Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Clinical innovation and scientific progress in GLP-1 medicine (Nov 2025)
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Infectious disease

  • 354 Articles
  • 0 Posts
  • ← Previous
  • 1
  • 2
  • …
  • 10
  • 11
  • 12
  • …
  • 35
  • 36
  • Next →
A non-neutralizing glycoprotein B monoclonal antibody protects against herpes simplex virus disease in mice
Masayuki Kuraoka, Clare Burn Aschner, Ian W. Windsor, Aakash Mahant Mahant, Scott J. Garforth, Susan Luozheng Kong, Jacqueline M. Achkar, Steven C. Almo, Garnett Kelsoe, Betsy C. Herold
Masayuki Kuraoka, Clare Burn Aschner, Ian W. Windsor, Aakash Mahant Mahant, Scott J. Garforth, Susan Luozheng Kong, Jacqueline M. Achkar, Steven C. Almo, Garnett Kelsoe, Betsy C. Herold
View: Text | PDF

A non-neutralizing glycoprotein B monoclonal antibody protects against herpes simplex virus disease in mice

  • Text
  • PDF
Abstract

There is an unmet need for monoclonal antibodies (mAbs) for prevention or as adjunctive treatment of herpes simplex virus (HSV) disease. Most vaccine and mAb efforts focus on neutralizing antibodies, but for HSV this strategy has proven ineffective. Preclinical studies with a candidate HSV vaccine strain, ΔgD-2, demonstrated that non-neutralizing antibodies that activate Fc-gamma receptors (FcɣRs) to mediate antibody-dependent cellular cytotoxicity (ADCC) provide active and passive protection against HSV-1 and HSV-2. We hypothesized that this vaccine provides a tool to identify and characterize protective mAbs. We isolated HSV-specific mAbs from germinal center and memory B cells and bone marrow plasmacytes of ΔgD-2 vaccinated mice and evaluated these mAbs for binding, neutralizing and FcɣR-activating activity and for protective efficacy in mice. The most potent protective mAb, BMPC-23, was not neutralizing but activated murine FcɣRIV, a biomarker of ADCC. The cryo-EM structure of the Fab-glycoprotein B (gB) assembly identified domain IV of gB as the epitope. A single dose of BMPC-23 administered 24 hours before or after viral challenge provided significant protection when configured as mouse IgG2c and protected mice expressing human FcɣRIII when engineered as a human IgG1. These results highlight the importance of FcɣR-activating antibodies in protecting against HSV.

Authors

Masayuki Kuraoka, Clare Burn Aschner, Ian W. Windsor, Aakash Mahant Mahant, Scott J. Garforth, Susan Luozheng Kong, Jacqueline M. Achkar, Steven C. Almo, Garnett Kelsoe, Betsy C. Herold

×

Recombinant vesicular stomatitis virus-vectored vaccine induces long lasting immunity against Nipah virus disease
Courtney Woolsey, Viktoriya Borisevich, Alyssa C. Fears, Krystle N. Agans, Daniel J. Deer, Abhishek N. Prasad, Rachel O'Toole, Stephanie L. Foster, Natalie S. Dobias, Joan B. Geisbert, Karla A. Fenton, Robert W. Cross, Thomas Geisbert
Courtney Woolsey, Viktoriya Borisevich, Alyssa C. Fears, Krystle N. Agans, Daniel J. Deer, Abhishek N. Prasad, Rachel O'Toole, Stephanie L. Foster, Natalie S. Dobias, Joan B. Geisbert, Karla A. Fenton, Robert W. Cross, Thomas Geisbert
View: Text | PDF

Recombinant vesicular stomatitis virus-vectored vaccine induces long lasting immunity against Nipah virus disease

  • Text
  • PDF
Abstract

The emergence of the novel henipavirus, Langya virus, received global attention earlier this month after the virus sickened over three dozen people in China. There is heightened concern henipaviruses as respiratory pathogens could spark another pandemic, most notably the deadly Nipah virus (NiV). NiV causes near annual outbreaks in Bangladesh and India and induces a highly fatal respiratory disease and encephalitis in humans. No licensed countermeasures against this pathogen exist. An ideal NiV vaccine would confer both fast-acting and long-lived protection. Recently, we reported the generation of a recombinant vesicular stomatitis virus (rVSV)-based vaccine expressing the NiV glycoprotein (rVSV-ΔG-NiVBG) that protected 100% of nonhuman primates from NiV-associated lethality within a week. Here, to evaluate the durability of rVSV-ΔG-NiVBG, we vaccinated African green monkeys (AGMs) one year prior to challenge with a uniformly lethal dose of NiV. The rVSV-ΔG-NiVBG vaccine induced stable and robust humoral responses, whereas cellular responses were modest. All immunized AGMs (whether receiving a single dose or prime-boosted) survived with no detectable clinical signs or NiV replication. Transcriptomic analyses indicated adaptive immune signatures correlated with vaccine-mediated protection. While vaccines for certain respiratory infections (e.g., COVID-19) have yet to provide durable protection, our results suggest rVSV-ΔG-NiVBG elicits long-lasting immunity.

Authors

Courtney Woolsey, Viktoriya Borisevich, Alyssa C. Fears, Krystle N. Agans, Daniel J. Deer, Abhishek N. Prasad, Rachel O'Toole, Stephanie L. Foster, Natalie S. Dobias, Joan B. Geisbert, Karla A. Fenton, Robert W. Cross, Thomas Geisbert

×

Human Dectin-1 deficiency impairs macrophage-mediated defense against phaeohyphomycosis
Rebecca A. Drummond, et al.
Rebecca A. Drummond, et al.
View: Text | PDF

Human Dectin-1 deficiency impairs macrophage-mediated defense against phaeohyphomycosis

  • Text
  • PDF
Abstract

Subcutaneous phaeohyphomycosis typically affects immunocompetent individuals following traumatic inoculation. Severe or disseminated infection can occur in CARD9 deficiency or after transplantation, but the mechanisms protecting against phaeohyphomycosis remain unclear. We evaluated a patient with progressive, refractory Corynespora cassiicola phaeohyphomycosis and found that he carried biallelic deleterious mutations in CLEC7A encoding the CARD9-coupled, β-glucan–binding receptor, Dectin-1. The patient’s PBMCs failed to produce TNF-α and IL-1β in response to β-glucan and/or C. cassiicola. To confirm the cellular and molecular requirements for immunity against C. cassiicola, we developed a mouse model of this infection. Mouse macrophages required Dectin-1 and CARD9 for IL-1β and TNF-α production, which enhanced fungal killing in an interdependent manner. Deficiency of either Dectin-1 or CARD9 was associated with more severe fungal disease, recapitulating the human observation. Because these data implicated impaired Dectin-1 responses in susceptibility to phaeohyphomycosis, we evaluated 17 additional unrelated patients with severe forms of the infection. We found that 12 out of 17 carried deleterious CLEC7A mutations associated with an altered Dectin-1 extracellular C-terminal domain and impaired Dectin-1–dependent cytokine production. Thus, we show that Dectin-1 and CARD9 promote protective TNF-α– and IL-1β–mediated macrophage defense against C. cassiicola. More broadly, we demonstrate that human Dectin-1 deficiency may contribute to susceptibility to severe phaeohyphomycosis by certain dematiaceous fungi.

Authors

Rebecca A. Drummond, Jigar V. Desai, Amy P. Hsu, Vasileios Oikonomou, Donald C. Vinh, Joshua A. Acklin, Michael S. Abers, Magdalena A. Walkiewicz, Sarah L. Anzick, Muthulekha Swamydas, Simon Vautier, Mukil Natarajan, Andrew J. Oler, Daisuke Yamanaka, Katrin D. Mayer-Barber, Yoichiro Iwakura, David Bianchi, Brian Driscoll, Ken Hauck, Ahnika Kline, Nicholas S.P. Viall, Christa S. Zerbe, Elise M.N. Ferré, Monica M. Schmitt, Tom DiMaggio, Stefania Pittaluga, John A. Butman, Adrian M. Zelazny, Yvonne R. Shea, Cesar A. Arias, Cameron Ashbaugh, Maryam Mahmood, Zelalem Temesgen, Alexander G. Theofiles, Masayuki Nigo, Varsha Moudgal, Karen C. Bloch, Sean G. Kelly, M. Suzanne Whitworth, Ganesh Rao, Cindy J. Whitener, Neema Mafi, Juan Gea-Banacloche, Lawrence C. Kenyon, William R. Miller, Katia Boggian, Andrea Gilbert, Matthew Sincock, Alexandra F. Freeman, John E. Bennett, Rodrigo Hasbun, Constantinos M. Mikelis, Kyung J. Kwon-Chung, Yasmine Belkaid, Gordon D. Brown, Jean K. Lim, Douglas B. Kuhns, Steven M. Holland, Michail S. Lionakis

×

mTOR regulates T cell exhaustion and PD-1 targeted immunotherapy response during chronic viral infection
Satomi Ando, Charles Perkins, Yamato Sajiki, Chase Chastain, Rajesh M. Valanparambil, Andreas Wieland, William H. Hudson, Masao Hashimoto, Suresh S. Ramalingam, Gordon J. Freeman, Rafi Ahmed, Koichi Araki
Satomi Ando, Charles Perkins, Yamato Sajiki, Chase Chastain, Rajesh M. Valanparambil, Andreas Wieland, William H. Hudson, Masao Hashimoto, Suresh S. Ramalingam, Gordon J. Freeman, Rafi Ahmed, Koichi Araki
View: Text | PDF

mTOR regulates T cell exhaustion and PD-1 targeted immunotherapy response during chronic viral infection

  • Text
  • PDF
Abstract

T cell exhaustion is a state of T cell dysfunction associated with expression of programmed death 1 (PD-1). Exhausted CD8 T cells are maintained by self-renewing stem-like T (TSL) cells that provide differentiated TIM3+ cells, a part of which possesses effector-like properties. PD-1-targeted therapies enhance T cell response by promoting differentiation of TSL cells toward TIM3+ cells, but the role of mTOR during T cell exhaustion remains elusive. Here, we show that mTOR inhibition has distinct outcomes during the beginning of and after the establishment of chronic viral infection. Blocking mTOR during the T cell expansion phase enhanced the T cell response by accumulating TSL cells, leading to improved efficacy of PD-1 immunotherapy. Whereas, after exhaustion progressed, mTOR inhibition caused immunosuppression characterized by decreased TIM3+ cells and increased viral load with minimal changes in TSL cells. Mechanistically, a cell-intrinsic mTOR signal was vital for differentiation of TSL cells into the TIM3+ state in the early and late phases of chronic infection as well as during PD-1 immunotherapy. Thus, PD-1 blockade worked after cessation of mTOR inhibition but simultaneous treatment failed to induce functional TIM3+ cells, reducing efficacy of PD-1 immunotherapy. Our data demonstrate that mTOR regulates T cell exhaustion and have important implications for combination cancer therapies with PD-1 blockade

Authors

Satomi Ando, Charles Perkins, Yamato Sajiki, Chase Chastain, Rajesh M. Valanparambil, Andreas Wieland, William H. Hudson, Masao Hashimoto, Suresh S. Ramalingam, Gordon J. Freeman, Rafi Ahmed, Koichi Araki

×

Stromal structure remodeling by B lymphocytes limits T cell activation in lymph nodes of Mycobacterium tuberculosis–infected mice
Lina Daniel, Nayan D. Bhattacharyya, Claudio Counoupas, Yi Cai, Xinchun Chen, James A. Triccas, Warwick J. Britton, Carl G. Feng
Lina Daniel, Nayan D. Bhattacharyya, Claudio Counoupas, Yi Cai, Xinchun Chen, James A. Triccas, Warwick J. Britton, Carl G. Feng
View: Text | PDF

Stromal structure remodeling by B lymphocytes limits T cell activation in lymph nodes of Mycobacterium tuberculosis–infected mice

  • Text
  • PDF
Abstract

An effective adaptive immune response depends on the organized architecture of secondary lymphoid organs, including the lymph nodes (LNs). While the cellular composition and microanatomy of LNs under steady state are well defined, the impact of chronic tissue inflammation on the structure and function of draining LNs is incompletely understood. Here we showed that Mycobacterium tuberculosis infection remodeled LN architecture by increasing the number and paracortical translocation of B cells. The formation of paracortical B lymphocyte and CD35+ follicular dendritic cell clusters dispersed CCL21-producing fibroblastic reticular cells and segregated pathogen-containing myeloid cells from antigen-specific CD4+ T cells. Depletion of B cells restored the chemokine and lymphoid structure and reduced bacterial burdens in LNs of the chronically infected mice. Importantly, this remodeling process impaired activation of naive CD4+ T cells in response to mycobacterial and unrelated antigens during chronic tuberculosis infection. Our studies reveal a mechanism in the regulation of LN microanatomy during inflammation and identify B cells as a critical element limiting the T cell response to persistent intracellular infection in LNs.

Authors

Lina Daniel, Nayan D. Bhattacharyya, Claudio Counoupas, Yi Cai, Xinchun Chen, James A. Triccas, Warwick J. Britton, Carl G. Feng

×

Stabilized recombinant SARS-CoV-2 spike antigen enhances vaccine immunogenicity and protective capacity
Christian Meyer zu Natrup, Alina Tscherne, Christine Dahlke, Malgorzata Ciurkiewicz, Dai-Lun Shin, Anahita Fathi, Cornelius Rohde, Georgia Kalodimou, Sandro Halwe, Leonard Limpinsel, Jan H. Schwarz, Martha Klug, Meral Esen, Nicole Schneiderhan-Marra, Alex Dulovic, Alexandra Kupke, Katrin Brosinski, Sabrina Clever, Lisa-Marie Schünemann, Georg Beythien, Federico Armando, Leonie Mayer, Leonie M. Weskamm, Sylvia Jany, Astrid Freudenstein, Tamara Tuchel, Wolfgang Baumgärtner, Peter Kremsner, Rolf Fendel, Marylyn M. Addo, Stephan Becker, Gerd Sutter, Asisa Volz
Christian Meyer zu Natrup, Alina Tscherne, Christine Dahlke, Malgorzata Ciurkiewicz, Dai-Lun Shin, Anahita Fathi, Cornelius Rohde, Georgia Kalodimou, Sandro Halwe, Leonard Limpinsel, Jan H. Schwarz, Martha Klug, Meral Esen, Nicole Schneiderhan-Marra, Alex Dulovic, Alexandra Kupke, Katrin Brosinski, Sabrina Clever, Lisa-Marie Schünemann, Georg Beythien, Federico Armando, Leonie Mayer, Leonie M. Weskamm, Sylvia Jany, Astrid Freudenstein, Tamara Tuchel, Wolfgang Baumgärtner, Peter Kremsner, Rolf Fendel, Marylyn M. Addo, Stephan Becker, Gerd Sutter, Asisa Volz
View: Text | PDF

Stabilized recombinant SARS-CoV-2 spike antigen enhances vaccine immunogenicity and protective capacity

  • Text
  • PDF
Abstract

The SARS-CoV-2 spike (S) glycoprotein is synthesized as large precursor protein and must be activated by proteolytic cleavage into S1 and S2. A recombinant modified vaccinia virus Ankara (MVA) expressing native, full-length S protein (MVA-SARS-2-S) is currently under investigation as candidate vaccine in phase I clinical studies. Initial results from immunogenicity monitoring revealed induction of S-specific antibodies binding to S2, but low-level antibody responses to the S1 domain. Follow-up investigations of native S antigen synthesis in MVA-SARS-2-S infected cells revealed limited levels of S1 protein on the cell surface. In contrast, we found superior S1 cell surface presentation upon infection with a recombinant MVA expressing a stabilized version of SARS-CoV-2 S protein with an inactivated S1/2 cleavage site and K986→P and V987→P mutations (MVA-SARS-2-ST). When comparing immunogenicity of MVA vector vaccines, mice vaccinated with MVA-SARS-2-ST mounted substantial levels of S broadly reactive antibodies that effectively neutralized different SARS-CoV-2 variants. Importantly, intramuscular MVA-SARS-2-ST immunization of hamsters and mice resulted in potent immune responses upon challenge infection and protected from disease and severe lung pathology. Our results suggest that MVA-SARS-2-ST represents an improved clinical candidate vaccine and that the presence of plasma membrane-bound S1 is highly beneficial to induce protective antibody levels.

Authors

Christian Meyer zu Natrup, Alina Tscherne, Christine Dahlke, Malgorzata Ciurkiewicz, Dai-Lun Shin, Anahita Fathi, Cornelius Rohde, Georgia Kalodimou, Sandro Halwe, Leonard Limpinsel, Jan H. Schwarz, Martha Klug, Meral Esen, Nicole Schneiderhan-Marra, Alex Dulovic, Alexandra Kupke, Katrin Brosinski, Sabrina Clever, Lisa-Marie Schünemann, Georg Beythien, Federico Armando, Leonie Mayer, Leonie M. Weskamm, Sylvia Jany, Astrid Freudenstein, Tamara Tuchel, Wolfgang Baumgärtner, Peter Kremsner, Rolf Fendel, Marylyn M. Addo, Stephan Becker, Gerd Sutter, Asisa Volz

×

Imaging sensitive and drug-resistant bacterial infection with [11C]-trimethoprim
Iris K. Lee, Daniel A. Jacome, Joshua K. Cho, Vincent Tu, Anthony J. Young, Tiffany Dominguez, Justin D. Northrup, Jean M. Etersque, Hsiaoju S. Lee, Andrew Ruff, Ouniol Aklilu, Kyle Bittinger, Laurel J. Glaser, Daniel Dorgan, Denis Hadjiliadis, Rahul M. Kohli, Robert H. Mach, David A. Mankoff, Robert K. Doot, Mark A. Sellmyer
Iris K. Lee, Daniel A. Jacome, Joshua K. Cho, Vincent Tu, Anthony J. Young, Tiffany Dominguez, Justin D. Northrup, Jean M. Etersque, Hsiaoju S. Lee, Andrew Ruff, Ouniol Aklilu, Kyle Bittinger, Laurel J. Glaser, Daniel Dorgan, Denis Hadjiliadis, Rahul M. Kohli, Robert H. Mach, David A. Mankoff, Robert K. Doot, Mark A. Sellmyer
View: Text | PDF

Imaging sensitive and drug-resistant bacterial infection with [11C]-trimethoprim

  • Text
  • PDF
Abstract

BACKGROUND Several molecular imaging strategies can identify bacterial infections in humans. PET affords the potential for sensitive infection detection deep within the body. Among PET-based approaches, antibiotic-based radiotracers, which often target key bacterial-specific enzymes, have considerable promise. One question for antibiotic radiotracers is whether antimicrobial resistance (AMR) reduces specific accumulation within bacteria, diminishing the predictive value of the diagnostic test.METHODS Using a PET radiotracer based on the antibiotic trimethoprim (TMP), [11C]-TMP, we performed in vitro uptake studies in susceptible and drug-resistant bacterial strains and whole-genome sequencing (WGS) in selected strains to identify TMP resistance mechanisms. Next, we queried the NCBI database of annotated bacterial genomes for WT and resistant dihydrofolate reductase (DHFR) genes. Finally, we initiated a first-in-human protocol of [11C]-TMP in patients infected with both TMP-sensitive and TMP-resistant organisms to demonstrate the clinical feasibility of the tool.RESULTS We observed robust [11C]-TMP uptake in our panel of TMP-sensitive and -resistant bacteria, noting relatively variable and decreased uptake in a few strains of P. aeruginosa and E. coli. WGS showed that the vast majority of clinically relevant bacteria harbor a WT copy of DHFR, targetable by [11C]-TMP, and that despite the AMR, these strains should be “imageable.” Clinical imaging of patients with [11C]-TMP demonstrated focal radiotracer uptake in areas of infectious lesions.CONCLUSION This work highlights an approach to imaging bacterial infection in patients, which could affect our understanding of bacterial pathogenesis as well as our ability to better diagnose infections and monitor response to therapy.TRIAL REGISTRATION ClinicalTrials.gov NCT03424525.FUNDING Institute for Translational Medicine and Therapeutics, Burroughs Wellcome Fund, NIH Office of the Director Early Independence Award (DP5-OD26386), and University of Pennsylvania NIH T32 Radiology Research Training Grant (5T32EB004311-12).

Authors

Iris K. Lee, Daniel A. Jacome, Joshua K. Cho, Vincent Tu, Anthony J. Young, Tiffany Dominguez, Justin D. Northrup, Jean M. Etersque, Hsiaoju S. Lee, Andrew Ruff, Ouniol Aklilu, Kyle Bittinger, Laurel J. Glaser, Daniel Dorgan, Denis Hadjiliadis, Rahul M. Kohli, Robert H. Mach, David A. Mankoff, Robert K. Doot, Mark A. Sellmyer

×

Mast cell derived factor XIIIA contributes to sexual dimorphic defense against group B Streptococcal infections
Adrian M. Piliponsky, Kavita Sharma, Phoenicia Quach, Alyssa Brokaw, Shayla Nguyen, Austyn Orvis, Siddhartha S. Saha, Nyssa Becker Samanas, Ravin Seepersaud, Yu Ping Tang, Emily Mackey, Gauri Bhise, Claire Gendrin, Anna Furuta, Albert J. Seo, Eric Guga, Irina Miralda, Michelle M. Coleman, Erin L. Sweeney, Charlotte A. Bäuml, Diana Imhof, Jessica M. Snyder, Adam J. Moeser, Lakshmi Rajagopal
Adrian M. Piliponsky, Kavita Sharma, Phoenicia Quach, Alyssa Brokaw, Shayla Nguyen, Austyn Orvis, Siddhartha S. Saha, Nyssa Becker Samanas, Ravin Seepersaud, Yu Ping Tang, Emily Mackey, Gauri Bhise, Claire Gendrin, Anna Furuta, Albert J. Seo, Eric Guga, Irina Miralda, Michelle M. Coleman, Erin L. Sweeney, Charlotte A. Bäuml, Diana Imhof, Jessica M. Snyder, Adam J. Moeser, Lakshmi Rajagopal
View: Text | PDF

Mast cell derived factor XIIIA contributes to sexual dimorphic defense against group B Streptococcal infections

  • Text
  • PDF
Abstract

Invasive bacterial infections remain a major cause of human morbidity. Group B Streptococcus (GBS) are Gram-positive bacteria that cause invasive infections in humans. Here, we show that Factor XIIIA (FXIIIA) -deficient female mice exhibited significantly increased susceptibility to GBS infections. Additionally, female wild-type mice had increased levels of FXIIIA and were more resistant to GBS infection compared to isogenic male mice. We observed that administration of exogenous FXIIIA to male mice increased host resistance to GBS infection. Conversely, administration of a FXIIIA transglutaminase inhibitor to female mice decreased host resistance to GBS infection. Interestingly, male gonadectomized mice exhibited decreased sensitivity to GBS infection, suggesting a role for gonadal androgens in host susceptibility. FXIIIA promoted GBS entrapment within fibrin clots by crosslinking fibronectin with ScpB, a fibronectin binding GBS surface protein. Thus, ScpB-deficient GBS exhibited decreased entrapment within fibrin clots in vitro and increased dissemination during systemic infections. Finally, using mice where FXIIIA expression was depleted in mast cells, we observed that mast cell derived FXIIIA contributes to host defense against GBS infection. Our studies provide insights into the effect of sexual dimorphism and mast cells on FXIIIA expression and its interactions with GBS adhesins that mediate bacterial dissemination and pathogenesis.

Authors

Adrian M. Piliponsky, Kavita Sharma, Phoenicia Quach, Alyssa Brokaw, Shayla Nguyen, Austyn Orvis, Siddhartha S. Saha, Nyssa Becker Samanas, Ravin Seepersaud, Yu Ping Tang, Emily Mackey, Gauri Bhise, Claire Gendrin, Anna Furuta, Albert J. Seo, Eric Guga, Irina Miralda, Michelle M. Coleman, Erin L. Sweeney, Charlotte A. Bäuml, Diana Imhof, Jessica M. Snyder, Adam J. Moeser, Lakshmi Rajagopal

×

Isoniazid and rifapentine treatment effectively reduces persistent M. tuberculosis infection in macaque lungs
Riti Sharan, Shashank R. Ganatra, Dhiraj K. Singh, Journey Cole, Taylor W. Foreman, Rajesh Thippeshappa, Charles A. Peloquin, Vinay Shivanna, Olga Gonzalez, Cheryl L. Day, Neel R. Gandhi, Edward J. Dick Jr., Shannan Hall-Ursone, Smriti Mehra, Larry S. Schlesinger, Jyothi Rengarajan, Deepak Kaushal
Riti Sharan, Shashank R. Ganatra, Dhiraj K. Singh, Journey Cole, Taylor W. Foreman, Rajesh Thippeshappa, Charles A. Peloquin, Vinay Shivanna, Olga Gonzalez, Cheryl L. Day, Neel R. Gandhi, Edward J. Dick Jr., Shannan Hall-Ursone, Smriti Mehra, Larry S. Schlesinger, Jyothi Rengarajan, Deepak Kaushal
View: Text | PDF

Isoniazid and rifapentine treatment effectively reduces persistent M. tuberculosis infection in macaque lungs

  • Text
  • PDF
Abstract

Once-weekly oral dose of isoniazid and rifapentine for 12 weeks (3HP) is recommended by CDC for treatment of latent tuberculosis infection (LTBI). The aim of this study is to assess 3HP-mediated clearance of Mtb bacteria in macaques with asymptomatic LTBI. Twelve Indian rhesus macaques were infected with low dose (~10 CFU) of Mtb CDC1551 via aerosol. Six animals were treated with 3HP and six were left untreated. The animals were imaged via positron emissions tomography – computed tomography (PET/CT) at frequent intervals. Upon treatment completion, all animals except one were coinfected with simian immunodeficiency virus to assess reactivation of LTBI to active TB disease. Four of six treated macaques showed no evidence of persistent bacilli or extrapulmonary spread until study end-point. PET/CT demonstrated the presence of significantly more granulomas in untreated animals relative to the treated group. The untreated animals harbored persistent bacilli and demonstrated TB reactivation following SIV coinfection while none of the treated animals reactivated to active TB disease (ATB). 3HP treatment effectively reduced persistent infection with Mtb and prevented reactivation of TB disease in latently infected macaques.

Authors

Riti Sharan, Shashank R. Ganatra, Dhiraj K. Singh, Journey Cole, Taylor W. Foreman, Rajesh Thippeshappa, Charles A. Peloquin, Vinay Shivanna, Olga Gonzalez, Cheryl L. Day, Neel R. Gandhi, Edward J. Dick Jr., Shannan Hall-Ursone, Smriti Mehra, Larry S. Schlesinger, Jyothi Rengarajan, Deepak Kaushal

×

Integrated hepatitis B virus DNA maintains surface antigen production during antivirals
Tanner Grudda, Hyon S. Hwang, Maraake Taddese, Jeffrey Quinn, Mark S. Sulkowski, Richard K. Sterling, Ashwin Balagopal, Chloe L. Thio
Tanner Grudda, Hyon S. Hwang, Maraake Taddese, Jeffrey Quinn, Mark S. Sulkowski, Richard K. Sterling, Ashwin Balagopal, Chloe L. Thio
View: Text | PDF

Integrated hepatitis B virus DNA maintains surface antigen production during antivirals

  • Text
  • PDF
Abstract

The focus of hepatitis B functional cure, defined as sustained loss of hepatitis B surface antigen (HBsAg) and HBV DNA from blood, is on eliminating or silencing the intranuclear template for HBV replication, covalently closed circular DNA (cccDNA). However, HBsAg also derives from HBV DNA integrated into the host genome (iDNA). Little is known about the contribution of iDNA to circulating HBsAg with current therapeutics. We applied a multiplex ddPCR assay to demonstrate that iDNA is responsible for maintaining HBsAg quantities in some individuals. Using paired bulk liver tissue from 16 HIV/HBV coinfected persons on nucleos(t)ide analogue (NUC) therapy, we demonstrate that people with larger HBsAg declines between biopsies derive HBsAg from cccDNA whereas people with stable HBsAg levels derive predominantly from iDNA. We applied our assay to individual hepatocytes in paired tissues from three people and demonstrated that the individual with significant HBsAg decline had a commensurate loss of infected cells with transcriptionally active cccDNA, while individuals without HBsAg decline had stable or increasing numbers of cells producing HBsAg from iDNA. We demonstrate that while NUC therapy may be effective at controlling cccDNA replication and transcription, innovative treatments are required to address iDNA transcription that sustains HBsAg production.

Authors

Tanner Grudda, Hyon S. Hwang, Maraake Taddese, Jeffrey Quinn, Mark S. Sulkowski, Richard K. Sterling, Ashwin Balagopal, Chloe L. Thio

×
  • ← Previous
  • 1
  • 2
  • …
  • 10
  • 11
  • 12
  • …
  • 35
  • 36
  • Next →

No posts were found with this tag.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts