Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Research Article

  • 25,558 Articles
  • 0 Posts
  • ← Previous
  • 1
  • 2
  • …
  • 67
  • 68
  • 69
  • …
  • 2555
  • 2556
  • Next →
CD8+ T cells recognizing a neuron-restricted antigen injure axons in a model of multiple sclerosis
Benjamin D.S. Clarkson, … , Liz S. Muschler, Charles L. Howe
Benjamin D.S. Clarkson, … , Liz S. Muschler, Charles L. Howe
Published September 7, 2023
Citation Information: J Clin Invest. 2023;133(21):e162788. https://doi.org/10.1172/JCI162788.
View: Text | PDF

CD8+ T cells recognizing a neuron-restricted antigen injure axons in a model of multiple sclerosis

  • Text
  • PDF
Abstract

CD8+ T cells outnumber CD4+ cells in multiple sclerosis (MS) lesions associated with disease progression, but the pathogenic role and antigenic targets of these clonally expanded effectors are unknown. Based on evidence that demyelination is necessary but not sufficient for disease progression in MS, we previously hypothesized that CNS-infiltrating CD8+ T cells specific for neuronal antigens directly drive the axonal and neuronal injury that leads to cumulative neurologic disability in patients with MS. We now show that demyelination induced expression of MHC class I on neurons and axons and resulted in presentation of a neuron-specific neoantigen (synapsin promoter–driven chicken ovalbumin) to antigen-specific CD8+ T cells (anti-ovalbumin OT-I TCR-transgenic T cells). These neuroantigen-specific effectors surveilled the CNS in the absence of demyelination but were not retained. However, upon induction of demyelination via cuprizone intoxication, neuroantigen-specific CD8+ T cells proliferated, accumulated in the CNS, and damaged neoantigen-expressing neurons and axons. We further report elevated neuronal expression of MHC class I and β2-microglobulin transcripts and protein in gray matter and white matter tracts in tissue from patients with MS. These findings support a pathogenic role for autoreactive anti-axonal and anti-neuronal CD8+ T cells in MS progression.

Authors

Benjamin D.S. Clarkson, Ethan M. Grund, Miranda M. Standiford, Kanish Mirchia, Maria S. Westphal, Liz S. Muschler, Charles L. Howe

×

Somatic rearrangements causing oncogenic ectodomain deletions of FGFR1 in squamous cell lung cancer
Florian Malchers, … , Julie George, Roman K. Thomas
Florian Malchers, … , Julie George, Roman K. Thomas
Published August 22, 2023
Citation Information: J Clin Invest. 2023;133(21):e170217. https://doi.org/10.1172/JCI170217.
View: Text | PDF

Somatic rearrangements causing oncogenic ectodomain deletions of FGFR1 in squamous cell lung cancer

  • Text
  • PDF
Abstract

The discovery of frequent 8p11-p12 amplifications in squamous cell lung cancer (SQLC) has fueled hopes that FGFR1, located inside this amplicon, might be a therapeutic target. In a clinical trial, only 11% of patients with 8p11 amplification (detected by FISH) responded to FGFR kinase inhibitor treatment. To understand the mechanism of FGFR1 dependency, we performed deep genomic characterization of 52 SQLCs with 8p11-p12 amplification, including 10 tumors obtained from patients who had been treated with FGFR inhibitors. We discovered somatically altered variants of FGFR1 with deletion of exons 1–8 that resulted from intragenic tail-to-tail rearrangements. These ectodomain-deficient FGFR1 variants (ΔEC-FGFR1) were expressed in the affected tumors and were tumorigenic in both in vitro and in vivo models of lung cancer. Mechanistically, breakage-fusion-bridges were the source of 8p11-p12 amplification, resulting from frequent head-to-head and tail-to-tail rearrangements. Generally, tail-to-tail rearrangements within or in close proximity upstream of FGFR1 were associated with FGFR1 dependency. Thus, the genomic events shaping the architecture of the 8p11-p12 amplicon provide a mechanistic explanation for the emergence of FGFR1-driven SQLC. Specifically, we believe that FGFR1 ectodomain–deficient and FGFR1-centered amplifications caused by tail-to-tail rearrangements are a novel somatic genomic event that might be predictive of therapeutically relevant FGFR1 dependency.

Authors

Florian Malchers, Lucia Nogova, Martijn H.A. van Attekum, Lukas Maas, Johannes Brägelmann, Christoph Bartenhagen, Luc Girard, Graziella Bosco, Ilona Dahmen, Sebastian Michels, Clare E. Weeden, Andreas H. Scheel, Lydia Meder, Kristina Golfmann, Philipp Schuldt, Janna Siemanowski, Jan Rehker, Sabine Merkelbach-Bruse, Roopika Menon, Oliver Gautschi, Johannes M. Heuckmann, Elisabeth Brambilla, Marie-Liesse Asselin-Labat, Thorsten Persigehl, John D. Minna, Henning Walczak, Roland T. Ullrich, Matthias Fischer, Hans Christian Reinhardt, Jürgen Wolf, Reinhard Büttner, Martin Peifer, Julie George, Roman K. Thomas

×

Phenotype screens of murine pancreatic cancer identify a Tgf-α-Ccl2-paxillin axis driving human-like neural invasion
Xiaobo Wang, … , Güralp Onur Ceyhan, Ihsan Ekin Demir
Xiaobo Wang, … , Güralp Onur Ceyhan, Ihsan Ekin Demir
Published August 22, 2023
Citation Information: J Clin Invest. 2023;133(21):e166333. https://doi.org/10.1172/JCI166333.
View: Text | PDF

Phenotype screens of murine pancreatic cancer identify a Tgf-α-Ccl2-paxillin axis driving human-like neural invasion

  • Text
  • PDF
Abstract

Solid cancers like pancreatic ductal adenocarcinoma (PDAC), a type of pancreatic cancer, frequently exploit nerves for rapid dissemination. This neural invasion (NI) is an independent prognostic factor in PDAC, but insufficiently modeled in genetically engineered mouse models (GEMM) of PDAC. Here, we systematically screened for human-like NI in Europe’s largest repository of GEMM of PDAC, comprising 295 different genotypes. This phenotype screen uncovered 2 GEMMs of PDAC with human-like NI, which are both characterized by pancreas-specific overexpression of transforming growth factor α (TGF-α) and conditional depletion of p53. Mechanistically, cancer-cell-derived TGF-α upregulated CCL2 secretion from sensory neurons, which induced hyperphosphorylation of the cytoskeletal protein paxillin via CCR4 on cancer cells. This activated the cancer migration machinery and filopodia formation toward neurons. Disrupting CCR4 or paxillin activity limited NI and dampened tumor size and tumor innervation. In human PDAC, phospho-paxillin and TGF-α–expression constituted strong prognostic factors. Therefore, we believe that the TGF-α-CCL2-CCR4-p-paxillin axis is a clinically actionable target for constraining NI and tumor progression in PDAC.

Authors

Xiaobo Wang, Rouzanna Istvanffy, Linhan Ye, Steffen Teller, Melanie Laschinger, Kalliope N. Diakopoulos, Kıvanç Görgülü, Qiaolin Li, Lei Ren, Carsten Jäger, Katja Steiger, Alexander Muckenhuber, Baiba Vilne, Kaan Çifcibaşı, Carmen Mota Reyes, Ümmügülsüm Yurteri, Maximilian Kießler, Ibrahim Halil Gürçınar, Maya Sugden, Saliha Elif Yıldızhan, Osman Uğur Sezerman, Sümeyye Çilingir, Güldal Süyen, Maximilian Reichert, Roland M. Schmid, Stefanie Bärthel, Rupert Oellinger, Achim Krüger, Roland Rad, Dieter Saur, Hana Algül, Helmut Friess, Marina Lesina, Güralp Onur Ceyhan, Ihsan Ekin Demir

×

Dietary potassium stimulates Ppp1Ca-Ppp1r1a dephosphorylation of kidney NaCl cotransporter and reduces blood pressure
P. Richard Grimm, … , Robert A. Fenton, Paul A. Welling
P. Richard Grimm, … , Robert A. Fenton, Paul A. Welling
Published September 7, 2023
Citation Information: J Clin Invest. 2023;133(21):e158498. https://doi.org/10.1172/JCI158498.
View: Text | PDF

Dietary potassium stimulates Ppp1Ca-Ppp1r1a dephosphorylation of kidney NaCl cotransporter and reduces blood pressure

  • Text
  • PDF
Abstract

Consumption of low dietary potassium, common with ultraprocessed foods, activates the thiazide-sensitive sodium chloride cotransporter (NCC) via the with no (K) lysine kinase/STE20/SPS1-related proline-alanine–rich protein kinase (WNK/SPAK) pathway to induce salt retention and elevate blood pressure (BP). However, it remains unclear how high-potassium “DASH-like” diets (dietary approaches to stop hypertension) inactivate the cotransporter and whether this decreases BP. A transcriptomics screen identified Ppp1Ca, encoding PP1A, as a potassium-upregulated gene, and its negative regulator Ppp1r1a, as a potassium-suppressed gene in the kidney. PP1A directly binds to and dephosphorylates NCC when extracellular potassium is elevated. Using mice genetically engineered to constitutively activate the NCC-regulatory kinase SPAK and thereby eliminate the effects of the WNK/SPAK kinase cascade, we confirmed that PP1A dephosphorylated NCC directly in a potassium-regulated manner. Prior adaptation to a high-potassium diet was required to maximally dephosphorylate NCC and lower BP in constitutively active SPAK mice, and this was associated with potassium-dependent suppression of Ppp1r1a and dephosphorylation of its cognate protein, inhibitory subunit 1 (I1). In conclusion, potassium-dependent activation of PP1A and inhibition of I1 drove NCC dephosphorylation, providing a mechanism to explain how high dietary K+ lowers BP. Shifting signaling of PP1A in favor of activation of WNK/SPAK may provide an improved therapeutic approach for treating salt-sensitive hypertension.

Authors

P. Richard Grimm, Anamaria Tatomir, Lena L. Rosenbaek, Bo Young Kim, Dimin Li, Eric J. Delpire, Robert A. Fenton, Paul A. Welling

×

GLUT3 promotes macrophage signaling and function via RAS-mediated endocytosis in atopic dermatitis and wound healing
Dong-Min Yu, … , Jeffrey B. Cheng, Richard C. Wang
Dong-Min Yu, … , Jeffrey B. Cheng, Richard C. Wang
Published September 18, 2023
Citation Information: J Clin Invest. 2023;133(21):e170706. https://doi.org/10.1172/JCI170706.
View: Text | PDF

GLUT3 promotes macrophage signaling and function via RAS-mediated endocytosis in atopic dermatitis and wound healing

  • Text
  • PDF
Abstract

The facilitative GLUT1 and GLUT3 hexose transporters are expressed abundantly in macrophages, but whether they have distinct functions remains unclear. We confirmed that GLUT1 expression increased after M1 polarization stimuli and found that GLUT3 expression increased after M2 stimulation in macrophages. Conditional deletion of Glut3 (LysM-Cre Glut3fl/fl) impaired M2 polarization of bone marrow–derived macrophages. Alternatively activated macrophages from the skin of patients with atopic dermatitis showed increased GLUT3 expression, and a calcipotriol-induced model of atopic dermatitis was rescued in LysM-Cre Glut3fl/fl mice. M2-like macrophages expressed GLUT3 in human wound tissues as assessed by transcriptomics and costaining, and GLUT3 expression was significantly decreased in nonhealing, compared with healing, diabetic foot ulcers. In an excisional wound healing model, LysM-Cre Glut3fl/fl mice showed significantly impaired M2 macrophage polarization and delayed wound healing. GLUT3 promoted IL-4/STAT6 signaling, independently of its glucose transport activity. Unlike plasma membrane–localized GLUT1, GLUT3 was localized primarily to endosomes and was required for the efficient endocytosis of IL-4Rα subunits. GLUT3 interacted directly with GTP-bound RAS in vitro and in vivo through its intracytoplasmic loop domain, and this interaction was required for efficient STAT6 activation and M2 polarization. PAK activation and macropinocytosis were also impaired without GLUT3, suggesting broader roles for GLUT3 in the regulation of endocytosis. Thus, GLUT3 is required for efficient alternative macrophage polarization and function, through a glucose transport–independent, RAS-mediated role in the regulation of endocytosis and IL-4/STAT6 activation.

Authors

Dong-Min Yu, Jiawei Zhao, Eunice E. Lee, Dohun Kim, Ruchika Mahapatra, Elysha K. Rose, Zhiwei Zhou, Calvin Hosler, Abdullah El Kurdi, Jun-Yong Choe, E. Dale Abel, Gerta Hoxhaj, Kenneth D. Westover, Raymond J. Cho, Jeffrey B. Cheng, Richard C. Wang

×

Theranostic gold-in-gold cage nanoparticles enable photothermal ablation and photoacoustic imaging in biofilm-associated infection models
Maryam Hajfathalian, … , Hyun Koo, David P. Cormode
Maryam Hajfathalian, … , Hyun Koo, David P. Cormode
Published August 31, 2023
Citation Information: J Clin Invest. 2023;133(21):e168485. https://doi.org/10.1172/JCI168485.
View: Text | PDF

Theranostic gold-in-gold cage nanoparticles enable photothermal ablation and photoacoustic imaging in biofilm-associated infection models

  • Text
  • PDF
Abstract

Biofilms are structured communities of microbial cells embedded in a self-produced matrix of extracellular polymeric substances. Biofilms are associated with many health issues in humans, including chronic wound infections and tooth decay. Current antimicrobials are often incapable of disrupting the polymeric biofilm matrix and reaching the bacteria within. Alternative approaches are needed. Here, we described a complex structure of a dextran-coated gold-in-gold cage nanoparticle that enabled photoacoustic and photothermal properties for biofilm detection and treatment. Activation of these nanoparticles with a near infrared laser could selectively detect and kill biofilm bacteria with precise spatial control and in a short timeframe. We observed a strong biocidal effect against both Streptococcus mutans and Staphylococcus aureus biofilms in mouse models of oral plaque and wound infections, respectively. These effects were over 100 times greater than those seen with chlorhexidine, a conventional antimicrobial agent. Moreover, this approach did not adversely affect surrounding tissues. We concluded that photothermal ablation using theranostic nanoparticles is a rapid, precise, and nontoxic method to detect and treat biofilm-associated infections.

Authors

Maryam Hajfathalian, Christiaan R. de Vries, Jessica C. Hsu, Ahmad Amirshaghaghi, Yuxi C. Dong, Zhi Ren, Yuan Liu, Yue Huang, Yong Li, Simon A.B. Knight, Pallavi Jonnalagadda, Aimen Zlitni, Elizabeth A. Grice, Paul L. Bollyky, Hyun Koo, David P. Cormode

×

Heterogeneity in allospecific T cell function in transplant-tolerant hosts determines susceptibility to rejection following infection
Christine M. McIntosh, … , Anita S. Chong, Maria-Luisa Alegre
Christine M. McIntosh, … , Anita S. Chong, Maria-Luisa Alegre
Published September 7, 2023
Citation Information: J Clin Invest. 2023;133(21):e168465. https://doi.org/10.1172/JCI168465.
View: Text | PDF

Heterogeneity in allospecific T cell function in transplant-tolerant hosts determines susceptibility to rejection following infection

  • Text
  • PDF
Abstract

Even when successfully induced, immunological tolerance to solid organs remains vulnerable to inflammatory insults, which can trigger rejection. In a mouse model of cardiac allograft tolerance in which infection with Listeria monocytogenes (Lm) precipitates rejection of previously accepted grafts, we showed that recipient CD4+ TCR75 cells reactive to a donor MHC class I–derived peptide become hypofunctional if the allograft is accepted for more than 3 weeks. Paradoxically, infection-induced transplant rejection was not associated with transcriptional or functional reinvigoration of TCR75 cells. We hypothesized that there is heterogeneity in the level of dysfunction of different allospecific T cells, depending on duration of their cognate antigen expression. Unlike CD4+ TCR75 cells, CD4+ TEa cells specific for a peptide derived from donor MHC class II, an alloantigen whose expression declines after transplantation but remains inducible in settings of inflammation, retained function in tolerant mice and expanded during Lm-induced rejection. Repeated injections of alloantigens drove hypofunction in TEa cells and rendered grafts resistant to Lm-dependent rejection. Our results uncover a functional heterogeneity in allospecific T cells of distinct specificities after tolerance induction and reveal a strategy to defunctionalize a greater repertoire of allospecific T cells, thereby mitigating a critical vulnerability of tolerance.

Authors

Christine M. McIntosh, Jennifer B. Allocco, Peter Wang, Michelle L. McKeague, Alexandra Cassano, Ying Wang, Stephen Z. Xie, Grace Hynes, Ricardo Mora-Cartín, Domenic Abbondanza, Luqiu Chen, Husain Sattar, Dengping Yin, Zheng J. Zhang, Anita S. Chong, Maria-Luisa Alegre

×

Multiscale genetic architecture of donor-recipient differences reveals intronic LIMS1 mismatches associated with kidney transplant survival
Zeguo Sun, … , Peter S. Heeger, Madhav C. Menon
Zeguo Sun, … , Peter S. Heeger, Madhav C. Menon
Published September 7, 2023
Citation Information: J Clin Invest. 2023;133(21):e170420. https://doi.org/10.1172/JCI170420.
View: Text | PDF

Multiscale genetic architecture of donor-recipient differences reveals intronic LIMS1 mismatches associated with kidney transplant survival

  • Text
  • PDF
Abstract

Donor-recipient (D-R) mismatches outside of human leukocyte antigens (HLAs) contribute to kidney allograft loss, but the mechanisms remain unclear, specifically for intronic mismatches. We quantified non-HLA mismatches at variant-, gene-, and genome-wide scales from single nucleotide polymorphism (SNP) data of D-Rs from 2 well-phenotyped transplant cohorts: Genomics of Chronic Allograft Rejection (GoCAR; n = 385) and Clinical Trials in Organ Transplantation-01/17 (CTOT-01/17; n = 146). Unbiased gene-level screening in GoCAR uncovered the LIMS1 locus as the top-ranked gene where D-R mismatches associated with death-censored graft loss (DCGL). A previously unreported, intronic, LIMS1 haplotype of 30 SNPs independently associated with DCGL in both cohorts. Haplotype mismatches showed a dosage effect, and minor-allele introduction to major-allele-carrying recipients showed greater hazard of DCGL. The LIMS1 haplotype and the previously reported LIMS1 SNP rs893403 are expression quantitative trait loci (eQTL) in immune cells for GCC2 (not LIMS1), which encodes a protein involved in mannose-6-phosphase receptor (M6PR) recycling. Peripheral blood and T cell transcriptome analyses associated the GCC2 gene and LIMS1 SNPs with the TGF-β1/SMAD pathway, suggesting a regulatory effect. In vitro GCC2 modulation impacted M6PR-dependent regulation of active TGF-β1 and downstream signaling in T cells. Together, our data link LIMS1 locus D-R mismatches to DCGL via GCC2 eQTLs that modulate TGF-β1–dependent effects on T cells.

Authors

Zeguo Sun, Zhongyang Zhang, Khadija Banu, Ian W. Gibson, Robert B. Colvin, Zhengzi Yi, Weijia Zhang, Bony De Kumar, Anand Reghuvaran, John Pell, Thomas D. Manes, Arjang Djamali, Lorenzo Gallon, Philip J. O’Connell, John Cijiang He, Jordan S. Pober, Peter S. Heeger, Madhav C. Menon

×

PLK1 inhibition dampens NLRP3 inflammasome–elicited response in inflammatory disease models
Marta Baldrighi, … , Ziad Mallat, Xuan Li
Marta Baldrighi, … , Ziad Mallat, Xuan Li
Published September 12, 2023
Citation Information: J Clin Invest. 2023;133(21):e162129. https://doi.org/10.1172/JCI162129.
View: Text | PDF

PLK1 inhibition dampens NLRP3 inflammasome–elicited response in inflammatory disease models

  • Text
  • PDF
Abstract

Unabated activation of the NLR family pyrin domain–containing 3 (NLRP3) inflammasome is linked with the pathogenesis of various inflammatory disorders. Polo-like kinase 1 (PLK1) has been widely studied for its role in mitosis. Here, using both pharmacological and genetic approaches, we demonstrate that PLK1 promoted NLRP3 inflammasome activation at cell interphase. Using an unbiased proximity-dependent biotin identification (Bio-ID) screen for the PLK1 interactome in macrophages, we show an enhanced proximal association of NLRP3 with PLK1 upon NLRP3 inflammasome activation. We further confirmed the interaction between PLK1 and NLRP3 and identified the interacting domains. Mechanistically, we show that PLK1 orchestrated the microtubule-organizing center (MTOC) structure and NLRP3 subcellular positioning upon inflammasome activation. Treatment with a selective PLK1 kinase inhibitor suppressed IL-1β production in in vivo inflammatory models, including LPS-induced endotoxemia and monosodium urate–induced peritonitis in mice. Our results uncover a role of PLK1 in regulating NLRP3 inflammasome activation during interphase and identify pharmacological inhibition of PLK1 as a potential therapeutic strategy for inflammatory diseases with excessive NLRP3 inflammasome activation.

Authors

Marta Baldrighi, Christian Doreth, Yang Li, Xiaohui Zhao, Emily Warner, Hannah Chenoweth, Kamal Kishore, Yagnesh Umrania, David-Paul Minde, Sarah Thome, Xian Yu, Yuning Lu, Alice Knapton, James Harrison, Murray Clarke, Eicke Latz, Guillermo de Cárcer, Marcos Malumbres, Bernhard Ryffel, Clare Bryant, Jinping Liu, Kathryn S. Lilley, Ziad Mallat, Xuan Li

×

Targeting TREM1 augments antitumor T cell immunity by inhibiting myeloid-derived suppressor cells and restraining anti–PD-1 resistance
Ashwin Ajith, … , Giorgio Trinchieri, Anatolij Horuzsko
Ashwin Ajith, … , Giorgio Trinchieri, Anatolij Horuzsko
Published August 31, 2023
Citation Information: J Clin Invest. 2023;133(21):e167951. https://doi.org/10.1172/JCI167951.
View: Text | PDF

Targeting TREM1 augments antitumor T cell immunity by inhibiting myeloid-derived suppressor cells and restraining anti–PD-1 resistance

  • Text
  • PDF
Abstract

The triggering receptor expressed on myeloid cell 1 (TREM1) plays a critical role in development of chronic inflammatory disorders and the inflamed tumor microenvironment (TME) associated with most solid tumors. We examined whether loss of TREM1 signaling can abrogate the immunosuppressive TME and enhance cancer immunity. To investigate the therapeutic potential of TREM1 in cancer, we used mice deficient in Trem1 and developed a novel small molecule TREM1 inhibitor, VJDT. We demonstrated that genetic or pharmacological TREM1 silencing significantly delayed tumor growth in murine melanoma (B16F10) and fibrosarcoma (MCA205) models. Single-cell RNA-Seq combined with functional assays during TREM1 deficiency revealed decreased immunosuppressive capacity of myeloid-derived suppressor cells (MDSCs) accompanied by expansion in cytotoxic CD8+ T cells and increased PD-1 expression. Furthermore, TREM1 inhibition enhanced the antitumorigenic effect of anti-PD-1 treatment, in part, by limiting MDSC frequency and abrogating T cell exhaustion. In patient-derived melanoma xenograft tumors, treatment with VJDT downregulated key oncogenic signaling pathways involved in cell proliferation, migration, and survival. Our work highlights the role of TREM1 in cancer progression, both intrinsically expressed in cancer cells and extrinsically in the TME. Thus, targeting TREM1 to modify an immunosuppressive TME and improve efficacy of immune checkpoint therapy represents what we believe to be a promising therapeutic approach to cancer.

Authors

Ashwin Ajith, Kenza Mamouni, Daniel D. Horuzsko, Abu Musa, Amiran K. Dzutsev, Jennifer R. Fang, Ahmed Chadli, Xingguo Zhu, Iryna Lebedyeva, Giorgio Trinchieri, Anatolij Horuzsko

×
  • ← Previous
  • 1
  • 2
  • …
  • 67
  • 68
  • 69
  • …
  • 2555
  • 2556
  • Next →

No posts were found with this tag.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts