Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Research Article

  • 25,432 Articles
  • 0 Posts
  • ← Previous
  • 1
  • 2
  • …
  • 153
  • 154
  • 155
  • …
  • 2543
  • 2544
  • Next →
Impact of TREM2R47H variant on tau pathology–induced gliosis and neurodegeneration
Maud Gratuze, … , Jason D. Ulrich, David M. Holtzman
Maud Gratuze, … , Jason D. Ulrich, David M. Holtzman
Published June 16, 2020
Citation Information: J Clin Invest. 2020. https://doi.org/10.1172/JCI138179.
View: Text | PDF

Impact of TREM2R47H variant on tau pathology–induced gliosis and neurodegeneration

  • Text
  • PDF
Abstract

Alzheimer’s disease (AD) is characterized by plaques containing amyloid-β (Aβ) and neurofibrillary tangles composed of aggregated, hyperphosphorylated tau. Beyond tau and Aβ, evidence suggests that microglia play an important role in AD pathogenesis. Rare variants in the microglia-expressed triggering receptor expressed on myeloid cells 2 (TREM2) gene increase AD risk 2- to 4-fold. It is likely that these TREM2 variants increase AD risk by decreasing the response of microglia to Aβ and its local toxicity. However, neocortical Aβ pathology occurs many years before neocortical tau pathology in AD. Thus, it will be important to understand the role of TREM2 in the context of tauopathy. We investigated the impact of the AD-associated TREM2 variant (R47H) on tau-mediated neuropathology in the PS19 mouse model of tauopathy. We assessed PS19 mice expressing human TREM2CV (common variant) or human TREM2R47H. PS19-TREM2R47H mice had significantly attenuated brain atrophy and synapse loss versus PS19-TREM2CV mice. Gene expression analyses and CD68 immunostaining revealed attenuated microglial reactivity in PS19-TREM2R47H versus PS19-TREM2CV mice. There was also a decrease in phagocytosis of postsynaptic elements by microglia expressing TREM2R47H in the PS19 mice and in human AD brains. These findings suggest that impaired TREM2 signaling reduces microglia-mediated neurodegeneration in the setting of tauopathy.

Authors

Maud Gratuze, Cheryl E.G. Leyns, Andrew D. Sauerbeck, Marie-Kim St-Pierre, Monica Xiong, Nayeon Kim, Javier Remolina Serrano, Marie-Ève Tremblay, Terrance T. Kummer, Marco Colonna, Jason D. Ulrich, David M. Holtzman

×

Long noncoding RNA H19X is a key mediator of TGF-β–driven fibrosis
Elena Pachera, … , Mojca Frank-Bertoncelj, Oliver Distler
Elena Pachera, … , Mojca Frank-Bertoncelj, Oliver Distler
Published June 30, 2020
Citation Information: J Clin Invest. 2020. https://doi.org/10.1172/JCI135439.
View: Text | PDF

Long noncoding RNA H19X is a key mediator of TGF-β–driven fibrosis

  • Text
  • PDF
Abstract

TGF-β is a master regulator of fibrosis, driving the differentiation of fibroblasts into apoptosis-resistant myofibroblasts and sustaining the production of extracellular matrix (ECM) components. Here, we identified the nuclear long noncoding RNA (lncRNA) H19X as a master regulator of TGF-β–driven tissue fibrosis. H19X was consistently upregulated in a wide variety of human fibrotic tissues and diseases and was strongly induced by TGF-β, particularly in fibroblasts and fibroblast-related cells. Functional experiments following H19X silencing revealed that H19X was an obligatory factor for TGF-β–induced ECM synthesis as well as differentiation and survival of ECM-producing myofibroblasts. We showed that H19X regulates DDIT4L gene expression, specifically interacting with a region upstream of the DDIT4L gene and changing the chromatin accessibility of a DDIT4L enhancer. These events resulted in transcriptional repression of DDIT4L and, in turn, in increased collagen expression and fibrosis. Our results shed light on key effectors of TGF-β–induced ECM remodeling and fibrosis.

Authors

Elena Pachera, Shervin Assassi, Gloria A. Salazar, Mara Stellato, Florian Renoux, Adam Wunderlin, Przemyslaw Blyszczuk, Robert Lafyatis, Fina Kurreeman, Jeska de Vries-Bouwstra, Tobias Messemaker, Carol A. Feghali-Bostwick, Gerhard Rogler, Wouter T. van Haaften, Gerard Dijkstra, Fiona Oakley, Maurizio Calcagni, Janine Schniering, Britta Maurer, Jörg H.W. Distler, Gabriela Kania, Mojca Frank-Bertoncelj, Oliver Distler

×

Impaired hypocretin/orexin system alters responses to salient stimuli in obese male mice
Ying Tan, … , Tamas L. Horvath, Xiao-Bing Gao
Ying Tan, … , Tamas L. Horvath, Xiao-Bing Gao
Published June 9, 2020
Citation Information: J Clin Invest. 2020. https://doi.org/10.1172/JCI130889.
View: Text | PDF

Impaired hypocretin/orexin system alters responses to salient stimuli in obese male mice

  • Text
  • PDF
Abstract

The brain has evolved in an environment where food sources are scarce, and foraging for food is one of the major challenges for survival of the individual and species. Basic and clinical studies show that obesity or overnutrition leads to overwhelming changes in the brain in animals and humans. However, the exact mechanisms underlying the consequences of excessive energy intake are not well understood. Neurons expressing the neuropeptide hypocretin/orexin (Hcrt) in the lateral/perifonical hypothalamus (LH) are critical for homeostatic regulation, reward seeking, stress response, and cognitive functions. In this study, we examined adaptations in Hcrt cells regulating behavioral responses to salient stimuli in diet-induced obese mice. Our results demonstrated changes in primary cilia, synaptic transmission and plasticity, cellular responses to neurotransmitters necessary for reward seeking, and stress responses in Hcrt neurons from obese mice. Activities of neuronal networks in the LH and hippocampus were impaired as a result of decreased hypocretinergic function. The weakened Hcrt system decreased reward seeking while altering responses to acute stress (stress-coping strategy), which were reversed by selectively activating Hcrt cells with chemogenetics. Taken together, our data suggest that a deficiency in Hcrt signaling may be a common cause of behavioral changes (such as lowered arousal, weakened reward seeking, and altered stress response) in obese animals.

Authors

Ying Tan, Fu Hang, Zhong-Wu Liu, Milan Stoiljkovic, Mingxing Wu, Yue Tu, Wenfei Han, Angela M. Lee, Craig Kelley, Mihály Hajós, Lingeng Lu, Luis de Lecea, Ivan De Araujo, Marina R. Picciotto, Tamas L. Horvath, Xiao-Bing Gao

×

12(S)-HETE mediates diabetes-induced endothelial dysfunction by activating intracellular endothelial cell TRPV1
Mandy Otto, … , Eric R. Gross, Nana-Maria Wagner
Mandy Otto, … , Eric R. Gross, Nana-Maria Wagner
Published June 25, 2020
Citation Information: J Clin Invest. 2020. https://doi.org/10.1172/JCI136621.
View: Text | PDF

12(S)-HETE mediates diabetes-induced endothelial dysfunction by activating intracellular endothelial cell TRPV1

  • Text
  • PDF
Abstract

Patients with diabetes develop endothelial dysfunction shortly after diabetes onset that progresses to vascular disease underlying the majority of diabetes-associated comorbidities. Increased lipid peroxidation, mitochondrial calcium overload, and mitochondrial dysfunction are characteristics of dysfunctional endothelial cells in diabetic patients. We here identified that targeting the lipid peroxidation product 12(S)-hydroxyeicosatetraenoic acid–induced [12(S)-HETE–induced] activation of the intracellularly located cation channel transient receptor potential vanilloid 1 (TRPV1) in endothelial cells is a means to causally control early-stage vascular disease in type I diabetic mice. Mice with an inducible, endothelium-specific 12/15-lipoxygenase (12/15Lo) knockout were protected similarly to TRPV1-knockout mice from type 1 diabetes–induced endothelial dysfunction and impaired vascular regeneration following arterial injury. Both 12(S)-HETE in concentrations found in diabetic patients and TRPV1 agonists triggered mitochondrial calcium influx and mitochondrial dysfunction in endothelial cells, and 12(S)-HETE effects were absent in endothelial cells from TRPV1-knockout mice. As a therapeutic consequence, we found that a peptide targeting 12(S)-HETE–induced TRPV1 interaction at the TRPV1 TRP box ameliorated diabetes-induced endothelial dysfunction and augmented vascular regeneration in diabetic mice. Our findings suggest that pharmacological targeting of increased endothelial lipid peroxidation can attenuate diabetes-induced comorbidities related to vascular disease.

Authors

Mandy Otto, Clarissa Bucher, Wantao Liu, Melanie Müller, Tobias Schmidt, Marina Kardell, Marvin Noel Driessen, Jan Rossaint, Eric R. Gross, Nana-Maria Wagner

×

FGFR4 regulates tumor subtype differentiation in luminal breast cancer and metastatic disease
Susana Garcia-Recio, … , Aleix Prat, Charles M. Perou
Susana Garcia-Recio, … , Aleix Prat, Charles M. Perou
Published June 23, 2020
Citation Information: J Clin Invest. 2020. https://doi.org/10.1172/JCI130323.
View: Text | PDF

FGFR4 regulates tumor subtype differentiation in luminal breast cancer and metastatic disease

  • Text
  • PDF
Abstract

Mechanisms driving tumor progression from less aggressive subtypes to more aggressive states represent key targets for therapy. We identified a subset of luminal A primary breast tumors that give rise to HER2-enriched (HER2E) subtype metastases, but remain clinically HER2 negative (cHER2–). By testing the unique genetic and transcriptomic features of these cases, we developed the hypothesis that FGFR4 likely participates in this subtype switching. To evaluate this, we developed 2 FGFR4 genomic signatures using a patient-derived xenograft (PDX) model treated with an FGFR4 inhibitor, which inhibited PDX growth in vivo. Bulk tumor gene expression analysis and single-cell RNA sequencing demonstrated that the inhibition of FGFR4 signaling caused molecular switching. In the Molecular Taxonomy of Breast Cancer International Consortium (METABRIC) breast cancer cohort, FGFR4-induced and FGFR4-repressed signatures each predicted overall survival. Additionally, the FGFR4-induced signature was an independent prognostic factor beyond subtype and stage. Supervised analysis of 77 primary tumors with paired metastases revealed that the FGFR4-induced signature was significantly higher in luminal/ER+ tumor metastases compared with their primaries. Finally, multivariate analysis demonstrated that the FGFR4-induced signature also predicted site-specific metastasis for lung, liver, and brain, but not for bone or lymph nodes. These data identify a link between FGFR4-regulated genes and metastasis, suggesting treatment options for FGFR4-positive patients, whose high expression is not caused by mutation or amplification.

Authors

Susana Garcia-Recio, Aatish Thennavan, Michael P. East, Joel S. Parker, Juan M. Cejalvo, Joseph P. Garay, Daniel P. Hollern, Xiaping He, Kevin R. Mott, Patricia Galván, Cheng Fan, Sara R. Selitsky, Alisha R. Coffey, David Marron, Fara Brasó-Maristany, Octavio Burgués, Joan Albanell, Federico Rojo, Ana Lluch, Eduardo Martinez de Dueñas, Jeffery M. Rosen, Gary L. Johnson, Lisa A. Carey, Aleix Prat, Charles M. Perou

×

Filgotinib suppresses HIV-1–driven gene transcription by inhibiting HIV-1 splicing and T cell activation
Yang-Hui Jimmy Yeh, … , Steven G. Deeks, Ya-Chi Ho
Yang-Hui Jimmy Yeh, … , Steven G. Deeks, Ya-Chi Ho
Published June 23, 2020
Citation Information: J Clin Invest. 2020. https://doi.org/10.1172/JCI137371.
View: Text | PDF

Filgotinib suppresses HIV-1–driven gene transcription by inhibiting HIV-1 splicing and T cell activation

  • Text
  • PDF
Abstract

Despite effective antiretroviral therapy, HIV-1–infected cells continue to produce viral antigens and induce chronic immune exhaustion. We propose to identify HIV-1–suppressing agents that can inhibit HIV-1 reactivation and reduce HIV-1–induced immune activation. Using a newly developed dual-reporter system and a high-throughput drug screen, we identified FDA-approved drugs that can suppress HIV-1 reactivation in both cell line models and CD4+ T cells from virally suppressed HIV-1–infected individuals. We identified 11 cellular pathways required for HIV-1 reactivation as druggable targets. Using differential expression analysis, gene set enrichment analysis, and exon-intron landscape analysis, we examined the impact of drug treatment on the cellular environment at a genome-wide level. We identified what we believe to be a new function of a JAK inhibitor, filgotinib, that suppresses HIV-1 splicing. First, filgotinib preferentially suppresses spliced HIV-1 RNA transcription. Second, filgotinib suppresses HIV-1–driven aberrant cancer-related gene expression at the integration site. Third, we found that filgotinib suppresses HIV-1 transcription by inhibiting T cell activation and by modulating RNA splicing. Finally, we found that filgotinib treatment reduces the proliferation of HIV-1–infected cells. Overall, the combination of a drug screen and transcriptome analysis provides systematic understanding of cellular targets required for HIV-1 reactivation and drug candidates that may reduce HIV-1–related immune activation.

Authors

Yang-Hui Jimmy Yeh, Katharine M. Jenike, Rachela M. Calvi, Jennifer Chiarella, Rebecca Hoh, Steven G. Deeks, Ya-Chi Ho

×

p53/microRNA-214/ULK1 axis impairs renal tubular autophagy in diabetic kidney disease
Zhengwei Ma, … , Changlin Mei, Zheng Dong
Zhengwei Ma, … , Changlin Mei, Zheng Dong
Published August 17, 2020
Citation Information: J Clin Invest. 2020. https://doi.org/10.1172/JCI135536.
View: Text | PDF

p53/microRNA-214/ULK1 axis impairs renal tubular autophagy in diabetic kidney disease

  • Text
  • PDF
Abstract

Dysregulation of autophagy in diabetic kidney disease (DKD) has been reported, but the underlying mechanism and its pathogenic role remain elusive. We show that autophagy was inhibited in DKD models and in human diabetic kidneys. Ablation of autophagy-related gene 7 (Atg7) from kidney proximal tubules led to autophagy deficiency and worse renal hypertrophy, tubular damage, inflammation, fibrosis, and albuminuria in diabetic mice, indicating a protective role of autophagy in DKD. Autophagy impairment in DKD was associated with the downregulation of unc-51–like autophagy-activating kinase 1 (ULK1), which was mediated by the upregulation of microRNA-214 (miR-214) in diabetic kidney cells and tissues. Ablation of miR-214 from kidney proximal tubules prevented a decrease in ULK1 expression and autophagy impairment in diabetic kidneys, resulting in less renal hypertrophy and albuminuria. Furthermore, blockade of p53 attenuated miR-214 induction in DKD, leading to higher levels of ULK1 and autophagy, accompanied by an amelioration of DKD. Compared with nondiabetic samples, renal biopsies from patients with diabetes showed induction of p53 and miR-214, associated with downregulation of ULK1 and autophagy. We found a positive correlation between p53/miR-214 and renal fibrosis, but a negative correlation between ULK1/LC3 and renal fibrosis in patients with diabetes. Together, these results identify the p53/miR-214/ULK1 axis in autophagy impairment in diabetic kidneys, pinpointing possible therapeutic targets for DKD.

Authors

Zhengwei Ma, Lin Li, Man J. Livingston, Dongshan Zhang, Qingsheng Mi, Ming Zhang, Han-Fei Ding, Yuqing Huo, Changlin Mei, Zheng Dong

×

3D model of harlequin ichthyosis reveals inflammatory therapeutic targets
Florence Enjalbert, … , Anton J. Enright, Edel A. O’Toole
Florence Enjalbert, … , Anton J. Enright, Edel A. O’Toole
Published June 16, 2020
Citation Information: J Clin Invest. 2020. https://doi.org/10.1172/JCI132987.
View: Text | PDF

3D model of harlequin ichthyosis reveals inflammatory therapeutic targets

  • Text
  • PDF
Abstract

The biology of harlequin ichthyosis (HI), a devastating skin disorder caused by loss-of-function mutations in the gene ABCA12, is poorly understood, and to date, no satisfactory treatment has been developed. We sought to investigate pathomechanisms of HI that could lead to the identification of new treatments for improving patients’ quality of life. In this study, RNA-Seq and functional assays were performed to define the effects of loss of ABCA12 using HI patient skin samples and an engineered CRISPR/Cas9 ABCA12 KO cell line. The HI living skin equivalent (3D model) recapitulated the HI skin phenotype. The cytokines IL-36α and IL-36γ were upregulated in HI skin, whereas the innate immune inhibitor IL-37 was strongly downregulated. We also identified STAT1 and its downstream target inducible nitric oxide synthase (NOS2) as being upregulated in the in vitro HI 3D model and HI patient skin samples. Inhibition of NOS2 using the inhibitor 1400W or the JAK inhibitor tofacitinib dramatically improved the in vitro HI phenotype by restoring the lipid barrier in the HI 3D model. Our study has identified dysregulated pathways in HI skin that are feasible therapeutic targets.

Authors

Florence Enjalbert, Priya Dewan, Matthew P. Caley, Eleri M. Jones, Mary A. Morse, David P. Kelsell, Anton J. Enright, Edel A. O’Toole

×

Tau is not necessary for amyloid-beta–induced synaptic and memory impairments
Daniela Puzzo, … , Paul E. Fraser, Ottavio Arancio
Daniela Puzzo, … , Paul E. Fraser, Ottavio Arancio
Published June 16, 2020
Citation Information: J Clin Invest. 2020. https://doi.org/10.1172/JCI137040.
View: Text | PDF

Tau is not necessary for amyloid-beta–induced synaptic and memory impairments

  • Text
  • PDF
Abstract

The amyloid hypothesis posits that the amyloid-beta (Aβ) protein precedes and requires microtubule-associated protein tau in a sort of trigger-bullet mechanism leading to Alzheimer’s disease (AD) pathology. This sequence of events has become dogmatic in the AD field and is used to explain clinical trial failures due to a late start of the intervention when Aβ already activated tau. Here, using a multidisciplinary approach combining molecular biological, biochemical, histopathological, electrophysiological, and behavioral methods, we demonstrated that tau suppression did not protect against Aβ-induced damage of long-term synaptic plasticity and memory, or from amyloid deposition. Tau suppression could even unravel a defect in basal synaptic transmission in a mouse model of amyloid deposition. Similarly, tau suppression did not protect against exogenous oligomeric tau–induced impairment of long-term synaptic plasticity and memory. The protective effect of tau suppression was, in turn, confined to short-term plasticity and memory. Taken together, our data suggest that therapies downstream of Aβ and tau together are more suitable to combat AD than therapies against one or the other alone.

Authors

Daniela Puzzo, Elentina K. Argyrousi, Agnieszka Staniszewski, Hong Zhang, Elisa Calcagno, Elisa Zuccarello, Erica Acquarone, Mauro Fa’, Domenica D. Li Puma, Claudio Grassi, Luciano D’Adamio, Nicholas M. Kanaan, Paul E. Fraser, Ottavio Arancio

×

TPL2 enforces RAS-induced inflammatory signaling and is activated by point mutations
Paarth B. Dodhiawala, … , Andrea Wang-Gillam, Kian-Huat Lim
Paarth B. Dodhiawala, … , Andrea Wang-Gillam, Kian-Huat Lim
Published June 23, 2020
Citation Information: J Clin Invest. 2020. https://doi.org/10.1172/JCI137660.
View: Text | PDF

TPL2 enforces RAS-induced inflammatory signaling and is activated by point mutations

  • Text
  • PDF
Abstract

NF-κB transcription factors, driven by the IRAK/IKK cascade, confer treatment resistance in pancreatic ductal adenocarcinoma (PDAC), a cancer characterized by near-universal KRAS mutation. Through reverse-phase protein array and RNA sequencing we discovered that IRAK4 also contributes substantially to MAPK activation in KRAS-mutant PDAC. IRAK4 ablation completely blocked RAS-induced transformation of human and murine cells. Mechanistically, expression of mutant KRAS stimulated an inflammatory, autocrine IL-1β signaling loop that activated IRAK4 and the MAPK pathway. Downstream of IRAK4, we uncovered TPL2 (also known as MAP3K8 or COT) as the essential kinase that propels both MAPK and NF-κB cascades. Inhibition of TPL2 blocked both MAPK and NF-κB signaling, and suppressed KRAS-mutant cell growth. To counter chemotherapy-induced genotoxic stress, PDAC cells upregulated TLR9, which activated prosurvival IRAK4/TPL2 signaling. Accordingly, a TPL2 inhibitor synergized with chemotherapy to curb PDAC growth in vivo. Finally, from TCGA we characterized 2 MAP3K8 point mutations that hyperactivate MAPK and NF-κB cascades by impeding TPL2 protein degradation. Cancer cell lines naturally harboring these MAP3K8 mutations are strikingly sensitive to TPL2 inhibition, underscoring the need to identify these potentially targetable mutations in patients. Overall, our study establishes TPL2 as a promising therapeutic target in RAS- and MAP3K8-mutant cancers and strongly prompts development of TPL2 inhibitors for preclinical and clinical studies.

Authors

Paarth B. Dodhiawala, Namrata Khurana, Daoxiang Zhang, Yi Cheng, Lin Li, Qing Wei, Kuljeet Seehra, Hongmei Jiang, Patrick M. Grierson, Andrea Wang-Gillam, Kian-Huat Lim

×
  • ← Previous
  • 1
  • 2
  • …
  • 153
  • 154
  • 155
  • …
  • 2543
  • 2544
  • Next →

No posts were found with this tag.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts