Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

In-Press Preview

  • 2,131 Articles
  • 0 Posts
  • ← Previous
  • 1
  • 2
  • …
  • 91
  • 92
  • 93
  • …
  • 213
  • 214
  • Next →
HDACi promotes inflammatory remodeling of the tumor microenvironment to enhance epitope spreading and antitumor immunity
Andrew Nguyen, … , Scott R. Walsh, Yonghong Wan
Andrew Nguyen, … , Scott R. Walsh, Yonghong Wan
Published August 16, 2022
Citation Information: J Clin Invest. 2022. https://doi.org/10.1172/JCI159283.
View: Text | PDF

HDACi promotes inflammatory remodeling of the tumor microenvironment to enhance epitope spreading and antitumor immunity

  • Text
  • PDF
Abstract

Adoptive cell therapy (ACT) with tumor-specific memory T cells has shown increasing efficacy in regressing solid tumors. However, tumor antigen heterogeneity represents a longitudinal challenge for durable clinical responses due to the therapeutic selective pressure for immune escape variants. Here, we demonstrate that delivery of class I histone deacetylase inhibitor, MS-275, promotes sustained tumor regression by synergizing with ACT in a coordinated manner to enhance cellular apoptosis. We find that MS-275 alters the tumor inflammatory landscape to support antitumor immunoactivation through the recruitment and maturation of cross-presenting CD103+ and CD8+ dendritic cells and depletion of regulatory T cells. Activated endogenous CD8+ T cell responses against non-target tumor antigens was critically required for the prevention of tumor recurrence. Importantly, MS-275 alters the immunodominance hierarchy by directing epitope spreading towards endogenous retroviral tumor-associated antigen, p15E. Our data suggest that MS-275 multi-mechanistically improves epitope spreading to promote long-term clearance of solid tumors.

Authors

Andrew Nguyen, Louisa Ho, Richard Hogg, Lan Chen, Scott R. Walsh, Yonghong Wan

×

Targeting FAPα-expressing hepatic stellate cells overcomes resistance to anti-angiogenics in colorectal cancer liver metastasis models
Ming Qi, … , Wencai Ye, Dongmei Zhang
Ming Qi, … , Wencai Ye, Dongmei Zhang
Published August 11, 2022
Citation Information: J Clin Invest. 2022. https://doi.org/10.1172/JCI157399.
View: Text | PDF | Corrigendum

Targeting FAPα-expressing hepatic stellate cells overcomes resistance to anti-angiogenics in colorectal cancer liver metastasis models

  • Text
  • PDF
Abstract

Vessel co-option has been demonstrated to mediate colorectal cancer liver metastasis (CRCLM) resistance to anti-angiogenic therapy. The current mechanisms underlying vessel co-option have mainly focused on the "hijacker" tumor cells, whereas the function of the “hijackee” sinusoidal blood vessels has not been explored. Here, we found that the occurrence of vessel co-option in bevacizumab-resistant CRCLM xenografts was associated with increased expression of fibroblast activation protein alpha (FAPα) in the co-opted hepatic stellate cells (HSCs), which was dramatically attenuated in HSC-specific conditional Fap-knockout mice bearing CRCLM allografts. Mechanistically, bevacizumab treatment induced hypoxia to upregulate the expression of fibroblast growth factor-binding protein 1 (FGFBP1) in tumor cells. Gain- or loss-of-function experiments revealed that the bevacizumab-resistant tumor cell-derived FGFBP1 induced FAPα expression by enhancing the paracrine FGF2-FGFR1-ERK1/2-EGR1 signaling pathway in HSCs. FAPα promoted CXCL5 secretion in HSCs, which activated CXCR2 to promote the epithelial-mesenchymal transition of tumor cells and the recruitment of myeloid-derived suppressor cells. These findings were further validated in CRCLM patient-derived tumor tissues. Targeting FAPα+ HSCs effectively disrupted the co-opted sinusoidal blood vessels and overcame bevacizumab resistance. Our study highlights the role of FAPα+ HSCs in vessel co-option and provides an effective strategy to overcome the vessel co-option-mediated bevacizumab resistance.

Authors

Ming Qi, Shuran Fan, Maohua Huang, Jinghua Pan, Yong Li, Qun Miao, Wenyu Lyu, Xiaobo Li, Lijuan Deng, Shenghui Qiu, Tongzheng Liu, Weiqing Deng, Xiaodong Chu, Chang Jiang, Wenzhuo He, Liangping Xia, Yunlong Yang, Jian Hong, Qi Qi, Wenqian Yin, Xiangning Liu, Changzheng Shi, Minfeng Chen, Wencai Ye, Dongmei Zhang

×

In vivo visualization and molecular targeting of the cardiac conduction system
William R. Goodyer, … , Eben L. Rosenthal, Sean M. Wu
William R. Goodyer, … , Eben L. Rosenthal, Sean M. Wu
Published August 11, 2022
Citation Information: J Clin Invest. 2022. https://doi.org/10.1172/JCI156955.
View: Text | PDF

In vivo visualization and molecular targeting of the cardiac conduction system

  • Text
  • PDF
Abstract

Accidental injury to the cardiac conduction system (CCS), a network of specialized cells embedded within the heart and indistinguishable from the surrounding heart muscle tissue, is a major complication in cardiac surgeries. Here, we addressed this unmet need by engineering targeted antibody-dye conjugates directed against CCS, allowing for the visualization of the CCS in vivo following a single intravenous injection in mice. These optical imaging tools showed high sensitivity, specificity, and resolution, with no adverse effects to CCS function. Further, with the goal of creating a viable prototype for human use, we generated a fully human monoclonal Fab, that similarly targets the CCS with high specificity. We demonstrate that, when conjugated to an alternative cargo, this Fab can also be used to modulate CCS biology in vivo providing a proof-of-principle for targeted cardiac therapeutics. Finally, in performing differential gene expression analyses of the entire murine CCS at single-cell resolution, we uncovered and validated a suite of additional cell surface markers that can be used to molecularly target the distinct subcomponents of the CCS, each prone to distinct life-threatening arrhythmias. These findings lay the foundation for translational approaches targeting the CCS for visualization and therapy in cardiothoracic surgery, cardiac imaging and arrhythmia management.

Authors

William R. Goodyer, Benjamin M. Beyersdorf, Lauren Duan, Nynke S. van den Berg, Sruthi Mantri, Francisco X. Galdos, Nazan Puluca, Jan W. Buikema, Soah Lee, Darren Salmi, Elise R. Robinson, Stephan Rogalla, Dillon P. Cogan, Chaitan Khosla, Eben L. Rosenthal, Sean M. Wu

×

Impaired renal reserve contributes to preeclampsia via the kynurenine and soluble fms-like tyrosine kinase 1 pathway
Vincent Dupont, … , Ravi Thadhani, S. Ananth Karumanchi
Vincent Dupont, … , Ravi Thadhani, S. Ananth Karumanchi
Published August 9, 2022
Citation Information: J Clin Invest. 2022. https://doi.org/10.1172/JCI158346.
View: Text | PDF

Impaired renal reserve contributes to preeclampsia via the kynurenine and soluble fms-like tyrosine kinase 1 pathway

  • Text
  • PDF
Abstract

To understand how kidney donation leads to excess preeclampsia risk, we studied pregnant outbred mice with prior uninephrectomy and compared them to sham-treated littermates carrying both kidneys. During pregnancy, uninephrectomized mice failed to achieve physiological increase of glomerular filtration rate, and during late gestation developed hypertension, albuminuria, glomerular endothelial damage, and excess placental production of soluble fms-like tyrosine kinase 1 (sFLT1), an anti-angiogenic protein implicated in the pathogenesis of preeclampsia. Maternal hypertension in uninephrectomized mice was associated with low plasma volumes, increased rate of fetal resorption, impaired spiral artery remodeling and placental ischemia. To evaluate potential mechanisms, we studied plasma metabolite changes using mass spectrometry and noted that L-kynurenine, a metabolite of L-tryptophan, was upregulated ~3 fold during pregnancy when compared to pre-pregnant concentrations in the same animals, consistent with prior reports suggesting a protective role for L-kynurenine in placental health. However, uninephrectomized mice failed to upregulate L-kynurenine during pregnancy; furthermore, when uninephrectomized mice were fed L-kynurenine in drinking water throughout pregnancy, their preeclampsia-like state was rescued, including reversal of placental ischemia and normalization of sFLT1 levels. In aggregate, we provide a mechanistic basis for how impaired renal reserve and resulting failure to upregulate L-kynurenine during pregnancy can lead to impaired placentation, placental hypoperfusion, anti-angiogenic state and subsequent preeclampsia.

Authors

Vincent Dupont, Anders H. Berg, Michifumi Yamashita, Chengqun Huang, Ambart E. Covarrubias, Shafat Ali, Aleksandr Stotland, Jennifer E. Van Eyk, Belinda Jim, Ravi Thadhani, S. Ananth Karumanchi

×

NVX-CoV2373 vaccination induces functional SARS-CoV-2—specific CD4+ and CD8+ T cell responses
Carolyn Rydyznski Moderbacher, … , Gregory Glenn, Shane Crotty
Carolyn Rydyznski Moderbacher, … , Gregory Glenn, Shane Crotty
Published August 9, 2022
Citation Information: J Clin Invest. 2022. https://doi.org/10.1172/JCI160898.
View: Text | PDF

NVX-CoV2373 vaccination induces functional SARS-CoV-2—specific CD4+ and CD8+ T cell responses

  • Text
  • PDF
Abstract

NVX-CoV2373 is an adjuvanted recombinant full-length SARS-CoV-2 spike trimer protein vaccine demonstrated to be protective against COVID-19 in efficacy trials. Here we demonstrate that vaccinated subjects made CD4+ T cell responses after one and two doses of NVX-CoV2373, and a subset of individuals made CD8+ T cell responses. Characterization of the vaccine-elicited CD8+ T cells demonstrated IFN𝛾 production. Characterization of the vaccine-elicited CD4+ T cells revealed both circulating T follicular helper cells (cTFH) and TH1 cells (IFN𝛾, TNFa, and IL-2) were detectable within 7 days of the primary immunization. Spike-specific CD4+ T cells were correlated with the magnitude of the later SARS-CoV-2 neutralizing antibody titers, indicating that robust generation of CD4+ T cells, capable of supporting humoral immune responses, may be a key characteristic of NVX-CoV2373 which utilizes Matrix-M™ adjuvant.

Authors

Carolyn Rydyznski Moderbacher, Christina J. Kim, Jose Mateus, Joyce S. Plested, Mingzhu Zhu, Shane Cloney-Clark, Daniela Weiskopf, Alessandro Sette, Louis Fries, Gregory Glenn, Shane Crotty

×

Relieving Dyrk1a repression of MKL1 confers an adult-like phenotype to human infantile megakaryocytes
Kamaleldin E. Elagib, … , Camelia Iancu-Rubin, Adam N. Goldfarb
Kamaleldin E. Elagib, … , Camelia Iancu-Rubin, Adam N. Goldfarb
Published August 4, 2022
Citation Information: J Clin Invest. 2022. https://doi.org/10.1172/JCI154839.
View: Text | PDF

Relieving Dyrk1a repression of MKL1 confers an adult-like phenotype to human infantile megakaryocytes

  • Text
  • PDF
Abstract

Infantile (fetal and neonatal) megakaryocytes have a distinct phenotype consisting of hyperproliferation, limited morphogenesis, and low platelet production capacity. These properties contribute to clinical problems that include thrombocytopenia in neonates, delayed platelet engraftment in recipients of cord blood stem cell transplants, and inefficient ex vivo platelet production from pluripotent stem cell-derived megakaryocytes. The infantile phenotype results from deficiency of the actin-regulated coactivator, MKL1, which programs cytoskeletal changes driving morphogenesis. As a strategy to complement this molecular defect, we screened pathways with potential to affect MKL1 function and found that Dyrk1a kinase inhibition dramatically enhanced megakaryocyte morphogenesis in vitro and in vivo. Dyrk1 inhibitors rescued enlargement, polyploidization, and thrombopoiesis in human neonatal megakaryocytes. Megakaryocytes derived from induced pluripotent stem cells responded in a similar manner. Progenitors undergoing Dyrk1 inhibition demonstrated filamentous actin assembly, MKL1 nuclear translocation, and modulation of MKL1 target genes. Loss of function studies confirmed MKL1 involvement in this morphogenetic pathway. Ablim2, a stabilizer of filamentous actin, increased with Dyrk1 inhibition, and Ablim2 knockdown abrogated the actin, MKL1, and morphogenetic responses to Dyrk1 inhibition. These results thus delineate a pharmacologically tractable morphogenetic pathway whose manipulation may alleviate clinical problems associated with the limited thrombopoietic capacity of infantile megakaryocytes.

Authors

Kamaleldin E. Elagib, Ashton Brock, Cara M. Clementelli, Gohar Mosoyan, Lorrie L. Delehanty, Ranjit K. Sahu, Alexandra Pacheco-Benichou, Corinne Fruit, Thierry Besson, Stephan W. Morris, Koji Eto, Chintan Jobaliya, Deborah L. French, Paul Gadue, Sandeep Singh, Xinrui Shi, Fujun Qin, Robert Cornelison, Hui Li, Camelia Iancu-Rubin, Adam N. Goldfarb

×

Breast cancer cell-derived microRNA-155 suppresses tumor progression via enhancing immune cell recruitment and anti-tumor function
Junfeng Wang, … , Guoshuai Cai, Daping Fan
Junfeng Wang, … , Guoshuai Cai, Daping Fan
Published August 4, 2022
Citation Information: J Clin Invest. 2022. https://doi.org/10.1172/JCI157248.
View: Text | PDF

Breast cancer cell-derived microRNA-155 suppresses tumor progression via enhancing immune cell recruitment and anti-tumor function

  • Text
  • PDF
Abstract

Evidence suggests that increased microRNA-155 (miR-155) expression in immune cells enhances anti-tumor immune responses. However, given the reported association of miR-155 to tumorigenesis in various cancers, a debate is provoked on whether miR-155 is oncogenic or tumor suppressive. We aimed to interrogate the impact of tumor miR-155 expression, particularly cancer cell-derived miR-155, on anti-tumor immunity in breast cancer. We performed bioinformatic analysis of human breast cancer databases, murine experiments, and human specimen examination. We revealed that higher tumor miR-155 levels correlate with a favorable anti-tumor immune profile and better patient outcomes. Murine experiments demonstrated that miR-155 overexpression in breast cancer cells enhanced T cell influx, delayed tumor growth, and sensitized the tumors to immune checkpoint blockade (ICB) therapy. Mechanistically, miR-155 overexpression in breast cancer cells upregulated their CXCL9/10/11 production, which was mediated by SOCS1 inhibition and increased pSTAT1/pSTAT3 ratio. We further found that serum miR-155 levels in breast cancer patients correlate with tumor miR-155 levels and tumor immune status. Our findings suggest that high serum and tumor miR-155 levels may be a favorable prognostic marker for breast cancer patients, and therapeutic elevation of miR-155 in breast tumors may improve the efficacy of ICB therapy via remodeling the anti-tumor immune landscape.

Authors

Junfeng Wang, Quanyi Wang, Yinan Guan, Yulu Sun, Xiaozhi Wang, Kaylie Lively, Yuzhen Wang, Ming Luo, Julian A. Kim, E. Angela Murphy, Yongzhong Yao, Guoshuai Cai, Daping Fan

×

GIGYF1 disruption associates with autism and impaired IGF-1R signaling
Guodong Chen, … , Kun Xia, Hui Guo
Guodong Chen, … , Kun Xia, Hui Guo
Published August 2, 2022
Citation Information: J Clin Invest. 2022. https://doi.org/10.1172/JCI159806.
View: Text | PDF

GIGYF1 disruption associates with autism and impaired IGF-1R signaling

  • Text
  • PDF
Abstract

Autism spectrum disorder (ASD) represents a group of neurodevelopmental phenotypes with a strong genetic component. Excess of likely gene-disruptive (LGD) mutations of GIGYF1 was implicated in ASD. Here, we reported that GIGYF1 was the second most mutated gene among known ASD high-confidence risk genes. We investigated the inheritance of 46 GIGYF1 LGD variants, including the highly recurrent mutation, c.333del:p.L111Rfs*234. Inherited GIGYF1 heterozygous LGD variants were 1.8 times more common than de novo mutations. Unlike most high-confidence genes, ASD individuals with GIGYF1 LGD variants were less likely to have cognitive impairments. Using a Gigyf1 conditional knockout mouse model, we showed that haploinsufficiency in the developing brain led to social impairments without significant cognitive impairments. In contrast, homozygous mice showed more severe social disability as well as cognitive impairments. Gigyf1 deficiency in mice led to a reduction of upper layer cortical neurons accompanied by decreased proliferation and increased differentiation of neural progenitor cells. We showed that GIGYF1 regulated the recycling of IGF-1R to cell surface. Knockout of GIGYF1 led to a decreased level of IGF-1R on the cell surface disrupting the IGF-1R/ERK signaling pathway. In summary, our findings showed that GIGYF1 was a regulator of IGF-1R recycling. Haploinsufficiency of GIGYF1 was associated with autistic behaviors likely through interference with IGR-1R/ERK signaling pathway.

Authors

Guodong Chen, Bin Yu, Senwei Tan, Jieqiong Tan, Xiangbin Jia, Qiumeng Zhang, Xiaolei Zhang, Qian Jiang, Yue Hua, Yaoling Han, Shengjie Luo, Kendra Hoekzema, Raphael A. Bernier, Rachel K. Earl, Evangeline C. Kurtz-Nelson, Michaela J. Idleburg, Suneeta Madan Khetarpal, Rebecca Clark, Jessica Sebastian, Alberto Fernandez-Jaen, Sara Alvarez, Staci D. King, Luiza L.P. Ramos, Mara Lucia S.F. Santos, Donna M. Martin, Dan Brooks, Joseph D. Symonds, Ioana Cutcutache, Qian Pan, Zhengmao Hu, Ling Yuan, Evan E. Eichler, Kun Xia, Hui Guo

×

Small molecule eRF3a degraders rescue CFTR nonsense mutations by promoting premature termination codon readthrough
Rhianna E. Lee, … , Adam J. Kimple, Scott H. Randell
Rhianna E. Lee, … , Adam J. Kimple, Scott H. Randell
Published July 28, 2022
Citation Information: J Clin Invest. 2022. https://doi.org/10.1172/JCI154571.
View: Text | PDF

Small molecule eRF3a degraders rescue CFTR nonsense mutations by promoting premature termination codon readthrough

  • Text
  • PDF
Abstract

The vast majority of people with cystic fibrosis (CF) are now eligible for CF transmembrane regulator (CFTR) modulator therapy. Remaining individuals harbor premature termination codons (PTCs) or rare CFTR variants with limited treatment options. Although clinical modulator response can be reliably predicted using primary airway epithelial cells, primary cells carrying rare CFTR variants are scarce. To overcome this obstacle, cell lines can be created by overexpression of mouse Bmi-1 and human TERT (hTERT). Using this approach, we developed two non-CF and six CF airway epithelial cell lines, three of which are homozygous for the W1282X PTC variant. Bmi-1/hTERT cell lines recapitulated primary cell morphology and ion transport function. The two F508del-CFTR cell lines responded robustly to CFTR modulators, which was mirrored in the parent primary cells and in the cell donors’ clinical response. Cereblon E3 ligase modulators targeting eRF3a rescued W1282X-CFTR function to ~20% of wildtype levels and, when paired with G418, rescued G542X-CFTR function to ~50% of wildtype levels. Intriguingly, eRF3a degraders also diminished epithelial sodium channel (ENaC) function. These studies demonstrate that Bmi-1/hTERT cell lines faithfully mirror primary cell responses to CFTR modulators and illustrate a therapeutic approach to rescue CFTR nonsense mutations.

Authors

Rhianna E. Lee, Catherine A. Lewis, Lihua He, Emily C. Bulik-Sullivan, Samuel C. Gallant, Teresa M. Mascenik, Hong Dang, Deborah M. Cholon, Martina Gentzsch, Lisa C. Morton, John T. Minges, Jonathan W. Theile, Neil A. Castle, Michael R. Knowles, Adam J. Kimple, Scott H. Randell

×

SPTLC1 variants associated with ALS produce distinct sphingolipid signatures through impaired interaction with ORMDL proteins
Museer A. Lone, … , Eric A. Shoubridge, Thorsten Hornemann
Museer A. Lone, … , Eric A. Shoubridge, Thorsten Hornemann
Published July 28, 2022
Citation Information: J Clin Invest. 2022. https://doi.org/10.1172/JCI161908.
View: Text | PDF

SPTLC1 variants associated with ALS produce distinct sphingolipid signatures through impaired interaction with ORMDL proteins

  • Text
  • PDF
Abstract

Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease affecting motor neurons. Mutations in the SPTLC1 subunit of serine-palmitoyltransferase (SPT), which catalyzes the first step in the de novo synthesis of sphingolipids cause childhood-onset ALS. SPTLC1-ALS variants map to a transmembrane domain that interacts with ORMDL proteins, negative regulators of SPT activity. We show that ORMDL binding to the holoenzyme complex is impaired in cells expressing pathogenic SPTLC1-ALS alleles, resulting in increased sphingolipid synthesis and a distinct lipid signature. C-terminal SPTLC1 variants cause the peripheral sensory neuropathy HSAN1 due to the synthesis of 1-deoxysphingolipids (1-deoxySLs) that form when SPT metabolizes L-alanine instead of L-serine. Limiting L-serine availability in SPTLC1-ALS expressing cells increased 1-deoxySL and shifted the SL profile from an ALS to an HSAN1-like signature. This effect was corroborated in an SPTLC1-ALS pedigree in which the index patient uniquely presented with an HSAN1 phenotype, increased 1-deoxySL levels, and an L-serine deficiency. These data demonstrate how pathogenic variants in different domains of SPTLC1 give rise to distinct clinical presentations that are nonetheless modifiable by substrate availability.

Authors

Museer A. Lone, Mari J. Aaltonen, Aliza Zidell, Helio F. Pedro, Jonas A. Morales Saute, Shalett Mathew, Payam Mohassel, Carsten G. Bonnemann, Eric A. Shoubridge, Thorsten Hornemann

×
  • ← Previous
  • 1
  • 2
  • …
  • 91
  • 92
  • 93
  • …
  • 213
  • 214
  • Next →

No posts were found with this tag.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts