Lung-resident memory B cells (BRM cells) are elicited after influenza infections of mice, but connections to other pathogens and hosts — as well as their functional significance — have yet to be determined. We postulate that BRM cells are core components of lung immunity. To test this, we examined whether lung BRM cells are elicited by the respiratory pathogen pneumococcus, are present in humans, and are important in pneumonia defense. Lungs of mice that had recovered from pneumococcal infections did not contain organized tertiary lymphoid organs, but did have plasma cells and noncirculating memory B cells. The latter expressed distinctive surface markers (including CD69, PD-L2, CD80, and CD73) and were poised to secrete antibodies upon stimulation. Human lungs also contained B cells with a resident memory phenotype. In mice recovered from pneumococcal pneumonia, depletion of PD-L2+ B cells, including lung BRM cells, diminished bacterial clearance and the level of pneumococcus-reactive antibodies in the lung. These data define lung BRM cells as a common feature of pathogen-experienced lungs and provide direct evidence of a role for these cells in pulmonary antibacterial immunity.
Kimberly A. Barker, Neelou S. Etesami, Anukul T. Shenoy, Emad I. Arafa, Carolina Lyon de Ana, Nicole M.S. Smith, Ian M.C. Martin, Wesley N. Goltry, Alexander M.S. Barron, Jeffrey L. Browning, Hasmeena Kathuria, Anna C. Belkina, Antoine Guillon, Xuemei Zhong, Nicholas A. Crossland, Matthew R. Jones, Lee J. Quinton, Joseph P. Mizgerd
Chronic hepatitis B (CHB) infection is rarely eradicated by current antiviral nucleos(t)ide analogues. We found that α2,6-biantennary sialoglycans of HBV surface antigen (HBsAg) bound human SIGLEC-3 (CD33) by IP and ELISA, and the binding affinity between SIGLEC-3 and α2,6-biantennary sialoglycans was determined by biolayer interferometry (equilibrium dissociation constant [KD]: 1.95 × 10–10 ± 0.21 × 10–10 M). Moreover, HBV activated SIGLEC-3 on myeloid cells and induced immunosuppression by stimulating immunoreceptor tyrosine-based inhibitory motif phosphorylation and SHP-1/-2 recruitment via α2,6-biantennary sialoglycans on HBsAg. An antagonistic anti–SIGLEC-3 mAb reversed this effect and enhanced cytokine production in response to TLR-7 agonist GS-9620 in PBMCs from CHB patients. Moreover, anti–SIGLEC-3 mAb alone was able to upregulate the expression of molecules involved in antigen presentation, such as CD80, CD86, CD40, MHC-I, MHC-II, and PD-L1 in CD14+ cells. Furthermore, SIGLEC-3 SNP rs12459419 C, which expressed a higher amount of SIGLEC-3, was associated with increased risk of hepatocellular carcinoma (HCC) in CHB patients (HR: 1.256, 95% CI: 1.027–1.535, P = 0.0266). Thus, blockade of SIGLEC-3 is a promising strategy to reactivate host immunity to HBV and lower the incidence of HCC in the CHB patient population.
Tsung-Yu Tsai, Ming-Ting Huang, Pei-Shan Sung, Cheng-Yuan Peng, Mi-Hua Tao, Hwai-I Yang, Wei-Chiao Chang, An-Suei Yang, Chung-Ming Yu, Ya-Ping Lin, Ching-Yu Bau, Chih-Jen Huang, Mei-Hung Pan, Chung-Yi Wu, Chwan-Deng Hsiao, Yi-Hung Yeh, Shiteng Duan, James C Paulson, Shie-Liang Hsieh
Peripheral T-cell lymphomas (PTCLs) represent a significant unmet medical need with dismal clinical outcome. T-cell receptor (TCR) is emerging as a key driver of T lymphocytes transformation. However, the role of chronic TCR activation in lymphomagenesis and in survival of lymphoma cells is still poorly understood. Using an original mouse model, we report here that chronic TCR stimulation drives T-cell lymphomagenesis whereas TCR signaling does not contribute to PTCL survival. The combination of kinome, transcriptome and epigenome analyses of mouse PTCLs revealed a NK-like reprogramming of PTCL cells with expression of NK receptors (NKRs) and downstream signaling molecules such as Tyrobp and Syk. Activating NKR were functional in PTCLs and dependent of Syk activity. In vivo blockade of NKR signaling prolonged mouse survival, demonstrating the addiction of PTCLs to NKR and downstream Syk/mTOR activity for their survival. Studying a large collection of human primary samples, we identified several PTCLs recapitulating the phenotype described in this model by expressing NKR and Syk, suggesting similar mechanism of lymphomagenesis and establishing rationales for clinical trials targeting such molecules.
Sylvain Carras, Dimitri Chartoire, Sylvain Mareschal, Maël Heiblig, Antoine Marçais, Rémy Robinot, Mirjam Urb, Roxane M. Pommier, Edith Julia, Amel Chebel, Aurélie Verney, Charlotte Bertheau, Emilie Bardel, Caroline Fezelot, Lucien Courtois, Camille Lours, Alyssa Bouska, Sunandini Sharma, Christine Lefebvre, Jean-Pierre Rouault, David Sibon, Anthony Ferrari, Javeed Iqbal, Laurence de Leval, Philippe Gaulard, Alexandra Traverse-Glehen, Pierre Sujobert, Mathieu Bléry, Gilles Salles, Thierry Walzer, Emmanuel Bachy, Laurent Genestier
Autoantibodies to interferon(IFN)-α and IFN-ω (type I IFNs) were recently reported as causative for severe COVID-19 in the general population. Autoantibodies against IFN-α and IFN-ω are present in almost all patients with Autoimmune-Polyendocrine-Syndrome Type 1 (APS-1) caused by biallelic deleterious or heterozygous dominant mutations in AIRE. We therefore hypothesized that autoantibodies against type I IFNs also predispose patients with APS-1 to severe COVID-19. We prospectively studied six patients with APS-1 between April 1st, 2020 and April 1st, 2021. Biobanked pre-COVID-19 sera of APS-1 subjects were tested for neutralizing autoantibodies to IFN-αand IFN-ω. The patients ́ sera ability to block recombinant human IFN-α and IFN-ω was assessed by assays quantifying phosphorylation of signal transducer and activator of transcription 1 (STAT1) as well as infection-based IFN-neutralization assays. We describe four patients with APS-1 and pre-existing high titers of neutralizing autoantibodies to IFN-α and IFN-ω who contracted SARS-CoV-2, yet developed only mild symptoms of COVID-19. None of the patients developed dyspnoea, oxygen requirement or high temperature. All infected patients with APS-1 shared female sex and age younger than 26 years. Clinical penetrance of neutralizing autoantibodies against type I IFNs for severe COVID-19 is not complete.
Christian Meisel, Bengisu Akbil, Tim Meyer, Erwin Lankes, Victor M. Corman, Olga Staudacher, Nadine Unterwalder, Uwe Kölsch, Christian Drosten, Marcus A. Mall, Tilmann Kallinich, Dirk Schnabel, Christine Goffinet, Horst von Bernuth
Sepsis survivors exhibit impaired responsiveness to antigen (Ag) challenge associated with increased mortality from infection. The contribution of follicular dendritic cells (FDCs) in the impaired humoral response in sepsis-surviving mice is investigated in this study. We demonstrated that mice subjected to sepsis from cecal ligation and puncture (CLP) have reduced NP-specific high-affinity class-switched Ig antibodies compared to sham control mice following immunization with the T-dependent Ag, NP-CGG. NP-specific germinal center (GC) B cells in CLP mice exhibited reduced TNFα and AID mRNA expression compared to sham mice. CLP mice showed a reduction in FDC clusters, a reduced binding of immune complexes on FDCs, and reduced mRNA expression of CR2, ICAM-1, VCAM-1, FcγRIIB, TNFR1, IKK2 and LTbR compared to sham mice. Adoptive transfer studies showed there was no B cell-intrinsic defect. In summary, our data suggest that the reduced Ag-specific antibody response in CLP mice is secondary to a disruption in FDC and GC B cell function.
Minakshi Rana, Andrea La Bella, Rivka Lederman, Bruce T. Volpe, Barbara Sherry, Betty Diamond
BACKGROUND. Currently used COVID-19 vaccines require two doses to achieve optimal vaccination, and there is no indication as to whether individuals who have been exposed to SARS-CoV-2 should be vaccinated, or should receive one or two vaccine doses. METHODS. Here, we tested the antibody response developed after administration of the Pfizer/BioNTech vaccine in 124 healthcare professionals of which 57 had a previous history of SARS-CoV-2 exposure (SARS-CoV-2-Exp), with or without symptoms. RESULTS. Post-vaccine antibodies in SARS-CoV-2 exposed individuals increased exponentially within 5-18 days after the first dose compared to naïve subjects (P < 0.0001). In a multivariate Linear Regression (LR) model we showed that the antibody response depended on the IgG pre-vaccine titer and on the exposure to SARS-CoV-2. In symptomatic SARS-CoV-2 exposed individuals, IgG reached a plateau after the second dose, and those that voluntarily refrained from receiving the second dose (n = 7) retained their antibody response. Gastrointestinal symptoms, muscle pain and fever significantly positively correlated with increased IgG responses. By contrast, all a/paucisymptomatic and unexposed individuals showed an important increase after the second dose. CONCLUSION. Thus, one vaccine dose is sufficient in symptomatic SARS-CoV-2 exposed subjects to reach a high titer of antibodies suggesting no need for a second dose, particularly in light of current vaccine shortage. TRIAL REGISTRATION. ClincalTrials.gov NCT04387929 FUNDING. This work was partially supported by a philantropic donation by Dolce & Gabbana and by the Italian Ministry of Health (Ricerca corrente).
Riccardo Levi, Elena Azzolini, Chiara Pozzi, Leonardo Ubaldi, Michele Lagioia, Alberto Mantovani, Maria Rescigno
The characterization of the adaptive immune response to COVID-19 vaccination in individuals who recovered from SARS-CoV-2 infection may define current and future clinical practice. To determine the effect of two doses BNT162b2 mRNA COVID-19 vaccination schedule in individuals who recovered from COVID-19 (COVID-19 recovered) compared to naïve subjects, we evaluated SARS-CoV-2 Spike-specific T and B cell responses, as well as specific IgA, IgG, IgM and neutralizing antibodies titers in 22 individuals who received BNT162b2 mRNA COVID-19 vaccine, 11 of which had a previous history of SARS-CoV-2 infection. Evaluations were performed before vaccination and then weekly until 7 days post second injection. Data obtained clearly showed that one vaccine dose is sufficient to increase both cellular and humoral immune response in COVID-19 recovered subjects without any additional improvement after the second dose. On the contrary, the second dose is proved mandatory in naïve ones to further enhance the immune response. These findings were further confirmed at serological level in a larger cohort of naïve (68) and COVID-19 recovered (29) subjects, tested up to 50 days post vaccination. These results question whether a second vaccine injection in COVID-19 recovered subjects is required and indicate that millions of vaccine doses may be redirected to naïve individuals, thus shortening the time to reach herd immunity.
Alessio Mazzoni, Nicoletta Di Lauria, Laura Maggi, Lorenzo Salvati, Anna Vanni, Manuela Capone, Giulia Lamacchia, Elisabetta Mantengoli, Michele Spinicci, Lorenzo Zammarchi, Seble Tekle Kiros, Arianna Rocca, Filippo Lagi, Maria Grazia Colao, Paola Parronchi, Cristina Scaletti, Lucia Turco, Francesco Liotta, Gian Maria Rossolini, Lorenzo Cosmi, Alessandro Bartoloni, Francesco Annunziato
Restriction of HIV-1 replication in elite controllers (ECs) is frequently attributed to T cell–mediated immune responses, while the specific contribution of innate immune cells is less clear. Here, we demonstrate an upregulation of the host long noncoding RNA (lncRNA) MIR4435-2HG in primary myeloid dendritic cells (mDCs) from ECs. Elevated expression of this lncRNA in mDCs was associated with a distinct immunometabolic profile, characterized by increased oxidative phosphorylation and glycolysis activities in response to TLR3 stimulation. Using functional assays, we show that MIR4435-2HG directly influenced the metabolic state of mDCs, likely through epigenetic mechanisms involving H3K27ac enrichment at an intronic enhancer in the RPTOR gene locus, the main component of the mammalian target of rapamycin complex 1 (mTORC1). Together, these results suggest a role of MIR4435-2HG for enhancing immunometabolic activities of mDCs in ECs through targeted epigenetic modifications of a member of the mTOR signaling pathway.
Ciputra Adijaya Hartana, Yelizaveta Rassadkina, Ce Gao, Enrique Martin-Gayo, Bruce D. Walker, Mathias Lichterfeld, Xu G. Yu
Disrupting transmission of Borrelia burgdorferi (B. burgdorferi ) from infected ticks to humans is one strategy to prevent the significant morbidity from Lyme disease. We have previously shown that an anti-OspA human monoclonal antibody, 2217, prevents transmission of B. burgdorferi from infected ticks in animal models. Maintenance of a protective plasma concentration of a human monoclonal antibody for tick season presents a significant challenge for a pre-exposure prophylaxis strategy. Here, we describe the optimization of 2217 by amino acid substitutions (LS, M428L and N434S) into the Fc domain. The LS mutation led to a twofold-increase in half-life in cynomolgus monkeys. In a rhesus macaque model, 2217LS protected animals from tick transmission of spirochetes at a dose of 3 mg/kg. Crystallographic analysis of Fab in complex with OspA reveals that 2217 binds a novel epitope that is highly conserved among the B. burgdorferi, B. garinii, and B. afzelii species. Unlike most vaccines that may require boosters to achieve protection, our work supports the development of 2217LS as an effective pre-exposure prophylaxis in Lyme-endemic regions with a single dose at the beginning of tick season offering immediate protection that remains for the duration of exposure risk.
Zachary A. Schiller, Michael J. Rudolph, Jacqueline R. Toomey, Monir Ejemel, Alan LaRochelle, Simon A. Davis, Havard S. Lambert, Aurélie Kern, Amanda C. Tardo, Colby A. Souders, Eric Peterson, Rebecca D. Cannon, Chandrashekar Ganesa, Frank Fazio, Nicholas J. Mantis, Lisa A. Cavacini, John Sullivan-Bolyai, Linden T. Hu, Monica E. Embers, Mark S. Klempner, Yang Wang
T cell immunity is essential for the control of tuberculosis (TB), an important disease of the lung, and is generally studied in humans using peripheral blood cells. Mounting evidence, however, indicates that tissue resident memory T cells (Trm) are superior at controlling many pathogens, including Mycobacterium tuberculosis (Mtb), and can be quite different from those in circulation. Using freshly resected lung tissue, from individuals with active or previous TB, we identified distinct CD4 and CD8 Trm-like clusters within TB diseased lung tissue that were functional and enriched for IL-17 producing cells. Mtb-specific CD4 T cells producing TNF-α, IL-2 and IL-17 were highly expanded in the lung compared to matched blood samples, in which IL-17+ cells were largely absent. Strikingly, the frequency of Mtb-specific lung T cells making IL-17, but not other cytokines, inversely correlated with the plasma IL-1β levels, suggesting a potential link with disease severity. Using a human granuloma model, we showed the addition of either exogenous IL-17 or IL-2 enhanced immune control of Mtb and was associated with increased NO production. Taken together, these data support an important role for Mtb-specific Trm-like IL-17 producing cells in the immune control of Mtb in the human lung.
Paul Ogongo, Liku B. Tezera, Amanda Ardain, Shepherd Nhamoyebonde, Duran Ramsuran, Alveera Singh, Abigail Ngoepe, Farina Karim, Taryn Naidoo, Khadija Khan, Kaylesh J. Dullabh, Michael Fehlings, Boon Heng Lee, Alessandra Nardin, Cecilia S. Lindestam Arlehamn, Alessandro Sette, Samuel M. Behar, Adrie J.C. Steyn, Rajhmun Madansein, Henrik N. Kløverpris, Paul T. Elkington, Alasdair Leslie