Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Neuroscience

  • 631 Articles
  • 7 Posts
  • ← Previous
  • 1
  • 2
  • …
  • 16
  • 17
  • 18
  • …
  • 63
  • 64
  • Next →
Initiation of migraine-related cortical spreading depolarization by hyperactivity of GABAergic neurons and NaV1.1 channels
Oana Chever, … , Sandrine Cestèle, Massimo Mantegazza
Oana Chever, … , Sandrine Cestèle, Massimo Mantegazza
Published September 7, 2021
Citation Information: J Clin Invest. 2021. https://doi.org/10.1172/JCI142203.
View: Text | PDF

Initiation of migraine-related cortical spreading depolarization by hyperactivity of GABAergic neurons and NaV1.1 channels

  • Text
  • PDF
Abstract

Spreading depolarizations (SDs) are involved in migraine, epilepsy, stroke, traumatic brain injury, and subarachnoid haemorrhage. However, the cellular origin and specific differential mechanisms are not clear yet. Increased glutamatergic activity is thought to be the key factor for generating cortical spreading depression (CSD), a pathological mechanism of migraine. Here, we show that acute pharmacological activation of NaV1.1 (the main Na+ channel of interneurons) or optogenetic-induced hyperactivity of GABAergic interneurons is sufficient to ignite CSD in the neocortex by spiking-generated extracellular K+ build-up. Neither GABAergic nor glutamatergic synaptic transmission were required for CSD initiation. CSD was not generated in other brain areas, suggesting that this is a neocortex-specific mechanism of CSD initiation. Gain-of-function mutations of NaV1.1 (SCN1A) cause Familial Hemiplegic Migraine type-3 (FHM3), a subtype of migraine with aura, of which CSD is the neurophysiological correlate. Our results provide the mechanism linking NaV1.1 gain-of-function to CSD generation in FHM3. Thus, we reveal the key role of hyperactivity of GABAergic interneurons in a mechanism of CSD initiation, which is relevant as pathological mechanism of Nav1.1 FHM3 mutations, and possibly also for other types of migraine and diseases in which SDs are involved.

Authors

Oana Chever, Sarah Zerimech, Paolo Scalmani, Louisiane Lemaire, Lara Pizzamiglio, Alexandre Loucif, Marion Ayrault, Martin Krupa, Mathieu Desroches, Fabrice Duprat, Isabelle Léna, Sandrine Cestèle, Massimo Mantegazza

×

A randomized controlled trial of GLP-1 receptor agonist dulaglutide in primary polydipsia
Bettina Winzeler, … , Julie Refardt, Mirjam Christ-Crain
Bettina Winzeler, … , Julie Refardt, Mirjam Christ-Crain
Published September 2, 2021
Citation Information: J Clin Invest. 2021. https://doi.org/10.1172/JCI151800.
View: Text | PDF

A randomized controlled trial of GLP-1 receptor agonist dulaglutide in primary polydipsia

  • Text
  • PDF
Abstract

BACKGROUND. Primary polydipsia, characterized by excessive fluid intake, carries the risk of water intoxication and hyponatremia, but treatment options are scarce. Glucagon-like peptide-1 (GLP-1) reduces appetite and food intake. In experimental models, they also play a role in thirst and drinking behavior. The aim of this trial was to investigate whether GLP-1 receptor agonists reduce fluid intake in patients with primary polydipsia. METHODS. In this randomized, double-blind, placebo-controlled, 3-week crossover-trial, 34 patients with primary polydipsia received weekly dulaglutide (Trulicity®) 1.5mg and placebo (0.9% sodium chloride). During the last treatment week, patients attended an 8-hour evaluation visit with free water access. The primary endpoint was total fluid intake during the evaluation visits. Treatment effects were estimated using linear mixed-effects models. In a subset of 15 patients and additional 15 matched controls, thirst perception and neuronal activity in response to beverage pictures were assessed by functional MRI. FINDINGS. Patients on dulaglutide reduced fluid intake by 490ml [95%-CI -780, -199], p=0.002, from 2950ml [95% CI 2435, 3465] on placebo to 2460ml [95% CI 1946, 2475] on dulaglutide (model estimates), corresponding to a relative reduction of 17%. 24-hour urinary output was reduced by -943ml [95%-CI -1473, -413], p=0.001. Thirst perception in response to beverage pictures was higher in patients with primary polydipsia versus controls and lower on dulaglutide versus placebo, but functional activity was similar between groups and treatments. INTERPRETATION. GLP-1 receptor agonists reduce fluid intake and thirst perception in patients with primary polydipsia and could therefore be a treatment option for these patients.

Authors

Bettina Winzeler, Clara Odilia Sailer, David Coynel, Davide Zanchi, Deborah R. Vogt, Sandrine Andrea Urwyler, Julie Refardt, Mirjam Christ-Crain

×

Exogenous inter-α inhibitor proteins prevent cell death and improve ischemic stroke outcomes in mice
Louise D. McCullough, … , Yow-Pin Lim, Venugopal Reddy Venna
Louise D. McCullough, … , Yow-Pin Lim, Venugopal Reddy Venna
Published September 1, 2021
Citation Information: J Clin Invest. 2021;131(17):e144898. https://doi.org/10.1172/JCI144898.
View: Text | PDF

Exogenous inter-α inhibitor proteins prevent cell death and improve ischemic stroke outcomes in mice

  • Text
  • PDF
Abstract

Inter-α inhibitor proteins (IAIPs) are a family of endogenous plasma and extracellular matrix molecules. IAIPs suppress proinflammatory cytokines, limit excess complement activation, and bind extracellular histones to form IAIP-histone complexes, leading to neutralization of histone-associated cytotoxicity in models of sepsis. Many of these detrimental processes also play critical roles in the pathophysiology of ischemic stroke. In this study, we first assessed the clinical relevance of IAIPs in stroke and then tested the therapeutic efficacy of exogenous IAIPs in several experimental stroke models. IAIP levels were reduced in both ischemic stroke patients and in mice subjected to experimental ischemic stroke when compared with controls. Post-stroke administration of IAIP significantly improved stroke outcomes across multiple stroke models, even when given 6 hours after stroke onset. Importantly, the beneficial effects of delayed IAIP treatment were observed in both young and aged mice. Using targeted gene expression analysis, we identified a receptor for complement activation, C5aR1, that was highly suppressed in both the blood and brain of IAIP-treated animals. Subsequent experiments using C5aR1-knockout mice demonstrated that the beneficial effects of IAIPs are mediated in part by C5aR1. These results indicate that IAIP is a potential therapeutic candidate for the treatment of ischemic stroke.

Authors

Louise D. McCullough, Meaghan Roy-O’Reilly, Yun-Ju Lai, Anthony Patrizz, Yan Xu, Juneyoung Lee, Aleah Holmes, Daniel C. Kraushaar, Anjali Chauhan, Lauren H. Sansing, Barbara S. Stonestreet, Liang Zhu, Julia Kofler, Yow-Pin Lim, Venugopal Reddy Venna

×

Differential restoration of functional hyperemia by antihypertensive drug classes in hypertension-related cerebral small vessel diseases
Masayo Koide, … , Adam S. Greenstein, Mark Nelson
Masayo Koide, … , Adam S. Greenstein, Mark Nelson
Published August 5, 2021
Citation Information: J Clin Invest. 2021. https://doi.org/10.1172/JCI149029.
View: Text | PDF

Differential restoration of functional hyperemia by antihypertensive drug classes in hypertension-related cerebral small vessel diseases

  • Text
  • PDF
Abstract

Dementia resulting from small vessel diseases of the brain (SVDs) is an emerging epidemic for which there is no treatment. Hypertension is the major risk factor for SVDs, but how hypertension damages the brain microcirculation is unclear. Here, we show that chronic hypertension in a mouse model progressively disrupts on-demand delivery of blood to metabolically active areas of the brain (functional hyperemia) through diminished activity of the capillary endothelial cell inward-rectifier potassium channel, Kir2.1. Despite similar efficacy in reducing blood pressure, amlodipine, a voltage-dependent calcium-channel blocker, prevented hypertension-related damage to functional hyperemia whereas losartan, an angiotensin II type-1 receptor blocker, did not. We attribute this drug class effect to losartan-induced ‘aldosterone breakthrough’, a phenomenon triggered by pharmacological interruption of the renin-angiotensin pathway leading to elevated plasma aldosterone levels. This hypothesis is supported by the finding that combining losartan with the aldosterone receptor antagonist eplerenone prevented the hypertension-related decline in functional hyperemia. Collectively, these data suggest Kir2.1 as a possible therapeutic target in vascular dementia and indicate that concurrent mineralocorticoid aldosterone receptor blockade may aid in protecting against late-life cognitive decline in hypertensive patients treated with angiotensin II type-1 receptor blockers.

Authors

Masayo Koide, Osama F. Harraz, Fabrice Dabertrand, Thomas A. Longden, Hannah R. Ferris, George C. Wellman, David C. Hill-Eubanks, Adam S. Greenstein, Mark Nelson

×

Tanycytic networks mediate energy balance by feeding lactate to glucose-insensitive POMC neurons
Tori Lhomme, … , Ruben Nogueiras, Vincent Prevot
Tori Lhomme, … , Ruben Nogueiras, Vincent Prevot
Published July 29, 2021
Citation Information: J Clin Invest. 2021. https://doi.org/10.1172/JCI140521.
View: Text | PDF

Tanycytic networks mediate energy balance by feeding lactate to glucose-insensitive POMC neurons

  • Text
  • PDF
Abstract

Hypothalamic glucose sensing enables an organism to match energy expenditure and food intake to circulating levels of glucose, the main energy source of the brain. Here, we established that tanycytes of the hypothalamic arcuate nucleus, specialized glia that line the wall of the third ventricle, convert brain glucose supplies into lactate that they transmit through monocarboxylate transporters to arcuate proopiomelanocortin neurons, which integrate this signal to drive their activity and to adapt the metabolic response to meet physiological demands. Furthermore, this transmission required the formation of extensive Connexin-43 gap-junction-mediated metabolic networks by arcuate tanycytes. Selectively suppressing either tanycytic monocarboxylate transporters or gap junctions resulted in altered feeding behavior and energy metabolism. Tanycytic intercellular communication and lactate production are thus integral to the mechanism by which hypothalamic neurons that regulate energy and glucose homeostasis efficiently perceive alterations in systemic glucose levels as a function of the physiological state of the organism.

Authors

Tori Lhomme, Jerome Clasadonte, Monica Imbernon, Daniela Fernandois, Florent Sauve, Emilie Caron, Natalia Lima, Violeta Heras, Ines Martinez-Corral, Helge Müller-Fielitz, S. Rasika, Markus Schwaninger, Ruben Nogueiras, Vincent Prevot

×

Targeting diacylglycerol lipase reduces alcohol consumption in preclinical models
Nathan D. Winters, … , Danny G. Winder, Sachin Patel
Nathan D. Winters, … , Danny G. Winder, Sachin Patel
Published July 22, 2021
Citation Information: J Clin Invest. 2021. https://doi.org/10.1172/JCI146861.
View: Text | PDF

Targeting diacylglycerol lipase reduces alcohol consumption in preclinical models

  • Text
  • PDF
Abstract

Alcohol use disorder (AUD) is associated with substantial morbidity, mortality, and societal cost, and pharmacological treatment options for AUD are limited. The endogenous cannabinoid (eCB) signaling system is critically involved in reward processing and alcohol intake is positively correlated with release of the eCB ligand 2-Arachidonoylglycerol (2-AG) within reward neurocircuitry. Here we show that genetic and pharmacological inhibition of diacylglycerol lipase (DAGL), the rate limiting enzyme in the synthesis of 2-AG, reduces alcohol consumption in a variety of preclinical models ranging from a voluntary free-access model to aversion resistant-drinking and dependence-like drinking induced via chronic intermittent ethanol vapor exposure in mice. DAGL inhibition during either chronic alcohol consumption or protracted withdrawal was devoid of anxiogenic and depressive-like behavioral effects. Lastly, DAGL inhibition also prevented ethanol-induced suppression of GABAergic transmission onto midbrain dopamine neurons, providing mechanistic insight into how DAGL inhibition could affect alcohol reward. These data suggest reducing 2-AG signaling via inhibition of DAGL could represent an effective approach to reduce alcohol consumption across the spectrum of AUD severity.

Authors

Nathan D. Winters, Gaurav Bedse, Anastasia A. Astafyev, Toni A. Patrick, Megan Altemus, Amanda J. Morgan, Snigdha Mukerjee, Keenan D. Johnson, Vikrant R. Mahajan, Md. Jashim Uddin, Philip J. Kingsley, Samuel W. Centanni, Cody A. Siciliano, David C. Samuels, Lawrence J. Marnett, Danny G. Winder, Sachin Patel

×

Distinct projections from the infralimbic cortex exert opposing effects in modulating anxiety and fear
Yi-Hua Chen, … , Jian-Ming Yang, Tian-Ming Gao
Yi-Hua Chen, … , Jian-Ming Yang, Tian-Ming Gao
Published July 15, 2021
Citation Information: J Clin Invest. 2021;131(14):e145692. https://doi.org/10.1172/JCI145692.
View: Text | PDF

Distinct projections from the infralimbic cortex exert opposing effects in modulating anxiety and fear

  • Text
  • PDF
Abstract

Anxiety-related disorders can be treated by cognitive therapies and transcranial magnetic stimulation, which involve the medial prefrontal cortex (mPFC). Subregions of the mPFC have been implicated in mediating different and even opposite roles in anxiety-related behaviors. However, precise causal targets of these top-down connections among diverse possibilities have not been established. Here, we show that the lateral septum (LS) and the central nucleus of the amygdala (CeA) represent 2 direct targets of the infralimbic cortex (IL), a subregion of the mPFC that modulates anxiety and fear. Two projections were unexpectedly found to exert opposite effects on the anxious state and learned freezing: the IL-LS projection promoted anxiety-related behaviors and fear-related freezing, whereas the IL-CeA projection exerted anxiolytic and fear-releasing effects for the same features. Furthermore, selective inhibition of corresponding circuit elements showed opposing behavioral effects compared with excitation. Notably, the IL-CeA projection implemented top-down control of the stress-induced high-anxiety state. These results suggest that distinct IL outputs exert opposite effects in modulating anxiety and fear and that modulating the excitability of these projections with distinct strategies may be beneficial for the treatment of anxiety disorders.

Authors

Yi-Hua Chen, Jian-Lin Wu, Neng-Yuan Hu, Jia-Pai Zhuang, Wei-Peng Li, Sheng-Rong Zhang, Xiao-Wen Li, Jian-Ming Yang, Tian-Ming Gao

×

Dopamine D1 and D2 receptors are distinctly associated with rest-activity rhythms and drug reward
Rui Zhang, … , Gene-Jack Wang, Nora D. Volkow
Rui Zhang, … , Gene-Jack Wang, Nora D. Volkow
Published July 15, 2021
Citation Information: J Clin Invest. 2021. https://doi.org/10.1172/JCI149722.
View: Text | PDF

Dopamine D1 and D2 receptors are distinctly associated with rest-activity rhythms and drug reward

  • Text
  • PDF
Abstract

BACKGROUND. Certain components of rest-activity rhythms such as greater eveningness (delayed phase), physical inactivity (blunted amplitude) and shift work (irregularity) are associated with increased risk for drug use. Dopaminergic (DA) signaling has been hypothesized to mediate the associations, though clinical evidence is lacking. METHODS. We examined associations between rhythm components and striatal D1 (D1R) and D2/3 receptor (D2/3R) availability in 32 healthy adults (12 female, age: 42.40±12.22) and its relationship to drug reward. Rest-activity rhythms were assessed by one-week actigraphy combined with self-reports. [11C]NNC112 and [11C]raclopride Positron Emission Tomography (PET) scans were conducted to measure D1R and D2/3R availability, respectively. Additionally, self-reported drug-rewarding effects of 60 mg oral methylphenidate were assessed. RESULTS. We found that delayed rhythm was associated with higher D1R availability in caudate, which was not attributable to sleep loss or ‘social jet lag’, whereas physical inactivity was associated with higher D2/3R availability in nucleus accumbens (NAc). Delayed rest-activity rhythm, higher caudate D1R and NAc D2/3R availability were associated with greater sensitivity to the rewarding effects of methylphenidate. CONCLUSION. These findings reveal specific components of rest-activity rhythms associated with striatal D1R, D2/3R availability and drug-rewarding effects. Personalized interventions that target rest-activity rhythms may help prevent and treat substance use disorders. TRIAL REGISTRATION. ClinicalTrials.gov: NCT03190954 FUNDING. This work was accomplished with support from the National Institute on Alcohol Abuse and Alcoholism (ZIAAA000550).

Authors

Rui Zhang, Peter Manza, Dardo Tomasi, Sung Won Kim, Ehsan Shokri-Kojori, Sukru B. Demiral, Danielle S. Kroll, Dana E. Feldman, Katherine L. McPherson, Catherine L. Biesecker, Gene-Jack Wang, Nora D. Volkow

×

MicroRNA-26a-3p rescues depression-like behaviors in male rats via preventing hippocampal neuronal anomalies
Ye Li, … , Wenjing Wang, Shu Yan Yu
Ye Li, … , Wenjing Wang, Shu Yan Yu
Published July 6, 2021
Citation Information: J Clin Invest. 2021. https://doi.org/10.1172/JCI148853.
View: Text | PDF

MicroRNA-26a-3p rescues depression-like behaviors in male rats via preventing hippocampal neuronal anomalies

  • Text
  • PDF
Abstract

Depression is a neuropsychiatric disease associated with neuronal anomalies within specific brain regions. In the present study, we screened microRNA (miRNA) expression profiles in the dentate gyrus (DG) of hippocampus and found miR-26a-3p was markedly down-regulated in the rat model of depression, whereas up-regulation of miR-26a-3p within DG regions rescued the neuronal deterioration and depression-like phenotypes resulting from stress exposure, effects which appear to be mediated by the PTEN pathway. The knock-down of miR-26a-3p in DG regions of normal control rats induced depression-like behaviors, effects which were accompanied with an activation of PTEN-PI3K/Akt signaling pathway and neuronal deterioration via suppression of autophagy, impairments in synaptic plasticity and the promotion of neuronal apoptosis. In conclusion, these results suggested that a miR-26a-3p deficits within the hippocampal DG mediated the neuronal anomalies contributing to the display of depression-like behaviors. This miRNA may serve as a potential therapeutic target for the treatment of depression.

Authors

Ye Li, Cuiqin Fan, Liyan Wang, Tian Lan, Rui Gao, Wenjing Wang, Shu Yan Yu

×

Perineuronal net degradation rescues CA2 plasticity in Rett syndrome model mice
Kelly E. Carstens, … , Georgia M. Alexander, Serena M. Dudek
Kelly E. Carstens, … , Georgia M. Alexander, Serena M. Dudek
Published July 6, 2021
Citation Information: J Clin Invest. 2021. https://doi.org/10.1172/JCI137221.
View: Text | PDF

Perineuronal net degradation rescues CA2 plasticity in Rett syndrome model mice

  • Text
  • PDF
Abstract

Perineuronal nets (PNNs), a specialized form of extracellular matrix, are abnormal in the human brain of Rett syndrome (RTT). We previously reported that PNNs function to restrict synaptic plasticity in hippocampal area CA2, which is unusually resistant to long-term potentiation (LTP) and has been linked to social learning in mice. Here we reported that PNNs appear elevated in area CA2 of a human RTT hippocampus and that PNNs develop precociously and remain elevated in area CA2 of a mouse model of RTT (Mecp2-null). Further, we provided evidence that LTP could be induced at CA2 synapses prior to PNN maturation (postnatal day 8-11) in wildtype mice and that this window of plasticity was prematurely restricted at CA2 synapses in Mecp2-null mice. Degrading PNNs in Mecp2-null hippocampus was sufficient to rescue the premature disruption of CA2 plasticity. We identified several molecular targets that were altered in the developing Mecp2-null hippocampus that may explain aberrant PNNs and CA2 plasticity, and we discovered that CA2 PNNs are negatively regulated by neuronal activity. Collectively, our findings demonstrated that CA2 PNN development is regulated by Mecp2 and identified a novel window of hippocampal plasticity that is disrupted in a mouse model of RTT.

Authors

Kelly E. Carstens, Daniel J. Lustberg, Emma Shaughnessy, Katharine E. McCann, Georgia M. Alexander, Serena M. Dudek

×
  • ← Previous
  • 1
  • 2
  • …
  • 16
  • 17
  • 18
  • …
  • 63
  • 64
  • Next →
DREAM suppression in Huntington’s disease
José Naranjo and colleagues reveal that downregulation of DREAM mediates derepression of ATF6, and this elevation of ATF6 plays an early neuroprotective role in Huntington’s disease…
Published January 11, 2016
Scientific Show StopperNeuroscience

Extra-cerebellar motor symptoms in Angelman’s syndrome
Caroline Bruinsma and colleagues evaluated cerebellar involvement in Angelman’s Syndrome motor deficits…
Published October 20, 2015
Scientific Show StopperNeuroscience

An epigenetic intervention for neurodegenerative diseases
Eva Benito and colleagues demonstrate that SAHA, a histone-deacetylase inhibitor, improves spatial memory and selectively regulates the neuronal epigenome in a mouse model of neurodegeneration…
Published August 17, 2015
Scientific Show StopperNeuroscience

Genetic and environmental interactions in Parkinson’s disease
Alevtina Zharikov and colleagues reveal that interplay between α-synuclein and environmental toxin exposure influences parkinsonian neurodegeneration…
Published June 15, 2015
Scientific Show StopperNeuroscience

TREM2 keeps myelinated axons under wraps
Pietro Poliani, Yaming Wang, and colleagues demonstrate that TREM2 deficiency reduces age-associated expansion of microglia and microglia-dependent remyelination…
Published April 20, 2015
Scientific Show StopperNeuroscience

Synergy among Parkinson’s disease-associated genes
Durga Meka and colleagues demonstrate that crosstalk between parkin and RET maintains mitochondrial integrity and protects dopaminergic neurons…
Published March 30, 2015
Scientific Show StopperNeuroscience

A model of periventricular leukomalacia
Tamar Licht, Talia Dor-Wollman and colleagues demonstrate that specific vulnerability of immature blood vessels surrounding ventricles predisposes to hypoxia-induced periventricular leukomalacia…
Published February 17, 2015
Scientific Show StopperNeuroscience
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts