Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • ASCI Milestone Awards
    • Video Abstracts
    • Conversations with Giants in Medicine
  • Reviews
    • View all reviews ...
    • Clinical innovation and scientific progress in GLP-1 medicine (Nov 2025)
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • ASCI Milestone Awards
  • Video Abstracts
  • Conversations with Giants in Medicine
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Research Article

  • 25,754 Articles
  • 0 Posts
  • ← Previous
  • 1
  • 2
  • …
  • 216
  • 217
  • 218
  • …
  • 2575
  • 2576
  • Next →
Hotspot SF3B1 mutations induce metabolic reprogramming and vulnerability to serine deprivation
W. Brian Dalton, Eric Helmenstine, Noel Walsh, Lukasz P. Gondek, Dhanashree S. Kelkar, Abigail Read, Rachael Natrajan, Eric S. Christenson, Barbara Roman, Samarjit Das, Liang Zhao, Robert D. Leone, Daniel Shinn, Taylor Groginski, Anil K. Madugundu, Arun Patil, Daniel J. Zabransky, Arielle Medford, Justin Lee, Alex J. Cole, Marc Rosen, Maya Thakar, Alexander Ambinder, Joshua Donaldson, Amy E. DeZern, Karen Cravero, David Chu, Rafael Madero-Marroquin, Akhilesh Pandey, Paula J. Hurley, Josh Lauring, Ben Ho Park
W. Brian Dalton, Eric Helmenstine, Noel Walsh, Lukasz P. Gondek, Dhanashree S. Kelkar, Abigail Read, Rachael Natrajan, Eric S. Christenson, Barbara Roman, Samarjit Das, Liang Zhao, Robert D. Leone, Daniel Shinn, Taylor Groginski, Anil K. Madugundu, Arun Patil, Daniel J. Zabransky, Arielle Medford, Justin Lee, Alex J. Cole, Marc Rosen, Maya Thakar, Alexander Ambinder, Joshua Donaldson, Amy E. DeZern, Karen Cravero, David Chu, Rafael Madero-Marroquin, Akhilesh Pandey, Paula J. Hurley, Josh Lauring, Ben Ho Park
View: Text | PDF

Hotspot SF3B1 mutations induce metabolic reprogramming and vulnerability to serine deprivation

  • Text
  • PDF
Abstract

Cancer-associated mutations in the spliceosome gene SF3B1 create a neomorphic protein that produces aberrant mRNA splicing in hundreds of genes, but the ensuing biologic and therapeutic consequences of this missplicing are not well understood. Here we have provided evidence that aberrant splicing by mutant SF3B1 altered the transcriptome, proteome, and metabolome of human cells, leading to missplicing-associated downregulation of metabolic genes, decreased mitochondrial respiration, and suppression of the serine synthesis pathway. We also found that mutant SF3B1 induces vulnerability to deprivation of the nonessential amino acid serine, which was mediated by missplicing-associated downregulation of the serine synthesis pathway enzyme PHGDH. This vulnerability was manifest both in vitro and in vivo, as dietary restriction of serine and glycine in mice was able to inhibit the growth of SF3B1MUT xenografts. These findings describe a role for SF3B1 mutations in altered energy metabolism, and they offer a new therapeutic strategy against SF3B1MUT cancers.

Authors

W. Brian Dalton, Eric Helmenstine, Noel Walsh, Lukasz P. Gondek, Dhanashree S. Kelkar, Abigail Read, Rachael Natrajan, Eric S. Christenson, Barbara Roman, Samarjit Das, Liang Zhao, Robert D. Leone, Daniel Shinn, Taylor Groginski, Anil K. Madugundu, Arun Patil, Daniel J. Zabransky, Arielle Medford, Justin Lee, Alex J. Cole, Marc Rosen, Maya Thakar, Alexander Ambinder, Joshua Donaldson, Amy E. DeZern, Karen Cravero, David Chu, Rafael Madero-Marroquin, Akhilesh Pandey, Paula J. Hurley, Josh Lauring, Ben Ho Park

×

JMJD3 regulates CD4+ T cell trafficking by targeting actin cytoskeleton regulatory gene Pdlim4
Chuntang Fu, Qingtian Li, Jia Zou, Changsheng Xing, Mei Luo, Bingnan Yin, Junjun Chu, Jiaming Yu, Xin Liu, Helen Y. Wang, Rong-Fu Wang
Chuntang Fu, Qingtian Li, Jia Zou, Changsheng Xing, Mei Luo, Bingnan Yin, Junjun Chu, Jiaming Yu, Xin Liu, Helen Y. Wang, Rong-Fu Wang
View: Text | PDF

JMJD3 regulates CD4+ T cell trafficking by targeting actin cytoskeleton regulatory gene Pdlim4

  • Text
  • PDF
Abstract

Histone H3K27 demethylase JMJD3 plays a critical role in gene expression and T cell differentiation. However, the role and mechanisms of JMJD3 in T cell trafficking remain poorly understood. Here, we show that JMJD3 deficiency in CD4+ T cells resulted in an accumulation of T cells in the thymus and reduction of T cell number in the secondary lymphoid organs. We identified PDLIM4 as a significantly downregulated target gene in JMJD3-deficient CD4+ T cells by gene profiling and ChIP-Seq analyses. We further showed that PDLIM4 functioned as an adaptor protein to interact with sphingosine-1 phosphate receptor 1 (S1P1) and filamentous actin (F-actin), thus serving as a key regulator of T cell trafficking. Mechanistically, JMJD3 bound to the promoter and gene-body regions of the Pdlim4 gene and regulated its expression by interacting with zinc finger transcription factor KLF2. Our findings have identified Pdlim4 as a JMJD3 target gene that affects T cell trafficking by cooperating with S1P1 and have provided insights into the molecular mechanisms by which JMJD3 regulates genes involved in T cell trafficking.

Authors

Chuntang Fu, Qingtian Li, Jia Zou, Changsheng Xing, Mei Luo, Bingnan Yin, Junjun Chu, Jiaming Yu, Xin Liu, Helen Y. Wang, Rong-Fu Wang

×

IFN-γ drives inflammatory bowel disease pathogenesis through VE-cadherin–directed vascular barrier disruption
Victoria Langer, Eugenia Vivi, Daniela Regensburger, Thomas H. Winkler, Maximilian J. Waldner, Timo Rath, Benjamin Schmid, Lisa Skottke, Somin Lee, Noo Li Jeon, Thomas Wohlfahrt, Viktoria Kramer, Philipp Tripal, Michael Schumann, Stephan Kersting, Claudia Handtrack, Carol I. Geppert, Karina Suchowski, Ralf H. Adams, Christoph Becker, Andreas Ramming, Elisabeth Naschberger, Nathalie Britzen-Laurent, Michael Stürzl
Victoria Langer, Eugenia Vivi, Daniela Regensburger, Thomas H. Winkler, Maximilian J. Waldner, Timo Rath, Benjamin Schmid, Lisa Skottke, Somin Lee, Noo Li Jeon, Thomas Wohlfahrt, Viktoria Kramer, Philipp Tripal, Michael Schumann, Stephan Kersting, Claudia Handtrack, Carol I. Geppert, Karina Suchowski, Ralf H. Adams, Christoph Becker, Andreas Ramming, Elisabeth Naschberger, Nathalie Britzen-Laurent, Michael Stürzl
View: Text | PDF

IFN-γ drives inflammatory bowel disease pathogenesis through VE-cadherin–directed vascular barrier disruption

  • Text
  • PDF
Abstract

Inflammatory bowel disease (IBD) is a chronic inflammatory disorder with rising incidence. Diseased tissues are heavily vascularized. Surprisingly, the pathogenic impact of the vasculature in IBD and the underlying regulatory mechanisms remain largely unknown. IFN-γ is a major cytokine in IBD pathogenesis, but in the context of the disease, it is almost exclusively its immune-modulatory and epithelial cell–directed functions that have been considered. Recent studies by our group demonstrated that IFN-γ also exerts potent effects on blood vessels. Based on these considerations, we analyzed the vessel-directed pathogenic functions of IFN-γ and found that it drives IBD pathogenesis through vascular barrier disruption. Specifically, we show that inhibition of the IFN-γ response in vessels by endothelial-specific knockout of IFN-γ receptor 2 ameliorates experimentally induced colitis in mice. IFN-γ acts pathogenic by causing a breakdown of the vascular barrier through disruption of the adherens junction protein VE-cadherin. Notably, intestinal vascular barrier dysfunction was also confirmed in human IBD patients, supporting the clinical relevance of our findings. Treatment with imatinib restored VE-cadherin/adherens junctions, inhibited vascular permeability, and significantly reduced colonic inflammation in experimental colitis. Our findings inaugurate the pathogenic impact of IFN-γ–mediated intestinal vessel activation in IBD and open new avenues for vascular-directed treatment of this disease.

Authors

Victoria Langer, Eugenia Vivi, Daniela Regensburger, Thomas H. Winkler, Maximilian J. Waldner, Timo Rath, Benjamin Schmid, Lisa Skottke, Somin Lee, Noo Li Jeon, Thomas Wohlfahrt, Viktoria Kramer, Philipp Tripal, Michael Schumann, Stephan Kersting, Claudia Handtrack, Carol I. Geppert, Karina Suchowski, Ralf H. Adams, Christoph Becker, Andreas Ramming, Elisabeth Naschberger, Nathalie Britzen-Laurent, Michael Stürzl

×

FOXN1 compound heterozygous mutations cause selective thymic hypoplasia in humans
Qiumei Du, Larry K. Huynh, Fatma Coskun, Erika Molina, Matthew A. King, Prithvi Raj, Shaheen Khan, Igor Dozmorov, Christine M. Seroogy, Christian A. Wysocki, Grace T. Padron, Tyler R. Yates, M. Louise Markert, M. Teresa de la Morena, Nicolai S.C. van Oers
Qiumei Du, Larry K. Huynh, Fatma Coskun, Erika Molina, Matthew A. King, Prithvi Raj, Shaheen Khan, Igor Dozmorov, Christine M. Seroogy, Christian A. Wysocki, Grace T. Padron, Tyler R. Yates, M. Louise Markert, M. Teresa de la Morena, Nicolai S.C. van Oers
View: Text | PDF

FOXN1 compound heterozygous mutations cause selective thymic hypoplasia in humans

  • Text
  • PDF
Abstract

We report on 2 patients with compound heterozygous mutations in forkhead box N1 (FOXN1), a transcription factor essential for thymic epithelial cell (TEC) differentiation. TECs are critical for T cell development. Both patients had a presentation consistent with T–/loB+NK+ SCID, with normal hair and nails, distinct from the classic nude/SCID phenotype in individuals with autosomal-recessive FOXN1 mutations. To understand the basis of this phenotype and the effects of the mutations on FOXN1, we generated mice using CRISPR-Cas9 technology to genocopy mutations in 1 of the patients. The mice with the Foxn1 compound heterozygous mutations had thymic hypoplasia, causing a T–B+NK+ SCID phenotype, whereas the hair and nails of these mice were normal. Characterization of the functional changes due to the Foxn1 mutations revealed a 5–amino acid segment at the end of the DNA-binding domain essential for the development of TECs but not keratinocytes. The transcriptional activity of this Foxn1 mutant was partly retained, indicating a region that specifies TEC functions. Analysis of an additional 9 FOXN1 mutations identified in multiple unrelated patients revealed distinct functional consequences contingent on the impact of the mutation on the DNA-binding and transactivation domains of FOXN1.

Authors

Qiumei Du, Larry K. Huynh, Fatma Coskun, Erika Molina, Matthew A. King, Prithvi Raj, Shaheen Khan, Igor Dozmorov, Christine M. Seroogy, Christian A. Wysocki, Grace T. Padron, Tyler R. Yates, M. Louise Markert, M. Teresa de la Morena, Nicolai S.C. van Oers

×

Early adaptive immune activation detected in monozygotic twins with prodromal multiple sclerosis
Eduardo Beltrán, Lisa Ann Gerdes, Julia Hansen, Andrea Flierl-Hecht, Stefan Krebs, Helmut Blum, Birgit Ertl-Wagner, Frederik Barkhof, Tania Kümpfel, Reinhard Hohlfeld, Klaus Dornmair
Eduardo Beltrán, Lisa Ann Gerdes, Julia Hansen, Andrea Flierl-Hecht, Stefan Krebs, Helmut Blum, Birgit Ertl-Wagner, Frederik Barkhof, Tania Kümpfel, Reinhard Hohlfeld, Klaus Dornmair
View: Text | PDF

Early adaptive immune activation detected in monozygotic twins with prodromal multiple sclerosis

  • Text
  • PDF
Abstract

Multiple sclerosis (MS) is a disabling disease of the CNS. Inflammatory features of MS include lymphocyte accumulations in the CNS and cerebrospinal fluid (CSF). The preclinical events leading to established MS are still enigmatic. Here we compared gene expression patterns of CSF cells from MS-discordant monozygotic twin pairs. Six “healthy” co-twins, who carry a maximal familial risk for developing MS, showed subclinical neuroinflammation (SCNI) with small MRI lesions. Four of these subjects had oligoclonal bands (OCBs). By single-cell RNA sequencing of 2752 CSF cells, we identified clonally expanded CD8+ T cells, plasmablasts, and, to a lesser extent, CD4+ T cells not only from MS patients but also from subjects with SCNI. In contrast to nonexpanded T cells, clonally expanded T cells showed characteristics of activated tissue-resident memory T (TRM) cells. The TRM-like phenotype was detectable already in cells from SCNI subjects but more pronounced in cells from patients with definite MS. Expanded plasmablast clones were detected only in MS and SCNI subjects with OCBs. Our data provide evidence for very early concomitant activation of 3 components of the adaptive immune system in MS, with a notable contribution of clonally expanded TRM-like CD8+ cells.

Authors

Eduardo Beltrán, Lisa Ann Gerdes, Julia Hansen, Andrea Flierl-Hecht, Stefan Krebs, Helmut Blum, Birgit Ertl-Wagner, Frederik Barkhof, Tania Kümpfel, Reinhard Hohlfeld, Klaus Dornmair

×

HIV-1 in lymph nodes is maintained by cellular proliferation during antiretroviral therapy
William R. McManus, Michael J. Bale, Jonathan Spindler, Ann Wiegand, Andrew Musick, Sean C. Patro, Michele D. Sobolewski, Victoria K. Musick, Elizabeth M. Anderson, Joshua C. Cyktor, Elias K. Halvas, Wei Shao, Daria Wells, Xiaolin Wu, Brandon F. Keele, Jeffrey M. Milush, Rebecca Hoh, John W. Mellors, Stephen H. Hughes, Steven G. Deeks, John M. Coffin, Mary F. Kearney
William R. McManus, Michael J. Bale, Jonathan Spindler, Ann Wiegand, Andrew Musick, Sean C. Patro, Michele D. Sobolewski, Victoria K. Musick, Elizabeth M. Anderson, Joshua C. Cyktor, Elias K. Halvas, Wei Shao, Daria Wells, Xiaolin Wu, Brandon F. Keele, Jeffrey M. Milush, Rebecca Hoh, John W. Mellors, Stephen H. Hughes, Steven G. Deeks, John M. Coffin, Mary F. Kearney
View: Text | PDF

HIV-1 in lymph nodes is maintained by cellular proliferation during antiretroviral therapy

  • Text
  • PDF
Abstract

To investigate the possibility that HIV-1 replication in lymph nodes sustains the reservoir during antiretroviral therapy (ART), we looked for evidence of viral replication in 5 donors after up to 13 years of viral suppression. We characterized proviral populations in lymph nodes and peripheral blood before and during ART, evaluated the levels of viral RNA expression in single lymph node and blood cells, and characterized the proviral integration sites in paired lymph node and blood samples. Proviruses with identical sequences, identical integration sites, and similar levels of RNA expression were found in lymph nodes and blood samples collected during ART, and no single sequence with significant divergence from the pretherapy population was detected in either blood or lymph nodes. These findings show that all detectable persistent HIV-1 infection is consistent with maintenance in lymph nodes by clonal proliferation of cells infected before ART and not by ongoing viral replication during ART.

Authors

William R. McManus, Michael J. Bale, Jonathan Spindler, Ann Wiegand, Andrew Musick, Sean C. Patro, Michele D. Sobolewski, Victoria K. Musick, Elizabeth M. Anderson, Joshua C. Cyktor, Elias K. Halvas, Wei Shao, Daria Wells, Xiaolin Wu, Brandon F. Keele, Jeffrey M. Milush, Rebecca Hoh, John W. Mellors, Stephen H. Hughes, Steven G. Deeks, John M. Coffin, Mary F. Kearney

×

Stromal integrin α11 regulates PDGFRβ signaling and promotes breast cancer progression
Irina Primac, Erik Maquoi, Silvia Blacher, Ritva Heljasvaara, Jan Van Deun, Hilde Y.H. Smeland, Annalisa Canale, Thomas Louis, Linda Stuhr, Nor Eddine Sounni, Didier Cataldo, Taina Pihlajaniemi, Christel Pequeux, Olivier De Wever, Donald Gullberg, Agnès Noel
Irina Primac, Erik Maquoi, Silvia Blacher, Ritva Heljasvaara, Jan Van Deun, Hilde Y.H. Smeland, Annalisa Canale, Thomas Louis, Linda Stuhr, Nor Eddine Sounni, Didier Cataldo, Taina Pihlajaniemi, Christel Pequeux, Olivier De Wever, Donald Gullberg, Agnès Noel
View: Text | PDF

Stromal integrin α11 regulates PDGFRβ signaling and promotes breast cancer progression

  • Text
  • PDF
Abstract

Cancer-associated fibroblasts (CAFs) are key actors in modulating the progression of many solid tumors, such as breast cancer (BC). Herein, we identify an integrin α11/PDGFRβ–positive CAF subset displaying tumor-promoting features in BC. In the preclinical MMTV-PyMT mouse model, integrin α11 deficiency led to a drastic reduction of tumor progression and metastasis. A clear association between integrin α11 and PDGFRβ was found at both transcriptional and histological levels in BC specimens. High stromal integrin α11/PDGFRβ expression was associated with high grades and poorer clinical outcome in human BC patients. Functional assays using 5 CAF subpopulations (1 murine, 4 human) revealed that integrin α11 promotes CAF invasion and CAF-induced tumor cell invasion upon PDGF-BB stimulation. Mechanistically, the proinvasive activity of integrin α11 relies on its ability to interact with PDGFRβ in a ligand-dependent manner and to promote its downstream JNK activation, leading to the production of tenascin C, a proinvasive matricellular protein. Pharmacological inhibition of PDGFRβ and JNK impaired tumor cell invasion induced by integrin α11+ CAFs. Collectively, our study uncovers an integrin α11+ subset of protumoral CAFs that exploits the PDGFRβ/JNK signaling axis to promote tumor invasiveness in BC.

Authors

Irina Primac, Erik Maquoi, Silvia Blacher, Ritva Heljasvaara, Jan Van Deun, Hilde Y.H. Smeland, Annalisa Canale, Thomas Louis, Linda Stuhr, Nor Eddine Sounni, Didier Cataldo, Taina Pihlajaniemi, Christel Pequeux, Olivier De Wever, Donald Gullberg, Agnès Noel

×

Angiopoietin-like 4 binds neuropilins and cooperates with VEGF to induce diabetic macular edema
Akrit Sodhi, Tao Ma, Deepak Menon, Monika Deshpande, Kathleen Jee, Aumreetam Dinabandhu, Jordan Vancel, Daoyuan Lu, Silvia Montaner
Akrit Sodhi, Tao Ma, Deepak Menon, Monika Deshpande, Kathleen Jee, Aumreetam Dinabandhu, Jordan Vancel, Daoyuan Lu, Silvia Montaner
View: Text | PDF

Angiopoietin-like 4 binds neuropilins and cooperates with VEGF to induce diabetic macular edema

  • Text
  • PDF
Abstract

The majority of patients with diabetic macular edema (DME), the most common cause of vision loss in working-age Americans, do not respond adequately to current therapies targeting VEGFA. Here, we show that expression of angiopoietin-like 4 (ANGPTL4), a HIF-1–regulated gene product, is increased in the eyes of diabetic mice and patients with DME. We observed that ANGPTL4 and VEGF act synergistically to destabilize the retinal vascular barrier. Interestingly, while ANGPTL4 modestly enhanced tyrosine phosphorylation of VEGF receptor 2, promotion of vascular permeability by ANGPTL4 was independent of this receptor. Instead, we found that ANGPTL4 binds directly to neuropilin 1 (NRP1) and NRP2 on endothelial cells (ECs), leading to rapid activation of the RhoA/ROCK signaling pathway and breakdown of EC-EC junctions. Treatment with a soluble fragment of NRP1 (sNRP1) prevented ANGPTL4 from binding to NRP1 and blocked ANGPTL4-induced activation of RhoA as well as EC permeability in vitro and retinal vascular leakage in diabetic animals in vivo. In addition, sNRP1 reduced the stimulation of EC permeability by aqueous fluid from patients with DME. Collectively, these data identify the ANGPTL4/NRP/RhoA pathway as a therapeutic target for the treatment of DME.

Authors

Akrit Sodhi, Tao Ma, Deepak Menon, Monika Deshpande, Kathleen Jee, Aumreetam Dinabandhu, Jordan Vancel, Daoyuan Lu, Silvia Montaner

×

Recombinant annexin A6 promotes membrane repair and protects against muscle injury
Alexis R. Demonbreun, Katherine S. Fallon, Claire C. Oosterbaan, Elena Bogdanovic, James L. Warner, Jordan J. Sell, Patrick G. Page, Mattia Quattrocelli, David Y. Barefield, Elizabeth M. McNally
Alexis R. Demonbreun, Katherine S. Fallon, Claire C. Oosterbaan, Elena Bogdanovic, James L. Warner, Jordan J. Sell, Patrick G. Page, Mattia Quattrocelli, David Y. Barefield, Elizabeth M. McNally
View: Text | PDF

Recombinant annexin A6 promotes membrane repair and protects against muscle injury

  • Text
  • PDF
Abstract

Membrane repair is essential to cell survival. In skeletal muscle, injury often associates with plasma membrane disruption. Additionally, muscular dystrophy is linked to mutations in genes that produce fragile membranes or reduce membrane repair. Methods to enhance repair and reduce susceptibility to injury could benefit muscle in both acute and chronic injury settings. Annexins are a family of membrane-associated Ca2+-binding proteins implicated in repair, and annexin A6 was previously identified as a genetic modifier of muscle injury and disease. Annexin A6 forms the repair cap over the site of membrane disruption. To elucidate how annexins facilitate repair, we visualized annexin cap formation during injury. We found that annexin cap size positively correlated with increasing Ca2+ concentrations. We also found that annexin overexpression promoted external blebs enriched in Ca2+ and correlated with a reduction of intracellular Ca2+ at the injury site. Annexin A6 overexpression reduced membrane injury, consistent with enhanced repair. Treatment with recombinant annexin A6 protected against acute muscle injury in vitro and in vivo. Moreover, administration of recombinant annexin A6 in a model of muscular dystrophy reduced serum creatinine kinase, a biomarker of disease. These data identify annexins as mediators of membrane-associated Ca2+ release during membrane repair and annexin A6 as a therapeutic target to enhance membrane repair capacity.

Authors

Alexis R. Demonbreun, Katherine S. Fallon, Claire C. Oosterbaan, Elena Bogdanovic, James L. Warner, Jordan J. Sell, Patrick G. Page, Mattia Quattrocelli, David Y. Barefield, Elizabeth M. McNally

×

Peritoneal GATA6+ macrophages function as a portal for Staphylococcus aureus dissemination
Selina K. Jorch, Bas G.J. Surewaard, Mokarram Hossain, Moritz Peiseler, Carsten Deppermann, Jennifer Deng, Ania Bogoslowski, Fardau van der Wal, Abdelwahab Omri, Michael J. Hickey, Paul Kubes
Selina K. Jorch, Bas G.J. Surewaard, Mokarram Hossain, Moritz Peiseler, Carsten Deppermann, Jennifer Deng, Ania Bogoslowski, Fardau van der Wal, Abdelwahab Omri, Michael J. Hickey, Paul Kubes
View: Text | PDF

Peritoneal GATA6+ macrophages function as a portal for Staphylococcus aureus dissemination

  • Text
  • PDF
Abstract

Essentially all Staphylococcus aureus (S. aureus) bacteria that gain access to the circulation are plucked out of the bloodstream by the intravascular macrophages of the liver — the Kupffer cells. It is also thought that these bacteria are disseminated via the bloodstream to other organs. Our data show that S. aureus inside Kupffer cells grew and escaped across the mesothelium into the peritoneal cavity and immediately infected GATA-binding factor 6–positive (GATA6+) peritoneal cavity macrophages. These macrophages provided a haven for S. aureus, thereby delaying the neutrophilic response in the peritoneum by 48 hours and allowing dissemination to various peritoneal and retroperitoneal organs including the kidneys. In mice deficient in GATA6+ peritoneal macrophages, neutrophils infiltrated more robustly and reduced S. aureus dissemination. Antibiotics administered i.v. did not prevent dissemination into the peritoneum or to the kidneys, whereas peritoneal administration of vancomycin (particularly liposomal vancomycin with optimized intracellular penetrance capacity) reduced kidney infection and mortality, even when administered 24 hours after infection. These data indicate that GATA6+ macrophages within the peritoneal cavity are a conduit of dissemination for i.v. S. aureus, and changing the route of antibiotic delivery could provide a more effective treatment for patients with peritonitis-associated bacterial sepsis.

Authors

Selina K. Jorch, Bas G.J. Surewaard, Mokarram Hossain, Moritz Peiseler, Carsten Deppermann, Jennifer Deng, Ania Bogoslowski, Fardau van der Wal, Abdelwahab Omri, Michael J. Hickey, Paul Kubes

×
  • ← Previous
  • 1
  • 2
  • …
  • 216
  • 217
  • 218
  • …
  • 2575
  • 2576
  • Next →

No posts were found with this tag.

Advertisement

Copyright © 2026 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts