Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Research

  • 1,626 Articles
  • 0 Posts
  • ← Previous
  • 1
  • 2
  • …
  • 129
  • 130
  • 131
  • …
  • 162
  • 163
  • Next →
MKRN3 inhibits the reproductive axis through actions in kisspeptin-expressing neurons
Ana Paula Abreu, … , Sergio R. Ojeda, Ursula B Kaiser
Ana Paula Abreu, … , Sergio R. Ojeda, Ursula B Kaiser
Published May 14, 2020
Citation Information: J Clin Invest. 2020. https://doi.org/10.1172/JCI136564.
View: Text | PDF

MKRN3 inhibits the reproductive axis through actions in kisspeptin-expressing neurons

  • Text
  • PDF
Abstract

The identification of loss-of-function mutations in MKRN3 in patients with central precocious puberty (CPP) in association with the decrease in MKRN3 expression in the medial basal hypothalamus (MBH) of mice prior to the initiation of reproductive maturation suggest that MKRN3 is acting as a ‘brake’ on GnRH secretion during childhood. In the current study, we investigated the mechanism by which MKRN3 prevents premature manifestation of the pubertal process. We showed that, as in mice, MKRN3 expression is high in the hypothalamus of rats and nonhuman primates early in life, declining as puberty approaches, and is independent of sex steroid hormones. We demonstrated that Mkrn3 is expressed in Kiss1 neurons of the mouse hypothalamic arcuate nucleus (ARC) and that MKRN3 repressed promoter activity of human KISS1 and TAC3, two key stimulators of GnRH secretion. We further showed that MKRN3 has ubiquitinase activity, that this activity is reduced by MKRN3 mutations affecting the RING finger domain, and that these mutations compromised the ability of MKRN3 to repress KISS1 and TAC3 promoter activity. These results indicate that MKRN3 acts to prevent puberty initiation, at least in part, by repressing KISS1 and TAC3 transcription and that this action may involve a MKRN3-directed ubiquitination-mediated mechanism.

Authors

Ana Paula Abreu, Carlos A. Toro, Yong Bhum Song, Victor M Navarro, Martha A. Bosch, Aysegul Eren, Joy N. Liang, Rona S. Carroll, Ana Claudia Latronico, Oline K. Ronnekleiv, Carlos F Aylwin, Alejandro Lomniczi, Sergio R. Ojeda, Ursula B Kaiser

×

Elevated circulating amyloid concentrations in obesity and diabetes promote vascular dysfunction
Paul J. Meakin, … , Faisel Khan, Michael LJ Ashford
Paul J. Meakin, … , Faisel Khan, Michael LJ Ashford
Published May 14, 2020
Citation Information: J Clin Invest. 2020. https://doi.org/10.1172/JCI122237.
View: Text | PDF | Expression of Concern

Elevated circulating amyloid concentrations in obesity and diabetes promote vascular dysfunction

  • Text
  • PDF
Abstract

Diabetes, obesity and Alzheimer’s disease (AD) are associated with vascular complications and impaired nitric oxide (NO) production. Furthermore, increased β-site amyloid precursor protein (APP)-cleaving enzyme 1 (BACE1), APP and β-amyloid (Aβ) are linked with vascular disease development and raised BACE1 and Aβ accompany hyperglycemia and hyperlipidemia. However, the causal relationship between obesity and diabetes, raised Aβ and vascular dysfunction is unclear. We report that diet-induced obesity (DIO) in mice raised plasma and vascular Aβ42 that correlated with decreased NO bioavailability, endothelial dysfunction and raised blood pressure. Genetic or pharmacological reduction of BACE1 activity and Aβ42 prevented and reversed, respectively, these outcomes. In contrast, expression of human mutant APP in mice or Aβ42 infusion into control diet-fed mice to mimic obese levels impaired NO production, vascular relaxation and raised blood pressure. In humans, raised plasma Aβ42 correlated with diabetes and endothelial dysfunction. Mechanistically, higher Aβ42 reduced endothelial NO synthase (eNOS), cyclic GMP and protein kinase G (PKG) activity independently of diet whereas endothelin-1 was increased by diet and Aβ42. Lowering Aβ42 reversed the DIO deficit in the eNOS-cGMP-PKG pathway and decreased endothelin-1. Our findings suggest that BACE1 inhibitors may have therapeutic value in the treatment of vascular disease associated with diabetes.

Authors

Paul J. Meakin, Bethany M. Coull, Zofia Tuharska, Christopher McCaffery, Ioannis Akoumianakis, Charalambos Antoniades, Jane Brown, Kathryn J. Griffin, Fiona Platt, Claire H. Ozber, Nadira Y. Yuldasheva, Natallia Makava, Anna Skromna, Alan Russell Prescott, Alison D. McNeilly, Moneeza K. Siddiqui, Colin Neil Alexander Palmer, Faisel Khan, Michael LJ Ashford

×

Nonalcoholic fatty liver disease in CLOCK mutant mice
Xiaoyue Pan, … , Joyce Queiroz, M. Mahmood Hussain
Xiaoyue Pan, … , Joyce Queiroz, M. Mahmood Hussain
Published May 12, 2020
Citation Information: J Clin Invest. 2020. https://doi.org/10.1172/JCI132765.
View: Text | PDF

Nonalcoholic fatty liver disease in CLOCK mutant mice

  • Text
  • PDF
Abstract

Nonalcoholic fatty liver disease (NAFLD) is becoming a major health issue as obesity increases around the world. We studied the effect of a circadian locomotor output cycles kaput (CLOCK) mutant (ClkΔ19/Δ19) protein on hepatic lipid metabolism in C57Bl6 Clkwt/wt and apolipoprotein E–deficient (Apoe−/−) mice. Both ClkΔ19/Δ19 and ClkΔ19/Δ19Apoe−/− mice developed a full spectrum of liver diseases (steatosis, steatohepatitis, cirrhosis, and hepatocellular carcinoma) recognized in human NAFLD when challenged with a Western diet, lipopolysaccharide, or CoCl2. We identified induction of cluster of differentiation 36 (CD36) and hypoxia-inducible factor 1α (HIF1α) proteins as contributing factors for NAFLD. Mechanistic studies showed that wild-type CLOCK protein interacted with the E-box enhancer elements in the promoters of the proline hydroxylase domain (PHD) proteins to increase expression. In ClkΔ19/Δ19 mice, PHD levels were low, and HIF1α protein levels were increased. When its levels were high, HIF1α interacted with the Cd36 promoter to augment expression and enhance fatty acid uptake. Thus, these studies establish a novel regulatory link among circadian rhythms, hypoxia response, fatty acid uptake, and NAFLD. The mouse models described here may be useful for further mechanistic studies in the progression of liver diseases and in the discovery of drugs for the treatment of these disorders.

Authors

Xiaoyue Pan, Joyce Queiroz, M. Mahmood Hussain

×

Ribosomal S6 protein kinase 4 promotes radioresistance in esophageal squamous cell carcinoma
Mingyang Li, … , Jian Zhang, Zhe Wang
Mingyang Li, … , Jian Zhang, Zhe Wang
Published May 12, 2020
Citation Information: J Clin Invest. 2020. https://doi.org/10.1172/JCI134930.
View: Text | PDF

Ribosomal S6 protein kinase 4 promotes radioresistance in esophageal squamous cell carcinoma

  • Text
  • PDF
Abstract

Esophageal squamous cell carcinoma (ESCC) is one of the most aggressive cancers and is highly resistant to current treatments. ESCC harbors a subpopulation of cells exhibiting cancer stem-like cell (CSC) properties that contribute to therapeutic resistance including radioresistance, but the molecular mechanisms in ESCC CSCs are currently unknown. Here, we report that ribosomal S6 protein kinase 4 (RSK4) plays a pivotal role in promoting CSC properties and radioresistance in ESCC. RSK4 was highly expressed in ESCC CSCs and associated with radioresistance and poor survival in ESCC patients. RSK4 was found to be a direct downstream transcriptional target of ΔNp63α, the main p63 isoform, which is frequently amplified in ESCC. RSK4 activated the β-catenin signaling pathway through direct phosphorylation of GSK-3β Ser9. Pharmacologic inhibition of RSK4 effectively reduced CSC properties and improves radiosensitivity in both nude mice and patient-derived xenograft models. Collectively, our results strongly suggest that the ΔNp63α-RSK4-GSK-3β axis plays a key role in driving CSC properties and radioresistance in ESCC, indicating that RSK4 is a promising therapeutic target for ESCC treatment.

Authors

Mingyang Li, Linni Fan, Donghui Han, Zhou Yu, Jing Ma, Yixiong Liu, Peifeng Li, Danhui Zhao, Jia Chai, Lei Jiang, Shiliang Li, Juanjuan Xiao, Qiuhong Duan, Jing Ye, Mei Shi, Yongzhan Nie, Kai-Chun Wu, Dezhong Joshua Liao, Yu Shi, Yan Wang, Qingguo Yan, Shuangping Guo, Xiu-Wu Bian, Feng Zhu, Jian Zhang, Zhe Wang

×

Germline RBBP8 variants associated with early-onset breast cancer compromise replication fork stability
Reihaneh Zarrizi, … , Finn Cilius Nielsen, Claus Sørensen
Reihaneh Zarrizi, … , Finn Cilius Nielsen, Claus Sørensen
Published May 7, 2020
Citation Information: J Clin Invest. 2020. https://doi.org/10.1172/JCI127521.
View: Text | PDF

Germline RBBP8 variants associated with early-onset breast cancer compromise replication fork stability

  • Text
  • PDF
Abstract

Haploinsufficiency of factors governing genome stability underlies hereditary breast and ovarian cancer. Homologous recombination (HR) repair is a major pathway disabled in these cancers. With the aim of identifying new candidate genes, we examined early onset breast cancer patients negative for BRCA1 and BRCA2 pathogenic variants. Here, we focused on CtIP (RBBP8 gene) that mediates HR repair through the end-resection of DNA double-strand breaks (DSB). Notably, the patients exhibited a number of rare germline RBBP8 variants, and functional analysis revealed that these variants did not affect DNA DSB end-resection efficiency. However, expression of a subset of variants led to deleterious nucleolytic degradation of stalled DNA replication forks in a manner similar to cells lacking BRCA1 or BRCA2. In contrast to BRCA1 and BRCA2, CtIP deficiency promoted the helicase-driven destabilization of RAD51 nucleofilaments at damaged DNA replication forks. Taken together, our work identifies CtIP as a critical regulator of DNA replication fork integrity, which when compromised, may predispose to the development of early onset breast cancer.

Authors

Reihaneh Zarrizi, Martin R. Higgs, Karolin Voßgröne, Maria Rossing, Birgitte Bertelsen, Muthiah Bose, Arne N. Kousholt, Heike I. Rösner, Bent Ejlertsen, Grant S. Stewart, Finn Cilius Nielsen, Claus Sørensen

×

Deficiency of MFSD7c results in microcephaly-associated vasculopathy in Fowler syndrome
Pazhanichamy Kalailingam, … , Karin Weiss, Long N. Nguyen
Pazhanichamy Kalailingam, … , Karin Weiss, Long N. Nguyen
Published May 5, 2020
Citation Information: J Clin Invest. 2020. https://doi.org/10.1172/JCI136727.
View: Text | PDF

Deficiency of MFSD7c results in microcephaly-associated vasculopathy in Fowler syndrome

  • Text
  • PDF
Abstract

Several missense mutations in the orphan transporter FLVCR2 have been reported in Fowler syndrome. Affected subjects exhibit signs of severe neurological defects. We identified the mouse ortholog Mfsd7c as a gene, which is expressed in the blood brain barrier. Here, we report the characterizations of Mfsd7c knockout (KO) mice and compare it to phenotypic findings in humans with bi-allelic FLVCR2 mutations. Global KO of Mfsd7c in mice resulted in late gestation lethality, likely due to central nervous system (CNS) phenotypes. We found that the angiogenic growth of CNS blood vessels in the brain of Mfsd7c KO embryos was inhibited in cortical ventricular zones and ganglionic eminences. Vascular tips were dilated and fused resulting in glomeruloid vessels. Nonetheless, CNS blood vessels were intact without haemorrhage. Both embryos and humans with bi-allelic FLVCR2 mutations exhibited reduced cerebral cortical layers, enlargement of the cerebral ventricles, and microcephaly. Transcriptomic analysis of Mfsd7c knockout (KO) embryonic brains revealed upregulation of genes involved in glycolysis and angiogenesis. The Mfsd7c KO brain exhibited hypoxia and neuronal cell death. Our results indicate MFSD7c is required for the normal growth of CNS blood vessels and ablation of this gene results in microcephaly-associated vasculopathy in mice and humans.

Authors

Pazhanichamy Kalailingam, Kai Qi Wang, Xiu Ru Toh, Toan Q. Nguyen, Madhuvanthi Chandrakanthan, Zafrul Hasan, Clair Habib, Aharon Schif, Francesca Clementina Radio, Bruno Dallapiccola, Karin Weiss, Long N. Nguyen

×

Lack of Flvcr2 impairs brain angiogenesis without affecting the blood-brain barrier
Nicolas Santander, … , Christer Betsholtz, Thomas D. Arnold
Nicolas Santander, … , Christer Betsholtz, Thomas D. Arnold
Published May 5, 2020
Citation Information: J Clin Invest. 2020. https://doi.org/10.1172/JCI136578.
View: Text | PDF

Lack of Flvcr2 impairs brain angiogenesis without affecting the blood-brain barrier

  • Text
  • PDF
Abstract

Fowler syndrome is a rare autosomal recessive brain vascular disorder caused by mutation in FLVCR2 in humans. The disease occurs during a critical period of brain vascular development, is characterized by glomeruloid vasculopathy and hydrocephalus, and is almost invariably prenatally fatal. Here, we sought to gain insights into the process of brain vascularization and the pathogenesis of Fowler Syndrome by inactivating Flvcr2 in mice. We show that Flvcr2 is necessary for angiogenic sprouting in the brain, but surprisingly dispensable for maintaining the blood brain barrier. Endothelial cells lacking Flvcr2 have altered expression of angiogenic factors, fail to adopt tip-cell properties and display reduced sprouting leading to vascular malformations similar to those seen in humans with Fowler Syndrome. Brain hypo-vascularization is associated with hypoxia and tissue infarction, ultimately causing hydrocephalus and death of mutant animals. Strikingly, despite severe vascular anomalies and brain tissue infarction, the blood-brain barrier is maintained in Flvcr2 mutant mice. Our new Fowler syndrome models therefore define the pathobiology of this disease, and provide new insights into brain angiogenesis by showing uncoupling of vessel morphogenesis and blood-brain barrier formation.

Authors

Nicolas Santander, Carlos Omar Lizama, Eman Meky, Gabriel L. McKinsey, Bongnam Jung, Dean Sheppard, Christer Betsholtz, Thomas D. Arnold

×

Complement factor H-deficient mice develop spontaneous hepatic tumors
Jennifer Laskowski, … , Raphael A. Nemenoff, Joshua M. Thurman
Jennifer Laskowski, … , Raphael A. Nemenoff, Joshua M. Thurman
Published May 5, 2020
Citation Information: J Clin Invest. 2020. https://doi.org/10.1172/JCI135105.
View: Text | PDF

Complement factor H-deficient mice develop spontaneous hepatic tumors

  • Text
  • PDF
Abstract

Hepatocellular carcinoma (HCC) is difficult to detect, carries a poor prognosis, and is one of few cancers with an increasing yearly incidence. Molecular defects in complement factor H (CFH), a critical regulatory protein of the complement alternative pathway (AP), are typically associated with inflammatory diseases of the eye and kidney. Little is known regarding the role of CFH in controlling complement activation with the liver. While studying aging CFH-deficient (fH–/–) mice, we observed spontaneous hepatic tumor formation in more than 50% of aged fH–/– males. Examination of fH–/– livers (3–24 months) for evidence of complement-mediated inflammation revealed widespread deposition of complement activation fragments throughout the sinusoids, elevated transminase levels, increased hepatic CD8+ and F4/80+ cells, overexpress of hepatic mRNA associated with inflammatory signaling pathways, steatosis and increased collagen deposition. Immunostaining of human HCC biopsies revealed extensive deposition of complement fragments within the tumors. Interrogation of the Cancer Genome Atlas also revealed that increased CFH mRNA expression is associated with improved survival in HCC patients, whereas mutations are associated with worse survival. These results indicate that CFH is critical for controlling complement activation in the liver, and in its absence, AP activation leads to chronic inflammation and promotes hepatic carcinogenesis.

Authors

Jennifer Laskowski, Brandon Renner, Matthew C. Pickering, Natalie J. Serkova, Peter M. Smith-Jones, Eric T. Clambey, Raphael A. Nemenoff, Joshua M. Thurman

×

Impaired angiogenesis and extracellular matrix metabolism in Autosomal-Dominant Hyper-IgE Syndrome
Natalia I. Dmitrieva, … , Guibin Chen, Manfred Boehm
Natalia I. Dmitrieva, … , Guibin Chen, Manfred Boehm
Published May 5, 2020
Citation Information: J Clin Invest. 2020. https://doi.org/10.1172/JCI135490.
View: Text | PDF

Impaired angiogenesis and extracellular matrix metabolism in Autosomal-Dominant Hyper-IgE Syndrome

  • Text
  • PDF
Abstract

There are more than 7000 described rare diseases, most lacking specific treatment. Autosomal-dominant hyper-IgE syndrome (AD-HIES, Job’s syndrome) is caused by mutations in signal transducer and activator of transcription 3 (STAT3). These patients present with immunodeficiency accompanied by severe non-immunological features including skeletal, connective tissue and vascular abnormalities, poor post-infection lung healing, and subsequent pulmonary failure. No specific therapies are available for these abnormalities. Here we investigated underlying mechanisms in order to identify therapeutic targets. Histological analysis of skin wounds demonstrated delayed granulation tissue formation and vascularization during skin wound healing in AD-HIES patients. Global gene expression analysis in AD-HIES patient skin fibroblasts identified deficiencies in a STAT3 controlled transcriptional network regulating extracellular matrix (ECM) remodeling and angiogenesis, with hypoxia inducible factor 1α (HIF1α) being a major contributor. Consistent with this, histological analysis of skin wounds and coronary arteries from AD-HIES patients showed decreased HIF1α expression, and revealed abnormal organization of the ECM and altered formation of the coronary vasa vasorum. Disease modeling utilizing cell culture and mouse models of angiogenesis and wound healing confirmed these predicted deficiencies and demonstrated therapeutic benefit of HIF1α stabilizing drugs. The study provides mechanistic insights into AD-HIES pathophysiology and finds new treatment option for this rare disease.

Authors

Natalia I. Dmitrieva, Avram D. Walts, Dai P. Nguyen, Alex Grubb, Xue Zhang, Xujing Wang, Xianfeng Ping, Hui Jin, Zhen Yu, Zu-Xi Yu, Dan Yang, Robin Schwartzbeck, Clifton L. Dalgard, Beth A. Kozel, Mark D. Levin, Russell H. Knutsen, Delong Liu, Joshua D. Milner, Diego B. López, Michael P. O'Connell, Chyi-Chia R. Lee, Ian A. Myles, Amy P. Hsu, Alexandra F. Freeman, Steven M. Holland, Guibin Chen, Manfred Boehm

×

Microglia modulation by TGF-β1 protects cones in mouse models of retinal degeneration
Sean K. Wang, … , Yunlu Xue, Constance L. Cepko
Sean K. Wang, … , Yunlu Xue, Constance L. Cepko
Published April 30, 2020
Citation Information: J Clin Invest. 2020. https://doi.org/10.1172/JCI136160.
View: Text | PDF

Microglia modulation by TGF-β1 protects cones in mouse models of retinal degeneration

  • Text
  • PDF
Abstract

Retinitis pigmentosa (RP) is a genetically heterogenous group of eye diseases in which initial degeneration of rods triggers secondary degeneration of cones, leading to significant loss of daylight, color, and high-acuity vision. Gene complementation with adeno-associated viral (AAV) vectors is one strategy to treat RP. Its implementation faces substantial challenges, however — e.g., the tremendous number of loci with causal mutations. Gene therapy targeting secondary cone degeneration is an alternative approach that could provide a much-needed generic treatment for many RP patients. Here, we show that microglia are required for the upregulation of potentially neurotoxic inflammatory factors during cone degeneration in RP, creating conditions that might contribute to cone dysfunction and death. To ameliorate the effects of such factors, we used AAV vectors to express isoforms of the anti-inflammatory cytokine transforming growth factor-beta (TGF-β). AAV-mediated delivery of TGF-β1 rescued degenerating cones in three mouse models of RP carrying different pathogenic mutations. Treatment with TGF-β1 protected vision, as measured by two behavioral assays, and could be pharmacologically disrupted by either depleting microglia or blocking the TGF-β receptors. Our results suggest that TGF-β1 may be broadly beneficial for patients with cone degeneration, and potentially other forms of neurodegeneration, through a pathway dependent upon microglia.

Authors

Sean K. Wang, Yunlu Xue, Constance L. Cepko

×
  • ← Previous
  • 1
  • 2
  • …
  • 129
  • 130
  • 131
  • …
  • 162
  • 163
  • Next →

No posts were found with this tag.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts