J. Goldstein
Published January 6, 2022
Citation Information: J Clin Invest. 2022. https://doi.org/10.1172/JCI155506.
View: Text | PDF

Aging-related olfactory loss is associated with olfactory stem cell transcriptional alterations in humans

  • Text
  • PDF
Abstract

BACKGROUND. Presbyosmia, or aging related olfactory loss, occurs in a majority of humans over age 65 years, yet remains poorly understood, with no specific treatment options. The olfactory epithelium (OE) is the peripheral organ for olfaction, and is subject to acquired damage, suggesting a likely site of pathology in aging. Adult stem cells reconstitute the neuroepithelium in response to cell loss under normal conditions. In aged OE, patches of respiratory-like metaplasia have been observed histologically, consistent with a failure in normal neuroepithelial homeostasis. METHODS. Accordingly, we have focused on identifying cellular and molecular changes in presbyosmic OE. The study combined psychophysical testing with olfactory mucosa biopsy analysis, single cell RNA-sequencing (scRNA-seq), and culture studies. RESULTS. We identified evidence for inflammation-associated changes in the OE stem cells of presbyosmic patients. The presbyosmic basal stem cells exhibited increased expression of genes involved in response to cytokines or stress, or the regulation of proliferation and differentiation. Using a culture model, cytokine exposure drove increased TP63, a transcription factor acting to prevent OE stem cell differentiation. CONCLUSIONS. Our data suggest aging-related inflammatory changes in OE stem cells may contribute to presbyosmia, via the disruption of normal epithelial homeostasis. OE stem cells may represent a therapeutic target for restoration of olfaction. TRIAL REGISTRATION. Not applicable FUNDING. National Institutes of Health grants DC018371 (BJG), NS121067 (EAM), DC016224 (HM);Office of Physician-Scientist Development, Burroughs-Wellcome Fund Research Fellowship for Medical Students Award, Duke University School of Medicine (AO).

Authors

Allison D. Oliva, Rupali Gupta, Khalil Issa, Ralph Abi Hachem, David W. Jang, Sebastian A. Wellford, E. Ashley Moseman, Hiroaki Matsunami, Bradley J. Goldstein

×

A metabolic biomarker for early stage of Parkinson’s disease in patients and animal models
David Mallet, … , Florence Fauvelle, Sabrina Boulet
David Mallet, … , Florence Fauvelle, Sabrina Boulet
Published December 16, 2021
Citation Information: J Clin Invest. 2021. https://doi.org/10.1172/JCI146400.
View: Text | PDF

A metabolic biomarker for early stage of Parkinson’s disease in patients and animal models

  • Text
  • PDF
Abstract

BACKGROUND. Care management of Parkinson’s disease (PD) patients currently remains symptomatic, mainly because diagnosis relying on the expression of the cardinal motor symptoms is made too late. Earlier detecting PD therefore represents a key step for developing therapies able to delay or slow down its progression. METHODS. We investigated metabolic markers in three different animal models of PD, mimicking different phases of the disease assessed by behavioral and histological evaluation, and in 3 cohorts of de novo PD patients and matched controls (n = 129). Serum and brain tissue samples were analyzed by nuclear magnetic resonance spectroscopy and data submitted to advanced multivariate statistics. RESULTS. Our translational strategy reveals common metabolic dysregulations in serum of the different animal models and PD patients. Some of them were mirrored in the tissue samples, possibly reflecting pathophysiological mechanisms associated with PD development. Interestingly, some metabolic dysregulations appeared before motor symptom emergence, and could represent early biomarkers of PD. Finally, we built a composite biomarker with a combination of 6 metabolites. This biomarker discriminated animals mimicking PD from controls, even from the first, non-motor signs and very interestingly, also discriminated PD patients from healthy subjects. CONCLUSION. From our translational study which included three animal models and three de novo PD patient cohorts, we propose a promising biomarker exhibiting a high accuracy for de novo PD diagnosis and may possibly predict early PD development, before motor symptoms appearance. FUNDINGS. ANR, DOPALCOMP, Institut National de la Santé et de la Recherche Médicale, Université Grenoble Alpes.

Authors

David Mallet, Thibault Dufourd, Mélina Decourt, Carole Carcenac, Paola Bossù, Laure Verlin, Pierre-Olivier Fernagut, Marianne Benoit-Marand, Gianfranco Spalletta, Emmanuel L. Barbier, Sebastien Carnicella, Véronique Sgambato, Florence Fauvelle, Sabrina Boulet

×

Dietary sugar restriction reduces hepatic de novo lipogenesis in adolescent boys with fatty liver disease
Catherine C. Cohen, … , Jeffrey B. Schwimmer, Miriam B. Vos
Catherine C. Cohen, … , Jeffrey B. Schwimmer, Miriam B. Vos
Published December 15, 2021
Citation Information: J Clin Invest. 2021;131(24):e150996. https://doi.org/10.1172/JCI150996.
View: Text | PDF

Dietary sugar restriction reduces hepatic de novo lipogenesis in adolescent boys with fatty liver disease

  • Text
  • PDF
Abstract

BACKGROUND Hepatic de novo lipogenesis (DNL) is elevated in nonalcoholic fatty liver disease (NAFLD). Improvements in hepatic fat by dietary sugar reduction may be mediated by reduced DNL, but data are limited, especially in children. We examined the effects of 8 weeks of dietary sugar restriction on hepatic DNL in adolescents with NAFLD and correlations between DNL and other metabolic outcomes.METHODS Adolescent boys with NAFLD (n = 29) participated in an 8-week, randomized controlled trial comparing a diet low in free sugars versus their usual diet. Hepatic DNL was measured as percentage contribution to plasma triglyceride palmitate using a 7-day metabolic labeling protocol with heavy water. Hepatic fat was measured by magnetic resonance imaging–proton density fat fraction.RESULTS Hepatic DNL was significantly decreased in the treatment group (from 34.6% to 24.1%) versus the control group (33.9% to 34.6%) (adjusted week 8 mean difference: –10.6% [95% CI: –19.1%, –2.0%]), which was paralleled by greater decreases in hepatic fat (25.5% to 17.9% vs. 19.5% to 18.8%) and fasting insulin (44.3 to 34.7 vs. 35.5 to 37.0 μIU/mL). Percentage change in DNL during the intervention correlated significantly with changes in free-sugar intake (r = 0.48, P = 0.011), insulin (r = 0.40, P = 0.047), and alanine aminotransferase (ALT) (r = 0.39, P = 0.049), but not hepatic fat (r = 0.13, P = 0.532).CONCLUSION Our results suggest that dietary sugar restriction reduces hepatic DNL and fasting insulin, in addition to reductions in hepatic fat and ALT, among adolescents with NAFLD. These results are consistent with the hypothesis that hepatic DNL is a critical metabolic abnormality linking dietary sugar and NAFLD.TRIAL REGISTRY ClinicalTrials.gov NCT02513121.FUNDING The Nutrition Science Initiative (made possible by gifts from the Laura and John Arnold Foundation, Ambrose Monell Foundation, and individual donors), the UCSD Altman Clinical and Translational Research Institute, the NIH, Children’s Healthcare of Atlanta and Emory University’s Children’s Clinical and Translational Discovery Core, Children’s Healthcare of Atlanta and Emory University Pediatric Biostatistical Core, the Georgia Clinical and Translational Science Alliance, and the NIH National Institute of Diabetes, Digestive, and Kidney Disease.

Authors

Catherine C. Cohen, Kelvin W. Li, Adina L. Alazraki, Carine Beysen, Carissa A. Carrier, Rebecca L. Cleeton, Mohamad Dandan, Janet Figueroa, Jack Knight-Scott, Cynthia J. Knott, Kimberly P. Newton, Edna M. Nyangau, Claude B. Sirlin, Patricia A. Ugalde-Nicalo, Jean A. Welsh, Marc K. Hellerstein, Jeffrey B. Schwimmer, Miriam B. Vos

×

Multicenter randomized phase II trial of atezolizumab with or without cobimetinib in biliary tract cancers
Mark Yarchoan, … , Gregory B. Lesinski, Nilofer S. Azad
Mark Yarchoan, … , Gregory B. Lesinski, Nilofer S. Azad
Published December 15, 2021
Citation Information: J Clin Invest. 2021;131(24):e152670. https://doi.org/10.1172/JCI152670.
View: Text | PDF

Multicenter randomized phase II trial of atezolizumab with or without cobimetinib in biliary tract cancers

  • Text
  • PDF
Abstract

BACKGROUND MEK inhibitors have limited activity in biliary tract cancers (BTCs) as monotherapy but are hypothesized to enhance responses to programmed death ligand 1 (PD-L1) inhibition.METHODS This open-label phase II study randomized patients with BTC to atezolizumab (anti–PD-L1) as monotherapy or in combination with cobimetinib (MEK inhibitor). Eligible patients had unresectable BTC with 1 to 2 lines of prior therapy in the metastatic setting, measurable disease, and Eastern Cooperative Oncology Group (ECOG) performance status less than or equal to 1. The primary endpoint was progression-free survival (PFS).RESULTS Seventy-seven patients were randomized and received study therapy. The trial met its primary endpoint, with a median PFS of 3.65 months in the combination arm versus 1.87 months in the monotherapy arm (HR 0.58, 90% CI 0.35–0.93, 1-tail P = 0.027). One patient in the combination arm (3.3%) and 1 patient in the monotherapy arm (2.8%) had a partial response. Combination therapy was associated with more rash, gastrointestinal events, CPK elevations, and thrombocytopenia. Exploratory analysis of tumor biopsies revealed enhanced expression of antigen processing and presentation genes and an increase in CD8/FoxP3 ratios with combination treatment. Patients with higher baseline or lower fold changes in expression of certain inhibitory ligands (LAG3, BTLA, VISTA) on circulating T cells had evidence of greater clinical benefit from the combination.CONCLUSION The combination of atezolizumab plus cobimetinib prolonged PFS as compared with atezolizumab monotherapy, but the low response rate in both arms highlights the immune-resistant nature of BTCs.TRIAL REGISTRATION ClinicalTrials.gov NCT03201458.FUNDING National Cancer Institute (NCI) Experimental Therapeutics Clinical Trials Network (ETCTN); F. Hoffmann-La Roche, Ltd.; NCI, NIH (R01 CA228414-01 and UM1CA186691); NCI’s Specialized Program of Research Excellence (SPORE) in Gastrointestinal Cancers (P50 CA062924); NIH Center Core Grant (P30 CA006973); and the Passano Foundation.

Authors

Mark Yarchoan, Leslie Cope, Amanda N. Ruggieri, Robert A. Anders, Anne M. Noonan, Laura W. Goff, Lipika Goyal, Jill Lacy, Daneng Li, Anuj K. Patel, Aiwu R. He, Ghassan K. Abou-Alfa, Kristen Spencer, Edward J. Kim, S. Lindsey Davis, Autumn J. McRee, Paul R. Kunk, Subir Goyal, Yuan Liu, Lauren Dennison, Stephanie Xavier, Aditya A. Mohan, Qingfeng Zhu, Andrea Wang-Gillam, Andrew Poklepovic, Helen X. Chen, Elad Sharon, Gregory B. Lesinski, Nilofer S. Azad

×

Beta-cell function and plasma insulin clearance in people with obesity and different glycemic status
Bettina Mittendorfer, … , Mihoko Yoshino, Samuel Klein
Bettina Mittendorfer, … , Mihoko Yoshino, Samuel Klein
Published December 14, 2021
Citation Information: J Clin Invest. 2021. https://doi.org/10.1172/JCI154068.
View: Text | PDF

Beta-cell function and plasma insulin clearance in people with obesity and different glycemic status

  • Text
  • PDF
Abstract

BACKGROUND. It is unclear how excess adiposity and insulin resistance affect β-cell function, insulin secretion, and insulin clearance in people with obesity. METHODS. We used a hyperinsulinemic-euglycemic clamp procedure and a modified oral glucose tolerance test to evaluate the interrelationships among obesity, insulin sensitivity, insulin kinetics, and glycemic status in five groups: normoglycemic lean and obese with: i) normal fasting glucose and normal glucose tolerance (Ob-NFG-NGT), ii) NFG and impaired glucose tolerance (Ob-NFG-IGT), iii) impaired fasting glucose and IGT (Ob-IFG-IGT), and iv) type 2 diabetes (Ob-T2D). RESULTS. Glucose-stimulated insulin secretion (GSIS), an assessment of β-cell function, was greater in the Ob-NFG-NGT and Ob-NFG-IGT groups than in the lean group, even when insulin sensitivity was matched in the obese and lean groups. Insulin sensitivity, not GSIS, was decreased in the Ob-NFG-IGT group compared with the Ob-NFG-NGT group, whereas GSIS, not insulin sensitivity, was decreased in the Ob-IFG-IGT and Ob-T2D groups compared with the Ob-NFG-NGT and Ob-NFG-IGT groups. Insulin clearance was directly related to insulin sensitivity and inversely related to the postprandial increase in insulin secretion and plasma insulin concentration. CONCLUSION. Increased adiposity per se, not insulin resistance, enhances insulin secretion in people with obesity. The obesity-induced increase in insulin secretion, in conjunction with a decrease in insulin clearance, sufficiently raise plasma insulin concentrations needed to maintain normoglycemia in people with moderate, but not severe insulin resistance. A deterioration in β-cell function, not a decrease in insulin sensitivity, is a determinant of IFG and ultimately leads to T2D. CLINICAL TRIALS REGISTRATION. NCT02706262; NCT04131166; NCT01977560 FUNDING. This study was supported by NIH grants P30 DK056341 (Washington University Nutrition and Obesity Research Center), P30 DK020579 (Washington University Diabetes Research Center), and UL1 TR000448 (Washington University Institute of Clinical and Translational Sciences), and grants from the American Diabetes Association (1-18-ICTS-119), the Longer Life Foundation, the Pershing Square Foundation, and the Washington University-Centene ARCH Personalized Medicine Initiative (P19-00559). ROLE OF THE FUNDERS/SPONSOR. The funding sources had no role in the design and conduct of the study; collection, management, analysis, and interpretation of the data; preparation, review, or approval of the manuscript; and decision to submit the manuscript for publication.

Authors

Bettina Mittendorfer, Bruce W. Patterson, Gordon I. Smith, Mihoko Yoshino, Samuel Klein

×

Randomized trial of neoadjuvant vaccination with tumor-cell lysate induces T-cell response in low-grade gliomas
Hirokazu Ogino, … , Mitchel S. Berger, Hideho Okada
Hirokazu Ogino, … , Mitchel S. Berger, Hideho Okada
Published December 9, 2021
Citation Information: J Clin Invest. 2021. https://doi.org/10.1172/JCI151239.
View: Text | PDF

Randomized trial of neoadjuvant vaccination with tumor-cell lysate induces T-cell response in low-grade gliomas

  • Text
  • PDF
Abstract

BACKGROUND. Long-term prognosis of WHO grade II low-grade glioma (LGG) is poor secondary to risk of recurrence and malignant transformation into high-grade glioma. Given the relatively intact immune system of patients with LGG and the slow tumor growth rate, vaccines are an attractive treatment strategy. METHODS. We conducted a pilot study to evaluate the safety and immunological effects of vaccination with GBM6-AD, lysate of an allogeneic glioblastoma stem cell line, with poly-ICLC in patients with LGG. Patients were randomized to receive the vaccines before surgery (Arm 1) or not (Arm 2) and all patients received adjuvant vaccine. Co-primary outcomes were to evaluate the safety and immune response in the tumor. RESULTS. A total of 17 eligible patients were enrolled – nine into Arm 1 and eight into Arm 2. This regimen was well-tolerated with no regimen-limiting toxicity. Neoadjuvant vaccination induced upregulation of type-1 cytokines and chemokines, and increased activated CD8+ T-cells in peripheral blood. Single-cell RNA/TCR-sequencing detected CD8+ T-cell clones that expanded with effector phenotype and migrated into tumor microenvironment (TME) in response to neoadjuvant vaccination. Mass cytometric analyses detected increased tissue resident-like CD8+ T-cells with effector memory phenotype in TME following the neoadjuvant vaccination. CONCLUSION. The current regimen induces effector CD8+ T-cell response in peripheral blood and enables vaccine-reactive CD8+ T-cells to migrate into TME. Further refinements of the regimen may have to be integrated into future strategies. TRIAL REGISTRATION. ClinicalTrials.gov NCT02549833. FUNDING. NIH (1R35NS105068, 1R21CA233856), Dabbiere Foundation, Parker Institute for Cancer Immunotherapy, and Daiichi Sankyo Foundation of Life Science.

Authors

Hirokazu Ogino, Jennie W. Taylor, Takahide Nejo, David Gibson, Payal B. Watchmaker, Kaori Okada, Atsuro Saijo, Meghan R. Tedesco, Anny Shai, Cynthia M. Wong, Jane E. Rabbitt, Michael R. Olin, Christopher L. Moertel, Yasuhiko Nishioka, Andres M. Salazar, Annette M. Molinaro, Joanna J. Phillips, Nicholas A. Butowski, Jennifer L. Clarke, Nancy Ann Oberheim Bush, Shawn L. Hervey-Jumper, Philip Theodosopoulos, Susan M. Chang, Mitchel S. Berger, Hideho Okada

×

Aqueous proteins help predict the response of neovascular age-related macular degeneration patients to anti-VEGF therapy
Xuan Cao, … , Silvia Montaner, Akrit Sodhi
Xuan Cao, … , Silvia Montaner, Akrit Sodhi
Published December 7, 2021
Citation Information: J Clin Invest. 2021. https://doi.org/10.1172/JCI144469.
View: Text | PDF

Aqueous proteins help predict the response of neovascular age-related macular degeneration patients to anti-VEGF therapy

  • Text
  • PDF
Abstract

BACKGROUND. To reduce the treatment burden for patients with neovascular age-related macular degeneration (nvAMD), emerging therapies targeting vascular endothelial growth factor (VEGF) are being designed to extend the interval between treatments, thereby minimizing the number of intraocular injections. However, which patients will benefit from longer-acting agents is not clear. METHODS. Eyes with nvAMD (n=122) underwent 3 consecutive monthly injections with currently available anti-VEGF therapies, followed by a treat-and-extend protocol. Patients who remained quiescent 12 weeks from their prior treatment entered a “treatment pause” and were switched to pro re nata (PRN) treatment (based on vision, clinical exam, and/or imaging studies). Proteomic analysis was performed on aqueous fluid to identify proteins that correlate with patients’ response to treatment. RESULTS. At the end of 1 year, 38/122 eyes (31%) entered a treatment pause (≥30 weeks). Conversely, 21/122 eyes (17%) failed extension and required monthly treatment at the end of year 1. Proteomic analysis of aqueous fluid identified proteins that correlated with patients’ response to treatment including proteins previously implicated in AMD pathogenesis. Interestingly, apolipoprotein-B100 (ApoB100), a principal component of drusen implicated in the progression of non-neovascular AMD, was increased in treated patients who required less frequent injections. ApoB100 expression was higher in AMD eyes compared to controls but was lower in eyes that develop choroidal neovascularization (CNV), consistent with a protective role. Accordingly, mice over-expressing ApoB100 were partially protected from laser-induced CNV. CONCLUSIONS. Aqueous biomarkers could help identify nvAMD patients who may not require – nor benefit from – long-term treatment with anti-VEGF therapy.

Authors

Xuan Cao, Jaron Castillo Sanchez, Aumreetam Dinabandhu, Chuanyu Guo, Tapan P. Patel, Zhiyong Yang, Ming-Wen Hu, Lijun Chen, Yuefan Wang, Danyal Malik, Kathleen Jee, Yassine J. Daoud, James T. Handa, Hui Zhang, Jiang Qian, Silvia Montaner, Akrit Sodhi

×

Randomized, double-blind, controlled trial of human anti-LIGHT monoclonal antibody in COVID-19 acute respiratory distress syndrome
David S. Perlin, … , Carl F. Ware, H. Jeffrey Wilkins
David S. Perlin, … , Carl F. Ware, H. Jeffrey Wilkins
Published December 6, 2021
Citation Information: J Clin Invest. 2021. https://doi.org/10.1172/JCI153173.
View: Text | PDF

Randomized, double-blind, controlled trial of human anti-LIGHT monoclonal antibody in COVID-19 acute respiratory distress syndrome

  • Text
  • PDF
Abstract

BACKGROUND. Severe coronavirus disease 2019 (COVID-19) infection is associated with a dysregulated immune response, which can result in cytokine release syndrome and acute respiratory distress syndrome (ARDS). Patients with COVID-19–associated ARDS have elevated free serum levels of the cytokine lymphotoxin-like inducible protein that competes with glycoprotein D for herpesvirus entry on T cells (LIGHT; also known as TNFSF14). Such patients may benefit from LIGHT neutralization therapy. METHODS. This randomized, double-blind, multicenter, proof-of-concept trial enrolled adults hospitalized with COVID-19–associated pneumonia and mild to moderate ARDS. Patients received standard of care plus a single dose of CERC-002 or placebo. The primary endpoint was the proportion of patients receiving CERC-002 who remained alive and free of respiratory failure through day 28. Safety was assessed via adverse event monitoring. RESULTS. For most of the 83 enrolled patients, standard of care included systemic corticosteroids (88.0%) or remdesivir (57.8%). A higher proportion of patients remained alive and free of respiratory failure through day 28 after receiving CERC-002 (83.9%) versus placebo (64.5%; P = .044), including in patients ≥60 years (76.5% vs 47.1%, respectively; P = .042). Mortality rates were 7.7% (CERC-002) and 14.3% (placebo) at day 28 and 10.8% and 22.5%, respectively, at day 60. Treatment-emergent adverse events were less frequent with CERC-002 than placebo. CONCLUSION. For patients with COVID-19–associated ARDS, adding CERC-002 to standard of care treatment reduces LIGHT levels and might reduce the risk of respiratory failure and death. TRIAL REGISTRATION. ClinicalTrials.gov NCT04412057. FUNDING. Avalo Therapeutics (formerly Cerecor, Inc.)

Authors

David S. Perlin, Garry A. Neil, Colleen Anderson, Inbal Zafir-Lavie, Shane Raines, Carl F. Ware, H. Jeffrey Wilkins

×
  • ← Previous
  • 1
  • 2
  • …
  • 16
  • 17
  • 18
  • …
  • 39
  • 40
  • Next →

No posts were found with this tag.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts