Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Hepatology

  • 167 Articles
  • 2 Posts
  • ← Previous
  • 1
  • 2
  • 3
  • 4
  • …
  • 16
  • 17
  • Next →
TRIM56 protects against non-alcoholic fatty liver disease via promoting the degradation of fatty acid synthase
Suowen Xu, … , Yan-Xiao Ji, Jianping Weng
Suowen Xu, … , Yan-Xiao Ji, Jianping Weng
Published January 11, 2024
Citation Information: J Clin Invest. 2024. https://doi.org/10.1172/JCI166149.
View: Text | PDF

TRIM56 protects against non-alcoholic fatty liver disease via promoting the degradation of fatty acid synthase

  • Text
  • PDF
Abstract

Nonalcoholic liver disease (NAFLD) encompasses a disease continuum from simple steatosis, to non-alcoholic steatohepatitis (NASH). However, there are currently no approved pharmacotherapies for NAFLD although several drugs are in advanced stages of clinical development. Because of the complex pathophysiology and heterogeneity of NALFD, identification of potential therapeutic targets is clinically important. Here, we demonstrated that TRIM56 protein abundance is markedly downregulated in the livers of individuals with NAFLD and mice fed a high-fat diet. Hepatocyte-specific ablation of TRIM56 exacerbated the progression of NAFLD, while hepatic TRIM56 overexpression suppressed it. Integrative analyses of interactomic and transcriptomic profiling revealed a pivotal role of TRIM56 in lipid metabolism and identified lipogenesis factor FASN as a direct binding partner of TRIM56. TRIM56 directly interacts with FASN and triggers its K48-linked ubiquitination-dependent degradation. Finally, by using AI-based virtual screening, we discovered an orally bioavailable small-molecule inhibitor of FASN (named FASstatin) which potentiates TRIM56-mediated FASN ubiquitination. Therapeutic administration of FASstatin improved NAFLD and NASH pathologies in mice with optimal safety, tolerability and pharmacokinetic profile. Our findings provide the proof-of-concept that targeting the TRIM56/FASN axis in hepatocytes may offer potential therapeutic avenues to treat NAFLD.

Authors

Suowen Xu, Xiumei Wu, Sichen Wang, Mengyun Xu, Tingyu Fang, Xiaoxuan Ma, Meijie Chen, Jiajun Fu, Juan Guo, Song Tian, Tian Tian, Xu Cheng, Hailong Yang, Junjie Zhou, Zhenya Wang, Yanjun Yin, Wen Xu, Fen Xu, Jinhua Yan, Zhihua Wang, Sihui Luo, Xiao-Jing Zhang, Yan-Xiao Ji, Jianping Weng

×

Mitochondrial- and NOX4-dependent antioxidant defence mitigates progression to non-alcoholic steatohepatitis in obesity
Spencer Greatorex, … , Matthew J. Watt, Tony Tiganis
Spencer Greatorex, … , Matthew J. Watt, Tony Tiganis
Published December 7, 2023
Citation Information: J Clin Invest. 2023. https://doi.org/10.1172/JCI162533.
View: Text | PDF

Mitochondrial- and NOX4-dependent antioxidant defence mitigates progression to non-alcoholic steatohepatitis in obesity

  • Text
  • PDF
Abstract

Non-alcoholic fatty liver disease (NAFLD) is prevalent in the majority of obese individuals, but in a subset, this progresses to non-alcoholic steatohepatitis (NASH) and fibrosis. The mechanisms that prevent NASH and fibrosis in the majority of NAFLD patients remain unclear. Here we report that NAD(P)H oxidase (NOX)-4 and nuclear factor erythroid 2-related factor 2 (NFE2L2) were elevated in hepatocytes early in disease progression to prevent NASH/fibrosis. Mitochondrial-derived reactive oxygen species (ROS) activated NFE2L2 to induce the expression of NOX4, which in turn generated H2O2 to exacerbate the NFE2L2 antioxidant defense response. The deletion or inhibition of NOX4 in hepatocytes decreased ROS and attenuated antioxidant defense to promote mitochondrial oxidative stress, damage proteins and lipids, diminish insulin signalling and promote cell death upon oxidant challenge. Hepatocyte NOX4 deletion in high fat fed obese mice, which otherwise develop steatosis, but not NASH, resulted in hepatic oxidative damage, inflammation and T cell recruitment to drive NASH and fibrosis, whereas NOX4 overexpression tempered the development of NASH/fibrosis in mice fed a NASH-promoting diet. Thus, mitochondrial- and NOX4-derived ROS function in concert to drive a NFE2L2 antioxidant defense response to attenuate oxidative liver damage and the progression to NASH/fibrosis in obesity.

Authors

Spencer Greatorex, Supreet Kaur, Chrysovalantou E. Xirouchaki, Pei Kee Goh, Florian Wiede, Amanda J. Genders, Melanie Tran, YaoYao Jia, Arthe Raajendiran, Wendy A. Brown, Catriona A. McLean, Junichi Sadoshima, Matthew J. Watt, Tony Tiganis

×

Hepatitis B virus infection disrupts homologous recombination in hepatocellular carcinoma by stabilizing resection inhibitor ADRM1
Ming Zeng, … , Antony M. Carr, Cong Liu
Ming Zeng, … , Antony M. Carr, Cong Liu
Published October 10, 2023
Citation Information: J Clin Invest. 2023. https://doi.org/10.1172/JCI171533.
View: Text | PDF

Hepatitis B virus infection disrupts homologous recombination in hepatocellular carcinoma by stabilizing resection inhibitor ADRM1

  • Text
  • PDF
Abstract

Many cancers harbour homologous recombination defect (HRD), the therapeutic target being successfully applied in treating breast/ovarian cancer via synthetic lethality. However, canonical HRD caused by BRCAness mutations is not explicit in liver cancer. Here we report a subtype of HRD caused by the perturbation of a proteasome variant (CDW19S) in hepatitis B virus (HBV) bearing cells. This amalgamate protein complex contained the 19S proteasome decorated with CRL4WDR70 ubiquitin ligase, and assembled at broken chromatin in a PSMD4Rpn10 and ATM- MDC1-RNF8 dependent manner. CDW19S promoted DNA end processing via segregated modules that promote nuclease activities of MRE11 and EXO1. Contrarily, a proteasomal component, ADRM1Rpn13, inhibited resection and was removed by CRL4WDR70-catalysed ubiquitination upon commitment of extensive resection. HBx interfered with ADRM1Rpn13 degradation, leading to the imposition of ADRM1Rpn13-dependent resection barrier and consequent viral HRD subtype distinguishable from that caused by BRCA1 defect. Finally, we demonstrated that viral HRD in HBV-associated hepatocellular carcinoma (HBVHCC) can be exploited to restrict tumor progression. Our work clarifies the underlying mechanism of a viral-induced HRD subtype.

Authors

Ming Zeng, Zizhi Tang, Laifeng Ren, Haibin Wang, Xiaojun Wang, Wenyuan Zhu, Xiaobing Mao, Zeyang Li, Xianming Mo, Jun Chen, Junhong Han, Daochun Kong, Jianguo Ji, Antony M. Carr, Cong Liu

×

Loss of Mtm1 causes cholestatic liver disease in a model of X-linked myotubular myopathy
Sophie Karolczak, … , Chunyue Yin, James J. Dowling
Sophie Karolczak, … , Chunyue Yin, James J. Dowling
Published July 25, 2023
Citation Information: J Clin Invest. 2023. https://doi.org/10.1172/JCI166275.
View: Text | PDF

Loss of Mtm1 causes cholestatic liver disease in a model of X-linked myotubular myopathy

  • Text
  • PDF
Abstract

X-linked myotubular myopathy (XLMTM) is a fatal congenital disorder caused by mutations in the MTM1 gene. Currently, there are no approved treatments, though AAV8-mediated gene transfer therapy has shown promise in animal models and preliminarily in patients. However, four patients with XLMTM treated with gene therapy have died from progressive liver failure, and hepatobiliary disease has now been recognized more broadly in association with XLMTM. In an attempt to understand whether loss of MTM1 itself is associated with liver pathology, we have characterized a novel liver phenotype in a zebrafish model of this disease. Specifically, we have found that loss-of-function mutations in mtm1 lead to severe liver abnormalities including impaired bile flux, structural abnormalities of the bile canaliculus, and improper endosomal-mediated trafficking of canalicular transporters. Using a reporter tagged Mtm1 zebrafish line, we have established localization of Mtm1 in the liver in association with Rab11 and canalicular transport proteins, and demonstrated that hepatocyte specific re-expression of Mtm1 can rescue the cholestatic phenotype. Lastly, we completed a targeted chemical screen, and found that Dynasore, a dynamin II inhibitor, is able to partially restore bile flow and transporter localization to the canalicular membrane. In summary, we demonstrate for the first time liver abnormalities that are directly caused by MTM1 mutation in a pre-clinical model, thus establishing the critical framework for better understanding and comprehensive treatment of the human disease.

Authors

Sophie Karolczak, Ashish R. Deshwar, Evangelina Aristegui, Binita M. Kamath, Michael W. Lawlor, Gaia Andreoletti, Jonathan R. Volpatti, Jillian L. Ellis, Chunyue Yin, James J. Dowling

×

Blood-derived lysophospholipid sustains hepatic phospholipids and fat storage necessary for hepatoprotection in overnutrition
Cheen Fei Chin, … , Federico Torta, David L. Silver
Cheen Fei Chin, … , Federico Torta, David L. Silver
Published July 18, 2023
Citation Information: J Clin Invest. 2023. https://doi.org/10.1172/JCI171267.
View: Text | PDF

Blood-derived lysophospholipid sustains hepatic phospholipids and fat storage necessary for hepatoprotection in overnutrition

  • Text
  • PDF
Abstract

The liver has a high demand for phosphatidylcholine (PC) particularly in overnutrition where reduced phospholipid levels have been implicated in the development of non-alcoholic fatty liver disease (NAFLD). Whether other pathways exist in addition to de novo PC synthesis that contribute to hepatic PC pools remains unknown. Here, we identified the lysophosphatidylcholine (LPC) transporter Mfsd2a as critical for maintaining hepatic phospholipid pools. Hepatic Mfsd2a expression was induced in patients having NAFLD and in mice in response to dietary fat via glucocorticoid receptor action. Mfsd2a liver-specific deficiency in mice (L2aKO) led to a robust NASH-like phenotype within just two weeks of dietary fat challenge associated with reduced hepatic phospholipids containing linoleic acid. Reducing dietary choline intake in L2aKO mice exacerbated liver pathology and deficiency of liver phospholipids containing polyunsaturated fatty acids (PUFA). Treating hepatocytes with LPC containing oleate and linoleate, two abundant blood-derived LPCs, specifically induced lipid droplet biogenesis and contributed to phospholipid pools, while LPC containing the omega-3 fatty acid DHA promoted lipid droplet formation and suppressed lipogenesis. This study revealed that PUFA containing LPCs drive both hepatic lipid droplet formation, suppress lipogenesis and sustain hepatic phospholipid pools--processes that are critical for protecting the liver from excess dietary fat.

Authors

Cheen Fei Chin, Dwight L.A. Galam, Liang Gao, Bryan C. Tan, Bernice H. Wong, Geok-Lin Chua, Randy Y.J. Loke, Yen Ching Lim, Markus R. Wenk, Miao Shan Lim, Wei-Qiang Leow, George B.B. Goh, Federico Torta, David L. Silver

×

Monocyte-derived macrophages orchestrate multiple cell-type interactions to repair necrotic liver lesions in disease models
Dechun Feng, … , George Kunos, Bin Gao
Dechun Feng, … , George Kunos, Bin Gao
Published June 20, 2023
Citation Information: J Clin Invest. 2023. https://doi.org/10.1172/JCI166954.
View: Text | PDF

Monocyte-derived macrophages orchestrate multiple cell-type interactions to repair necrotic liver lesions in disease models

  • Text
  • PDF
Abstract

The liver can fully regenerate after partial resection and its underlying mechanisms have been extensively studied. The liver can also rapidly regenerate after injury with most studies focusing on hepatocyte proliferation; however, how hepatic necrotic lesions during acute or chronic liver diseases are eliminated and repaired remains obscure. Here we demonstrated that monocyte-derived macrophages (MoMFs) were rapidly recruited to and encapsulate necrotic areas during immune-mediated liver injury, and this feature was essential in repairing necrotic lesions. At the early stage of injury, infiltrating MoMFs activated the JAG1-NOTCH2 axis to induce cell death-resistant SOX9+ hepatocytes near the necrotic lesions, which acted as a barrier from further injury. Subsequently, necrotic environment (hypoxia and dead cells) induced a cluster of C1q+MoMFs that promoted necrotic removal and liver repair, while Pdgfb+MoMFs activated hepatic stellate cells (HSCs) to express -smooth muscle actin and induce a strong contraction signal (YAP, pMLC) to squeeze and finally eliminate the necrotic lesions. In conclusion, MoMFs play a key role in repairing the necrotic lesions not only by removing necrotic tissues but also by inducing cell death resistant hepatocytes to form a perinecrotic capsule and by activating α-smooth actin expressing HSCs to facilitate necrotic lesion resolution.

Authors

Dechun Feng, Xiaogang Xiang, Yukun Guan, Adrien Guillot, Hongkun Lu, Chingwen Chang, Yong He, Hua Wang, Hongna Pan, Cynthia Ju, Sean P. Colgan, Frank Tacke, Xin Wei Wang, George Kunos, Bin Gao

×

Hepatocyte SREBP signaling mediates clock communication within the liver
Dongyin Guan, … , Cholsoon Jang, Mitchell A. Lazar
Dongyin Guan, … , Cholsoon Jang, Mitchell A. Lazar
Published April 17, 2023
Citation Information: J Clin Invest. 2023;133(8):e163018. https://doi.org/10.1172/JCI163018.
View: Text | PDF

Hepatocyte SREBP signaling mediates clock communication within the liver

  • Text
  • PDF
Abstract

Rhythmic intraorgan communication coordinates environmental signals and the cell-intrinsic clock to maintain organ homeostasis. Hepatocyte-specific KO of core components of the molecular clock Rev-erbα and -β (Reverb-hDKO) alters cholesterol and lipid metabolism in hepatocytes as well as rhythmic gene expression in nonparenchymal cells (NPCs) of the liver. Here, we report that in fatty liver caused by diet-induced obesity (DIO), hepatocyte SREBP cleavage–activating protein (SCAP) was required for Reverb-hDKO–induced diurnal rhythmic remodeling and epigenomic reprogramming in liver macrophages (LMs). Integrative analyses of isolated hepatocytes and LMs revealed that SCAP-dependent lipidomic changes in REV-ERB–depleted hepatocytes led to the enhancement of LM metabolic rhythms. Hepatocytic loss of REV-ERBα and β (REV-ERBs) also attenuated LM rhythms via SCAP-independent polypeptide secretion. These results shed light on the signaling mechanisms by which hepatocytes regulate diurnal rhythms in NPCs in fatty liver disease caused by DIO.

Authors

Dongyin Guan, Hosung Bae, Dishu Zhou, Ying Chen, Chunjie Jiang, Cam Mong La, Yang Xiao, Kun Zhu, Wenxiang Hu, Trang Minh Trinh, Panpan Liu, Ying Xiong, Bishuang Cai, Cholsoon Jang, Mitchell A. Lazar

×

Combination of AFP vaccine and immune checkpoint inhibitors slows hepatocellular carcinoma progression in preclinical models
Xinjun Lu, … , Chao Liu, Xin Chen
Xinjun Lu, … , Chao Liu, Xin Chen
Published April 11, 2023
Citation Information: J Clin Invest. 2023. https://doi.org/10.1172/JCI163291.
View: Text | PDF

Combination of AFP vaccine and immune checkpoint inhibitors slows hepatocellular carcinoma progression in preclinical models

  • Text
  • PDF
Abstract

Many hepatocellular carcinoma (HCC) patients do not respond to the first-line immune checkpoint inhibitor treatment. Immunization with effective cancer vaccines is an attractive alternative approach to immunotherapy. However, its efficacy remains insufficiently evaluated in preclinical studies. Here, we investigated HCC-associated self/tumor antigen, α-fetoprotein (AFP) based vaccine immunization for treating AFP (+) HCC mouse models. We found that AFP immunization effectively induced AFP-specific CD8+ T cells in vivo. However, these CD8+ T cells expressed exhaustion markers, including PD1, LAG3, and Tim3. Furthermore, the AFP vaccine effectively prevented c-MYC/Mcl1 HCC initiation when administrated before tumor formation, while it was ineffective against full-blown c-MYC/Mcl1 tumors. Similarly, anti-PD1 and anti-PD-L1 monotherapy showed no efficacy in this murine HCC model. In striking contrast, AFP immunization combined with anti-PD-L1 treatment triggered significant inhibition of HCC progression in most liver tumor nodules, while combining with anti-PD1 induced slower tumor progression. Mechanistically, we demonstrated that HCC intrinsic PD-L1 expression was the primary target of anti-PD-L1 in this combination therapy. Notably, the combination therapy had a similar therapeutic effect in the cMet/β-Catenin mouse HCC model. These findings suggest that combining the AFP vaccine and immune checkpoint inhibitors may be effective for AFP (+) HCC treatment.

Authors

Xinjun Lu, Shanshan Deng, Jiejie Xu, Benjamin L. Green, Honghua Zhang, Guofei Cui, Yi Zhou, Yi Zhang, Hongwei Xu, Fapeng Zhang, Rui Mao, Sheng Zhong, Thorsten Cramer, Matthias Evert, Diego F. Calvisi, Yukai He, Chao Liu, Xin Chen

×

Persistent fasting lipogenesis links impaired ketogenesis with citrate synthesis in humans with non-alcoholic fatty liver
Xiaorong Fu, … , Shawn C. Burgess, Jeffrey D. Browning
Xiaorong Fu, … , Shawn C. Burgess, Jeffrey D. Browning
Published March 16, 2023
Citation Information: J Clin Invest. 2023. https://doi.org/10.1172/JCI167442.
View: Text | PDF

Persistent fasting lipogenesis links impaired ketogenesis with citrate synthesis in humans with non-alcoholic fatty liver

  • Text
  • PDF
Abstract

BACKGROUND. Hepatic de novo lipogenesis (DNL) and β-oxidation are tightly coordinated, and their dysregulation is thought to contribute to the pathogenesis of non-alcoholic fatty liver (NAFL). Fasting normally relaxes DNL-mediated inhibition of hepatic β-oxidation, dramatically increasing ketogenesis and decreasing reliance on the TCA cycle. Thus, we tested whether aberrant oxidative metabolism in fasting NAFL subjects is related to the inability to halt fasting DNL. METHODS. Forty consecutive non-diabetic individuals with and without a history of NAFL were recruited for this observational study. After phenotyping, subjects fasted for 24-hr, and hepatic metabolism was interrogated using a combination of 2H2O and 13C tracers, magnetic resonance spectroscopy, and high-resolution mass spectrometry. RESULTS. Within a subset of subjects, DNL was detectable after a 24-hr fast and was more prominent in those with NAFL, though it was poorly correlated with steatosis. However, fasting DNL negatively correlated with hepatic β-oxidation and ketogenesis and positively correlated with citrate synthesis. Subjects with NAFL but undetectable fasting DNL (25th percentile) were comparatively normal. However, those with the highest fasting DNL (75th percentile) were intransigent to the effects of fasting on the concentration of insulin, NEFA, and ketones. Additionally, they sustained glycogenolysis and spared the loss of oxaloacetate to gluconeogenesis in favor of citrate synthesis, which correlated with DNL and diminished ketogenesis. CONCLUSION. Metabolic flux analysis in fasted subjects indicates that shared metabolic mechanisms link the dysregulations of hepatic DNL, ketogenesis, and the TCA cycle in NAFL. TRIAL REGISTRATION. Data obtained during the enrollment/non-intervention phase of Effect of Vitamin E on Non-Alcoholic Fatty Liver Disease; ClinicalTrials.gov NCT02690792.

Authors

Xiaorong Fu, Justin A. Fletcher, Stanisław Deja, Melissa Inigo-Vollmer, Shawn C. Burgess, Jeffrey D. Browning

×

In situ expansion and reprogramming of Kupffer cells elicits potent tumoricidal immunity against liver metastasis
Wei Liu, … , Lu Li, Zhutian Zeng
Wei Liu, … , Lu Li, Zhutian Zeng
Published February 23, 2023
Citation Information: J Clin Invest. 2023. https://doi.org/10.1172/JCI157937.
View: Text | PDF

In situ expansion and reprogramming of Kupffer cells elicits potent tumoricidal immunity against liver metastasis

  • Text
  • PDF
Abstract

Liver metastasis represents one of the most frequent malignant diseases with no effective treatment. As the largest population of hepatic macrophages, functional reprogramming of Kupffer cells (KCs) holds promise for treating liver cancer but remains seldom exploited. Taking advantage of the superior capacity of KCs to capture circulating bacteria, we report that a single administration of attenuated Escherichia coli producing CRISPR‒CasΦ machinery enables efficient editing of genes of interest in KCs. Using intravital microscopy, we observed a failure of tumor control by KCs at the late stage of liver metastasis due to KC loss preferentially in the tumor core and periphery, resulting in inaccessibility of these highly phagocytic macrophages to cancer cells. Simultaneous disruption of MafB and c-Maf expression using the aforementioned engineered bacteria could overcome KC dysfunction and elicit remarkable curative effects against several types of metastatic liver cancer in mice. Mechanistically, bacterial treatment induced massive proliferation and functional reprogramming of KCs. These cells infiltrated into the tumor, dismantled macrometastases by nibbling cancer cells, and skewed toward proinflammatory macrophages to unleash antitumor T-cell responses. These findings provide an immunotherapy strategy that could be applicable for treating liver metastasis and highlight the therapeutic potential of targeting tissue-resident macrophages in cancer.

Authors

Wei Liu, Xia Zhou, Qi Yao, Chen Chen, Qing Zhang, Keshuo Ding, Lu Li, Zhutian Zeng

×
  • ← Previous
  • 1
  • 2
  • 3
  • 4
  • …
  • 16
  • 17
  • Next →
Tracing biliary cells in liver repair
Simone Jörs, Petia Jeliazkova, and colleagues demonstrate that the ductal compartment is not the main source of liver progenitor cells in response to hepatic injury…
Published April 27, 2015
Scientific Show StopperHepatology

The regenerating liver
Claus Kordes and colleagues demonstrate that hepatic stellate cells contribute to liver regeneration…
Published November 17, 2014
Scientific Show StopperHepatology
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts