Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Lung-resident memory B cells protect against bacterial pneumonia
Kimberly A. Barker, … , Lee J. Quinton, Joseph P. Mizgerd
Kimberly A. Barker, … , Lee J. Quinton, Joseph P. Mizgerd
Published June 1, 2021
Citation Information: J Clin Invest. 2021;131(11):e141810. https://doi.org/10.1172/JCI141810.
View: Text | PDF
Research Article Immunology Pulmonology

Lung-resident memory B cells protect against bacterial pneumonia

  • Text
  • PDF
Abstract

Lung-resident memory B cells (BRM cells) are elicited after influenza infections of mice, but connections to other pathogens and hosts — as well as their functional significance — have yet to be determined. We postulate that BRM cells are core components of lung immunity. To test this, we examined whether lung BRM cells are elicited by the respiratory pathogen pneumococcus, are present in humans, and are important in pneumonia defense. Lungs of mice that had recovered from pneumococcal infections did not contain organized tertiary lymphoid organs, but did have plasma cells and noncirculating memory B cells. The latter expressed distinctive surface markers (including CD69, PD-L2, CD80, and CD73) and were poised to secrete antibodies upon stimulation. Human lungs also contained B cells with a resident memory phenotype. In mice recovered from pneumococcal pneumonia, depletion of PD-L2+ B cells, including lung BRM cells, diminished bacterial clearance and the level of pneumococcus-reactive antibodies in the lung. These data define lung BRM cells as a common feature of pathogen-experienced lungs and provide direct evidence of a role for these cells in pulmonary antibacterial immunity.

Authors

Kimberly A. Barker, Neelou S. Etesami, Anukul T. Shenoy, Emad I. Arafa, Carolina Lyon de Ana, Nicole M.S. Smith, Ian M.C. Martin, Wesley N. Goltry, Alexander M.S. Barron, Jeffrey L. Browning, Hasmeena Kathuria, Anna C. Belkina, Antoine Guillon, Xuemei Zhong, Nicholas A. Crossland, Matthew R. Jones, Lee J. Quinton, Joseph P. Mizgerd

×

Figure 1

Pneumococcal exposures provide lung protection without extensive changes to the blood transcriptome.

Options: View larger image (or click on image) Download as PowerPoint
Pneumococcal exposures provide lung protection without extensive changes...
(A) B6 mice were exposed to i.t. or i.n. pneumococcus (Sp19F) or saline in the left lung lobe twice with a 1-week interval, then allowed to recover for at least 4 weeks, at which point they were referred to as “experienced” or “naive,” respectively. (B) Experienced and naive mice were challenged with i.t. pneumococcus (Sp3) for 24 hours before lung bacterial burdens were assessed (Mann-Whitney U test, *P = 0.0006). Principal component analysis (C) and read counts (D) from RNA-Seq of whole blood collected from the same naive and experienced mice as in B prior to Sp3 challenge. Data point size in C is proportional to the 24-hour lung Sp3 CFU of each mouse in B. Each point in D represents 1 gene.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts