Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Genetics

  • 429 Articles
  • 2 Posts
  • ← Previous
  • 1
  • 2
  • …
  • 21
  • 22
  • 23
  • …
  • 42
  • 43
  • Next →
Hypothalamic loss of Snord116 recapitulates the hyperphagia of Prader-Willi syndrome
Joseph Polex-Wolf, … , Stephen O’Rahilly, Giles S.H. Yeo
Joseph Polex-Wolf, … , Stephen O’Rahilly, Giles S.H. Yeo
Published January 29, 2018
Citation Information: J Clin Invest. 2018. https://doi.org/10.1172/JCI97007.
View: Text | PDF

Hypothalamic loss of Snord116 recapitulates the hyperphagia of Prader-Willi syndrome

  • Text
  • PDF
Abstract

Profound hyperphagia is a major disabling feature of Prader-Willi syndrome (PWS). Characterization of the mechanisms that underlie PWS-associated hyperphagia has been slowed by the paucity of animal models with increased food intake or obesity. Mice with a microdeletion encompassing the Snord116 cluster of noncoding RNAs encoded within the Prader-Willi minimal deletion critical region have previously been reported to show growth retardation and hyperphagia. Here, consistent with previous reports, we observed growth retardation in Snord116+/–P mice with a congenital paternal Snord116 deletion. However, these mice neither displayed increased food intake nor had reduced hypothalamic expression of the proprotein convertase 1 gene PCSK1 or its upstream regulator NHLH2, which have recently been suggested to be key mediators of PWS pathogenesis. Specifically, we disrupted Snord116 expression in the mediobasal hypothalamus in Snord116fl mice via bilateral stereotaxic injections of a Cre-expressing adeno-associated virus (AAV). While the Cre-injected mice had no change in measured energy expenditure, they became hyperphagic between 9 and 10 weeks after injection, with a subset of animals developing marked obesity. In conclusion, we show that selective disruption of Snord116 expression in the mediobasal hypothalamus models the hyperphagia of PWS.

Authors

Joseph Polex-Wolf, Brian Y.H. Lam, Rachel Larder, John Tadross, Debra Rimmington, Fàtima Bosch, Verónica Jiménez Cenzano, Eduard Ayuso, Marcella K.L. Ma, Kara Rainbow, Anthony P. Coll, Stephen O’Rahilly, Giles S.H. Yeo

×

PBX transcription factors drive pulmonary vascular adaptation to birth
David J. McCulley, … , Licia Selleri, Xin Sun
David J. McCulley, … , Licia Selleri, Xin Sun
Published December 18, 2017
Citation Information: J Clin Invest. 2017. https://doi.org/10.1172/JCI93395.
View: Text | PDF

PBX transcription factors drive pulmonary vascular adaptation to birth

  • Text
  • PDF
Abstract

A critical event in the adaptation to extrauterine life is relaxation of the pulmonary vasculature at birth, allowing for a rapid increase in pulmonary blood flow that is essential for efficient gas exchange. Failure of this transition leads to pulmonary hypertension (PH), a major cause of newborn mortality associated with preterm birth, infection, hypoxia, and malformations including congenital diaphragmatic hernia (CDH). While individual vasoconstrictor and dilator genes have been identified, the coordination of their expression is not well understood. Here, we found that lung mesenchyme–specific deletion of CDH-implicated genes encoding pre–B cell leukemia transcription factors (Pbx) led to lethal PH in mice shortly after birth. Loss of Pbx genes resulted in the misexpression of both vasoconstrictors and vasodilators in multiple pathways that converge to increase phosphorylation of myosin in vascular smooth muscle (VSM) cells, causing persistent constriction. While targeting endothelin and angiotensin, which are upstream regulators that promote VSM contraction, was not effective, treatment with the Rho-kinase inhibitor Y-27632 reduced vessel constriction and PH in Pbx-mutant mice. These results demonstrate a lung-intrinsic, herniation-independent cause of PH in CDH. More broadly, our findings indicate that neonatal PH can result from perturbation of multiple pathways and suggest that targeting the downstream common effectors may be a more effective treatment for neonatal PH.

Authors

David J. McCulley, Mark D. Wienhold, Elizabeth A. Hines, Timothy A. Hacker, Allison Rogers, Ryan J. Pewowaruk, Rediet Zewdu, Naomi C. Chesler, Licia Selleri, Xin Sun

×

Recurrent ubiquitin B silencing in gynecological cancers establishes dependence on ubiquitin C
Alexia T. Kedves, … , Michael S. Goldberg, William C. Forrester
Alexia T. Kedves, … , Michael S. Goldberg, William C. Forrester
Published November 13, 2017
Citation Information: J Clin Invest. 2017. https://doi.org/10.1172/JCI92914.
View: Text | PDF

Recurrent ubiquitin B silencing in gynecological cancers establishes dependence on ubiquitin C

  • Text
  • PDF
Abstract

Transcriptional repression of ubiquitin B (UBB) is a cancer-subtype-specific alteration that occurs in a substantial population of patients with cancers of the female reproductive tract. UBB is 1 of 2 genes encoding for ubiquitin as a polyprotein consisting of multiple copies of ubiquitin monomers. Silencing of UBB reduces cellular UBB levels and results in an exquisite dependence on ubiquitin C (UBC), the second polyubiquitin gene. UBB is repressed in approximately 30% of high-grade serous ovarian cancer (HGSOC) patients and is a recurrent lesion in uterine carcinosarcoma and endometrial carcinoma. We identified ovarian tumor cell lines that retain UBB in a repressed state, used these cell lines to establish orthotopic ovarian tumors, and found that inducible expression of a UBC-targeting shRNA led to tumor regression, and substantial long-term survival benefit. Thus, we describe a recurrent cancer-specific lesion at the level of ubiquitin production. Moreover, these observations reveal the prognostic value of UBB repression and establish UBC as a promising therapeutic target for ovarian cancer patients with recurrent UBB silencing.

Authors

Alexia T. Kedves, Scott Gleim, Xiaoyou Liang, Dennis M. Bonal, Frederic Sigoillot, Fred Harbinski, Sneha Sanghavi, Christina Benander, Elizabeth George, Prafulla C. Gokhale, Quang-De Nguyen, Paul T. Kirschmeier, Robert J. Distel, Jeremy Jenkins, Michael S. Goldberg, William C. Forrester

×

Adipocyte cannabinoid receptor CB1 regulates energy homeostasis and alternatively activated macrophages
Inigo Ruiz de Azua, … , Daniela Cota, Beat Lutz
Inigo Ruiz de Azua, … , Daniela Cota, Beat Lutz
Published October 16, 2017
Citation Information: J Clin Invest. 2017. https://doi.org/10.1172/JCI83626.
View: Text | PDF

Adipocyte cannabinoid receptor CB1 regulates energy homeostasis and alternatively activated macrophages

  • Text
  • PDF
Abstract

Dysregulated adipocyte physiology leads to imbalanced energy storage, obesity, and associated diseases, imposing a costly burden on current health care. Cannabinoid receptor type-1 (CB1) plays a crucial role in controlling energy metabolism through central and peripheral mechanisms. In this work, adipocyte-specific inducible deletion of the CB1 gene (Ati-CB1–KO) was sufficient to protect adult mice from diet-induced obesity and associated metabolic alterations and to reverse the phenotype in already obese mice. Compared with controls, Ati-CB1–KO mice showed decreased body weight, reduced total adiposity, improved insulin sensitivity, enhanced energy expenditure, and fat depot–specific cellular remodeling toward lowered energy storage capacity and browning of white adipocytes. These changes were associated with an increase in alternatively activated macrophages concomitant with enhanced sympathetic tone in adipose tissue. Remarkably, these alterations preceded the appearance of differences in body weight, highlighting the causal relation between the loss of CB1 and the triggering of metabolic reprogramming in adipose tissues. Finally, the lean phenotype of Ati-CB1–KO mice and the increase in alternatively activated macrophages in adipose tissue were also present at thermoneutral conditions. Our data provide compelling evidence for a crosstalk among adipocytes, immune cells, and the sympathetic nervous system (SNS), wherein CB1 plays a key regulatory role.

Authors

Inigo Ruiz de Azua, Giacomo Mancini, Raj Kamal Srivastava, Alejandro Aparisi Rey, Pierre Cardinal, Laura Tedesco, Cristina Maria Zingaretti, Antonia Sassmann, Carmelo Quarta, Claudia Schwitter, Andrea Conrad, Nina Wettschureck, V. Kiran Vemuri, Alexandros Makriyannis, Jens Hartwig, Maria Mendez-Lago, Laura Bindila, Krisztina Monory, Antonio Giordano, Saverio Cinti, Giovanni Marsicano, Stefan Offermanns, Enzo Nisoli, Uberto Pagotto, Daniela Cota, Beat Lutz

×

Mutations in signal recognition particle SRP54 cause syndromic neutropenia with Shwachman-Diamond–like features
Raphael Carapito, … , Bertrand Isidor, Seiamak Bahram
Raphael Carapito, … , Bertrand Isidor, Seiamak Bahram
Published October 3, 2017
Citation Information: J Clin Invest. 2017. https://doi.org/10.1172/JCI92876.
View: Text | PDF

Mutations in signal recognition particle SRP54 cause syndromic neutropenia with Shwachman-Diamond–like features

  • Text
  • PDF
Abstract

Shwachman-Diamond syndrome (SDS) (OMIM #260400) is a rare inherited bone marrow failure syndrome (IBMFS) that is primarily characterized by neutropenia and exocrine pancreatic insufficiency. Seventy-five to ninety percent of patients have compound heterozygous loss-of-function mutations in the Shwachman-Bodian-Diamond syndrome (sbds) gene. Using trio whole-exome sequencing (WES) in an sbds-negative SDS family and candidate gene sequencing in additional SBDS-negative SDS cases or molecularly undiagnosed IBMFS cases, we identified 3 independent patients, each of whom carried a de novo missense variant in srp54 (encoding signal recognition particle 54 kDa). These 3 patients shared congenital neutropenia linked with various other SDS phenotypes. 3D protein modeling revealed that the 3 variants affect highly conserved amino acids within the GTPase domain of the protein that are critical for GTP and receptor binding. Indeed, we observed that the GTPase activity of the mutated proteins was impaired. The level of SRP54 mRNA in the bone marrow was 3.6-fold lower in patients with SRP54-mutations than in healthy controls. Profound reductions in neutrophil counts and chemotaxis as well as a diminished exocrine pancreas size in a SRP54-knockdown zebrafish model faithfully recapitulated the human phenotype. In conclusion, autosomal dominant mutations in SRP54, a key member of the cotranslation protein-targeting pathway, lead to syndromic neutropenia with a Shwachman-Diamond–like phenotype.

Authors

Raphael Carapito, Martina Konantz, Catherine Paillard, Zhichao Miao, Angélique Pichot, Magalie S. Leduc, Yaping Yang, Katie L. Bergstrom, Donald H. Mahoney, Deborah L. Shardy, Ghada Alsaleh, Lydie Naegely, Aline Kolmer, Nicodème Paul, Antoine Hanauer, Véronique Rolli, Joëlle S. Müller, Elisa Alghisi, Loïc Sauteur, Cécile Macquin, Aurore Morlon, Consuelo Sebastia Sancho, Patrizia Amati-Bonneau, Vincent Procaccio, Anne-Laure Mosca-Boidron, Nathalie Marle, Naël Osmani, Olivier Lefebvre, Jacky G. Goetz, Sule Unal, Nurten A. Akarsu, Mirjana Radosavljevic, Marie-Pierre Chenard, Fanny Rialland, Audrey Grain, Marie-Christine Béné, Marion Eveillard, Marie Vincent, Julien Guy, Laurence Faivre, Christel Thauvin-Robinet, Julien Thevenon, Kasiani Myers, Mark D. Fleming, Akiko Shimamura, Elodie Bottollier-Lemallaz, Eric Westhof, Claudia Lengerke, Bertrand Isidor, Seiamak Bahram

×

Dysfunction of the MDM2/p53 axis is linked to premature aging
Davor Lessel, … , Carol Prives, Christian Kubisch
Davor Lessel, … , Carol Prives, Christian Kubisch
Published August 28, 2017
Citation Information: J Clin Invest. 2017. https://doi.org/10.1172/JCI92171.
View: Text | PDF

Dysfunction of the MDM2/p53 axis is linked to premature aging

  • Text
  • PDF
Abstract

The tumor suppressor p53, a master regulator of the cellular response to stress, is tightly regulated by the E3 ubiquitin ligase MDM2 via an autoregulatory feedback loop. In addition to its well-established role in tumorigenesis, p53 has also been associated with aging in mice. Several mouse models with aberrantly increased p53 activity display signs of premature aging. However, the relationship between dysfunction of the MDM2/p53 axis and human aging remains elusive. Here, we have identified an antiterminating homozygous germline mutation in MDM2 in a patient affected by a segmental progeroid syndrome. We show that this mutation abrogates MDM2 activity, thereby resulting in enhanced levels and stability of p53. Analysis of the patient’s primary cells, genome-edited cells, and in vitro and in vivo analyses confirmed the MDM2 mutation’s aberrant regulation of p53 activity. Functional data from a zebrafish model further demonstrated that mutant Mdm2 was unable to rescue a p53-induced apoptotic phenotype. Altogether, our findings indicate that mutant MDM2 is a likely driver of the observed segmental form of progeria.

Authors

Davor Lessel, Danyi Wu, Carlos Trujillo, Thomas Ramezani, Ivana Lessel, Mohammad K. Alwasiyah, Bidisha Saha, Fuki M. Hisama, Katrin Rading, Ingrid Goebel, Petra Schütz, Günter Speit, Josef Högel, Holger Thiele, Gudrun Nürnberg, Peter Nürnberg, Matthias Hammerschmidt, Yan Zhu, David R. Tong, Chen Katz, George M. Martin, Junko Oshima, Carol Prives, Christian Kubisch

×

Ultrasensitive mutation detection identifies rare residual cells causing acute myelogenous leukemia relapse
Brian Parkin, … , Andrew D. Rhim, Sami N. Malek
Brian Parkin, … , Andrew D. Rhim, Sami N. Malek
Published August 21, 2017
Citation Information: J Clin Invest. 2017. https://doi.org/10.1172/JCI91964.
View: Text | PDF

Ultrasensitive mutation detection identifies rare residual cells causing acute myelogenous leukemia relapse

  • Text
  • PDF
Abstract

Acute myelogenous leukemia (AML) frequently relapses after complete remission (CR), necessitating improved detection and phenotypic characterization of treatment-resistant residual disease. In this work, we have optimized droplet digital PCR to broadly measure mutated alleles of recurrently mutated genes in CR marrows of AML patients at levels as low as 0.002% variant allele frequency. Most gene mutations persisted in CR, albeit at highly variable and gene-dependent levels. The majority of AML cases demonstrated residual aberrant oligoclonal hematopoiesis. Importantly, we detected very rare cells (as few as 1 in 15,000) that were genomically similar to the dominant blast populations at diagnosis and were fully clonally represented at relapse, identifying these rare cells as one common source of AML relapse. Clinically, the mutant allele burden was associated with overall survival in AML, and our findings narrow the repertoire of gene mutations useful in minimal residual disease–based prognostication in AML. Overall, this work delineates rare cell populations that cause AML relapse, with direct implications for AML research directions and strategies to improve AML therapies and outcome.

Authors

Brian Parkin, Angelina Londoño-Joshi, Qing Kang, Muneesh Tewari, Andrew D. Rhim, Sami N. Malek

×

Inborn errors in RNA polymerase III underlie severe varicella zoster virus infections
Benson Ogunjimi, … , Søren R. Paludan, Trine H. Mogensen
Benson Ogunjimi, … , Søren R. Paludan, Trine H. Mogensen
Published August 7, 2017
Citation Information: J Clin Invest. 2017. https://doi.org/10.1172/JCI92280.
View: Text | PDF

Inborn errors in RNA polymerase III underlie severe varicella zoster virus infections

  • Text
  • PDF
Abstract

Varicella zoster virus (VZV) typically causes chickenpox upon primary infection. In rare cases, VZV can give rise to life-threatening disease in otherwise healthy people, but the immunological basis for this remains unexplained. We report 4 cases of acute severe VZV infection affecting the central nervous system or the lungs in unrelated, otherwise healthy children who are heterozygous for rare missense mutations in POLR3A (one patient), POLR3C (one patient), or both (two patients). POLR3A and POLR3C encode subunits of RNA polymerase III. Leukocytes from all 4 patients tested exhibited poor IFN induction in response to synthetic or VZV-derived DNA. Moreover, leukocytes from 3 of the patients displayed defective IFN production upon VZV infection and reduced control of VZV replication. These phenotypes were rescued by transduction with relevant WT alleles. This work demonstrates that monogenic or digenic POLR3A and POLR3C deficiencies confer increased susceptibility to severe VZV disease in otherwise healthy children, providing evidence for an essential role of a DNA sensor in human immunity.

Authors

Benson Ogunjimi, Shen-Ying Zhang, Katrine B. Sørensen, Kristian A. Skipper, Madalina Carter-Timofte, Gaspard Kerner, Stefanie Luecke, Thaneas Prabakaran, Yujia Cai, Josephina Meester, Esther Bartholomeus, Nikhita Ajit Bolar, Geert Vandeweyer, Charlotte Claes, Yasmine Sillis, Lazaro Lorenzo, Raffaele A. Fiorenza, Soraya Boucherit, Charlotte Dielman, Steven Heynderickx, George Elias, Andrea Kurotova, Ann Vander Auwera, Lieve Verstraete, Lieven Lagae, Helene Verhelst, Anna Jansen, Jose Ramet, Arvid Suls, Evelien Smits, Berten Ceulemans, Lut Van Laer, Genevieve Plat Wilson, Jonas Kreth, Capucine Picard, Horst Von Bernuth, Joël Fluss, Stephane Chabrier, Laurent Abel, Geert Mortier, Sebastien Fribourg, Jacob Giehm Mikkelsen, Jean-Laurent Casanova, Søren R. Paludan, Trine H. Mogensen

×

GATA4 loss of function in liver cancer impedes precursor to hepatocyte transition
Francis O. Enane, … , Han Chong Toh, Yogen Saunthararajah
Francis O. Enane, … , Han Chong Toh, Yogen Saunthararajah
Published July 31, 2017
Citation Information: J Clin Invest. 2017. https://doi.org/10.1172/JCI93488.
View: Text | PDF

GATA4 loss of function in liver cancer impedes precursor to hepatocyte transition

  • Text
  • PDF
Abstract

The most frequent chromosomal structural loss in hepatocellular carcinoma (HCC) is of the short arm of chromosome 8 (8p). Genes on the remaining homologous chromosome, however, are not recurrently mutated, and the identity of key 8p tumor-suppressor genes (TSG) is unknown. In this work, analysis of minimal commonly deleted 8p segments to identify candidate TSG implicated GATA4, a master transcription factor driver of hepatocyte epithelial lineage fate. In a murine model, liver-conditional deletion of 1 Gata4 allele to model the haploinsufficiency seen in HCC produced enlarged livers with a gene expression profile of persistent precursor proliferation and failed hepatocyte epithelial differentiation. HCC mimicked this gene expression profile, even in cases that were morphologically classified as well differentiated. HCC with intact chromosome 8p also featured GATA4 loss of function via GATA4 germline mutations that abrogated GATA4 interactions with a coactivator, MED12, or by inactivating mutations directly in GATA4 coactivators, including ARID1A. GATA4 reintroduction into GATA4-haploinsufficient HCC cells or ARID1A reintroduction into ARID1A-mutant/GATA4-intact HCC cells activated hundreds of hepatocyte genes and quenched the proliferative precursor program. Thus, disruption of GATA4-mediated transactivation in HCC suppresses hepatocyte epithelial differentiation to sustain replicative precursor phenotype.

Authors

Francis O. Enane, Wai Ho Shuen, Xiaorong Gu, Ebrahem Quteba, Bartlomiej Przychodzen, Hideki Makishima, Juraj Bodo, Joanna Ng, Chit Lai Chee, Rebecca Ba, Lip Seng Koh, Janice Lim, Rachael Cheong, Marissa Teo, Zhenbo Hu, Kwok Peng Ng, Jaroslaw Maciejewski, Tomas Radivoyevitch, Alexander Chung, London Lucien Ooi, Yu Meng Tan, Peng Chung Cheow, Pierce Chow, Chung Yip Chan, Kiat Hon Lim, Lisa Yerian, Eric Hsi, Han Chong Toh, Yogen Saunthararajah

×

An erythroid-specific ATP2B4 enhancer mediates red blood cell hydration and malaria susceptibility
Samuel Lessard, … , Daniel E. Bauer, Guillaume Lettre
Samuel Lessard, … , Daniel E. Bauer, Guillaume Lettre
Published July 17, 2017
Citation Information: J Clin Invest. 2017. https://doi.org/10.1172/JCI94378.
View: Text | PDF

An erythroid-specific ATP2B4 enhancer mediates red blood cell hydration and malaria susceptibility

  • Text
  • PDF
Abstract

The lack of mechanistic explanations for many genotype-phenotype associations identified by GWAS precludes thorough assessment of their impact on human health. Here, we conducted an expression quantitative trait locus (eQTL) mapping analysis in erythroblasts and found erythroid-specific eQTLs for ATP2B4, the main calcium ATPase of red blood cells (rbc). The same SNPs were previously associated with mean corpuscular hemoglobin concentration (MCHC) and susceptibility to severe malaria infection. We showed that Atp2b4–/– mice demonstrate increased MCHC, confirming ATP2B4 as the causal gene at this GWAS locus. Using CRISPR-Cas9, we fine mapped the genetic signal to an erythroid-specific enhancer of ATP2B4. Erythroid cells with a deletion of the ATP2B4 enhancer had abnormally high intracellular calcium levels. These results illustrate the power of combined transcriptomic, epigenomic, and genome-editing approaches in characterizing noncoding regulatory elements in phenotype-relevant cells. Our study supports ATP2B4 as a potential target for modulating rbc hydration in erythroid disorders and malaria infection.

Authors

Samuel Lessard, Emily Stern Gatof, Mélissa Beaudoin, Patrick G. Schupp, Falak Sher, Adnan Ali, Sukhpal Prehar, Ryo Kurita, Yukio Nakamura, Esther Baena, Jonathan Ledoux, Delvac Oceandy, Daniel E. Bauer, Guillaume Lettre

×
  • ← Previous
  • 1
  • 2
  • …
  • 21
  • 22
  • 23
  • …
  • 42
  • 43
  • Next →
A hop, exon skip, and a jump for muscular dystrophy
Quan Gao and colleagues developed an exon skipping strategy that generates a truncated, functional γ-sarcoglycan protein and improves defects in muscular dystrophy models…
Published October 12, 2015
Scientific Show StopperGenetics

A curve in the spine
Shunmoogum Patten and colleagues identify variants of POC5 that are associated with idiopathic scoliosis…
Published February 2, 2015
Scientific Show StopperGenetics
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts