Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Endocrinology

  • 287 Articles
  • 5 Posts
  • ← Previous
  • 1
  • 2
  • …
  • 7
  • 8
  • 9
  • …
  • 28
  • 29
  • Next →
A randomized controlled trial of GLP-1 receptor agonist dulaglutide in primary polydipsia
Bettina Winzeler, … , Julie Refardt, Mirjam Christ-Crain
Bettina Winzeler, … , Julie Refardt, Mirjam Christ-Crain
Published September 2, 2021
Citation Information: J Clin Invest. 2021. https://doi.org/10.1172/JCI151800.
View: Text | PDF

A randomized controlled trial of GLP-1 receptor agonist dulaglutide in primary polydipsia

  • Text
  • PDF
Abstract

BACKGROUND. Primary polydipsia, characterized by excessive fluid intake, carries the risk of water intoxication and hyponatremia, but treatment options are scarce. Glucagon-like peptide-1 (GLP-1) reduces appetite and food intake. In experimental models, they also play a role in thirst and drinking behavior. The aim of this trial was to investigate whether GLP-1 receptor agonists reduce fluid intake in patients with primary polydipsia. METHODS. In this randomized, double-blind, placebo-controlled, 3-week crossover-trial, 34 patients with primary polydipsia received weekly dulaglutide (Trulicity®) 1.5mg and placebo (0.9% sodium chloride). During the last treatment week, patients attended an 8-hour evaluation visit with free water access. The primary endpoint was total fluid intake during the evaluation visits. Treatment effects were estimated using linear mixed-effects models. In a subset of 15 patients and additional 15 matched controls, thirst perception and neuronal activity in response to beverage pictures were assessed by functional MRI. FINDINGS. Patients on dulaglutide reduced fluid intake by 490ml [95%-CI -780, -199], p=0.002, from 2950ml [95% CI 2435, 3465] on placebo to 2460ml [95% CI 1946, 2475] on dulaglutide (model estimates), corresponding to a relative reduction of 17%. 24-hour urinary output was reduced by -943ml [95%-CI -1473, -413], p=0.001. Thirst perception in response to beverage pictures was higher in patients with primary polydipsia versus controls and lower on dulaglutide versus placebo, but functional activity was similar between groups and treatments. INTERPRETATION. GLP-1 receptor agonists reduce fluid intake and thirst perception in patients with primary polydipsia and could therefore be a treatment option for these patients.

Authors

Bettina Winzeler, Clara Odilia Sailer, David Coynel, Davide Zanchi, Deborah R. Vogt, Sandrine Andrea Urwyler, Julie Refardt, Mirjam Christ-Crain

×

Electrogenic sodium bicarbonate cotransporter NBCe1 regulates pancreatic β cell function in type 2 diabetes
Matthew R. Brown, … , Michael F. Romero, Aleksey V. Matveyenko
Matthew R. Brown, … , Michael F. Romero, Aleksey V. Matveyenko
Published September 1, 2021
Citation Information: J Clin Invest. 2021;131(17):e142365. https://doi.org/10.1172/JCI142365.
View: Text | PDF

Electrogenic sodium bicarbonate cotransporter NBCe1 regulates pancreatic β cell function in type 2 diabetes

  • Text
  • PDF
Abstract

Pancreatic β cell failure in type 2 diabetes mellitus (T2DM) is attributed to perturbations of the β cell’s transcriptional landscape resulting in impaired glucose-stimulated insulin secretion. Recent studies identified SLC4A4 (a gene encoding an electrogenic Na+-coupled HCO3– cotransporter and intracellular pH regulator, NBCe1) as one of the misexpressed genes in β cells of patients with T2DM. Thus, in the current study, we set out to test the hypothesis that misexpression of SLC4A4/NBCe1 in T2DM β cells contributes to β cell dysfunction and impaired glucose homeostasis. To address this hypothesis, we first confirmed induction of SLC4A4/NBCe1 expression in β cells of patients with T2DM and demonstrated that its expression was associated with loss of β cell transcriptional identity, intracellular alkalinization, and β cell dysfunction. In addition, we generated a β cell–selective Slc4a4/NBCe1-KO mouse model and found that these mice were protected from diet-induced metabolic stress and β cell dysfunction. Importantly, improved glucose tolerance and enhanced β cell function in Slc4a4/NBCe1-deficient mice were due to augmented mitochondrial function and increased expression of genes regulating β cell identity and function. These results suggest that increased β cell expression of SLC4A4/NBCe1 in T2DM plays a contributory role in promotion of β cell failure and should be considered as a potential therapeutic target.

Authors

Matthew R. Brown, Heather Holmes, Kuntol Rakshit, Naureen Javeed, Tracy K. Her, Alison A. Stiller, Satish Sen, Gary E. Shull, Y.S. Prakash, Michael F. Romero, Aleksey V. Matveyenko

×

Differential roles of FOXO transcription factors on insulin action in brown and white adipose tissue
Erica P. Homan, … , Jason K. Kim, C. Ronald Kahn
Erica P. Homan, … , Jason K. Kim, C. Ronald Kahn
Published August 24, 2021
Citation Information: J Clin Invest. 2021. https://doi.org/10.1172/JCI143328.
View: Text | PDF

Differential roles of FOXO transcription factors on insulin action in brown and white adipose tissue

  • Text
  • PDF
Abstract

Insulin and IGF-1 are essential for adipocyte differentiation and function. Mice lacking insulin and IGF-1 receptors in fat (FIGIRKO) exhibit complete loss of white and brown fat (WAT/BAT), glucose intolerance, insulin resistance, hepatosteatosis, and cold intolerance. To determine the role of FOXO transcription factors in the altered adipose phenotype, we generated FIGIRKO mice with fat-specific knockout of fat-expressed Foxos [Foxo1, Foxo3, Foxo4] (F-Quint KO). Unlike FIGIRKO mice, F-Quint KO mice had normal BAT, glucose tolerance, insulin-regulated hepatic glucose production, and cold tolerance. However, loss of FOXOs only partially rescued subcutaneous WAT and hepatosteatosis, did not rescue perigonadal WAT, or systemic insulin resistance, and led to even more marked hyperinsulinemia. Thus, FOXOs play different roles in insulin/IGF1 action in different adipose depots, being more important in BAT > subcutaneous WAT > visceral WAT. Disruption of FOXOs in fat also leads to a reversal of insulin resistance in liver, but not in skeletal muscle, and an exacerbation of hyperinsulinemia. Thus, adipose FOXOs play a unique role in regulating crosstalk between adipose depots, liver and β-cells.

Authors

Erica P. Homan, Bruna Brasil Brandao, Samir Softic, Abdelfattah El Ouaamari, Brian T. O’Neill, Rohit N. Kulkarni, Jason K. Kim, C. Ronald Kahn

×

Insulin and IGF-1 receptors regulate complex-I dependent mitochondrial bioenergetics and supercomplexes via FoxOs in muscle
Gourav Bhardwaj, … , E. Dale Abel, Brian T. O'Neill
Gourav Bhardwaj, … , E. Dale Abel, Brian T. O'Neill
Published August 3, 2021
Citation Information: J Clin Invest. 2021. https://doi.org/10.1172/JCI146415.
View: Text | PDF

Insulin and IGF-1 receptors regulate complex-I dependent mitochondrial bioenergetics and supercomplexes via FoxOs in muscle

  • Text
  • PDF
Abstract

Decreased skeletal muscle strength and mitochondrial dysfunction are characteristic of diabetes. Action of insulin and IGF-1 through insulin receptor (IR) and IGF-1 receptor (IGF1R) maintain muscle mass via suppression of FoxOs, but whether FoxO activation coordinates atrophy in concert with mitochondrial dysfunction is unknown. We show that mitochondrial respiration and complex-I activity were decreased in streptozotocin (STZ) diabetic muscle, but these defects were reversed following muscle-specific FoxO1/3/4 triple knockout in STZ-FoxO TKO. In the absence of systemic glucose or lipid abnormalities, muscle-specific IR knockout (M-IR-/-) or combined IR/IGF1R knockout (MIGIRKO) impaired mitochondrial respiration, decreased ATP production, and increased ROS. These mitochondrial abnormalities were not present in muscle-specific IR/IGF1R and FoxO1/3/4 quintuple knockout mice (M-QKO). Acute tamoxifen-inducible deletion of IR/IGF1R also decreased muscle pyruvate respiration, complex-I activity, and supercomplex assembly. Although autophagy was increased when IR/IGF1R were deleted in muscle, mitophagy was not increased. Mechanistically, RNA-seq revealed that complex-I core subunits were decreased in STZ-diabetic and MIGIRKO muscle, and these changes were not present with FoxO knockout in STZ-FoxO TKO and M-QKO. Thus, insulin-deficient diabetes or loss of insulin/IGF-1 action in muscle decreases complex-I driven mitochondrial respiration and supercomplex assembly, in part by FoxO-mediated repression of Complex-I subunit expression.

Authors

Gourav Bhardwaj, Christie M. Penniman, Jayashree Jena, Pablo A. Suarez Beltran, Collin Foster, Kennedy Poro, Taylor L. Junck, Antentor O. Hinton Jr., Rhonda Souvenir, Jordan D. Fuqua, Pablo E. Morales, Roberto Bravo-Sagua, William I. Sivitz, Vitor A. Lira, E. Dale Abel, Brian T. O'Neill

×

NTRK- and RET-fusion-directed therapy in pediatric thyroid cancer yields a tumor response and radioiodine uptake
Young Ah Lee, … , Jong-Il Kim, Young Joo Park
Young Ah Lee, … , Jong-Il Kim, Young Joo Park
Published July 8, 2021
Citation Information: J Clin Invest. 2021. https://doi.org/10.1172/JCI144847.
View: Text | PDF

NTRK- and RET-fusion-directed therapy in pediatric thyroid cancer yields a tumor response and radioiodine uptake

  • Text
  • PDF
Abstract

BACKGROUND. Molecular characterization in pediatric papillary thyroid cancer (PTC), distinct from adult PTC, is important for developing molecular targeted therapies for progressive 131I-refractory PTC. METHODS. PTC samples from 106 pediatric patients (age: 4.3–19.8 years; 21 boys) who attended Seoul National University Hospital (January 1983–March 2020) were available for genomic profiling. Previous transcriptome data from 125 adult PTCs were used for comparison. RESULTS. Genetic drivers were found in 80 tumors; 31 with fusion oncogenes (RET in 21, ALK in 6, and NTRK1/3 in 4), 47 with point mutations (BRAFV600E in 41, TERTC228T in 2, and DICER1 variants in 5), and 2 with amplifications. Fusion-oncogene PTCs, predominantly detected in younger patients, presented with a more advanced stage and showed more recurrent or persistent disease than BRAFV600E PTCs, which were detected mostly in adolescents. Pediatric fusion PTCs (in those aged < 10 years) showed lower expression of thyroid differentiation genes, including SLC5A5, than adult fusion PTCs. Two girls with progressive 131I-refractory lung metastases harboring a TPR-NTRK1 or CCDC6-RET fusion received fusion-targeted therapy; larotrectinib and selpercatinib decreased the tumor extent and restored radioiodine uptake. The girl with the CCDC6-RET fusion received 131I therapy combined with selpercatinib, leading to a tumor response. In vitro 125I uptake and 131I clonogenic assays showed that larotrectinib inhibited growth and restored radioiodine avidity. CONCLUSIONS. In pediatric fusion-oncogene PTC cases with 131I-refractory advanced disease, selective fusion-directed therapy may restore radioiodine avidity and lead to a dramatic tumor response, underscoring the importance of molecular testing in pediatric PTC patients. FUNDING. The Ministry of Science, ICT & Future Planning (grant number NRF-2016R1A2B4012417 91 and 2019R1A2C2084332), the Ministry of Health & Welfare, Republic of Korea (grant number 92 H14C1277), the Ministry of Education (grant number 2020R1A6A1A03047972), and the Seoul 93 National University Hospital Research Fund (grant number 04-2015-0830).

Authors

Young Ah Lee, Hyunjung Lee, Sun-Wha Im, Young Shin Song, Do-Youn Oh, Hyoung Jin Kang, Jae-Kyung Won, Kyeong Cheon Jung, Dohee Kwon, Eun-Jae Chung, J. Hun Hah, Jin Chul Paeng, Ji-hoon Kim, Jaeyong Choi, Ok-Hee Kim, Ji Min Oh, Byeong-Cheol Ahn, Lori J. Wirth, Choong Ho Shin, Jong-Il Kim, Young Joo Park

×

Eruptive xanthoma model reveals endothelial cells internalize and metabolize chylomicrons, leading to extravascular triglyceride accumulation
Ainara G. Cabodevilla, … , Nada A. Abumrad, Ira J. Goldberg
Ainara G. Cabodevilla, … , Nada A. Abumrad, Ira J. Goldberg
Published June 15, 2021
Citation Information: J Clin Invest. 2021;131(12):e145800. https://doi.org/10.1172/JCI145800.
View: Text | PDF

Eruptive xanthoma model reveals endothelial cells internalize and metabolize chylomicrons, leading to extravascular triglyceride accumulation

  • Text
  • PDF
Abstract

Although tissue uptake of fatty acids from chylomicrons is primarily via lipoprotein lipase (LpL) hydrolysis of triglycerides (TGs), studies of patients with genetic LpL deficiency suggest additional pathways deliver dietary lipids to tissues. Despite an intact endothelial cell (EC) barrier, hyperchylomicronemic patients accumulate chylomicron-derived lipids within skin macrophages, leading to the clinical finding eruptive xanthomas. We explored whether an LpL-independent pathway exists for transfer of circulating lipids across the EC barrier. We found that LpL-deficient mice had a marked increase in aortic EC lipid droplets before and after a fat gavage. Cultured ECs internalized chylomicrons, which were hydrolyzed within lysosomes. The products of this hydrolysis fueled lipid droplet biogenesis in ECs and triggered lipid accumulation in cocultured macrophages. EC chylomicron uptake was inhibited by competition with HDL and knockdown of the scavenger receptor-BI (SR-BI). In vivo, SR-BI knockdown reduced TG accumulation in aortic ECs and skin macrophages of LpL-deficient mice. Thus, ECs internalize chylomicrons, metabolize them in lysosomes, and either store or release their lipids. This latter process may allow accumulation of TGs within skin macrophages and illustrates a pathway that might be responsible for creation of eruptive xanthomas.

Authors

Ainara G. Cabodevilla, Songtao Tang, Sungwoon Lee, Adam E. Mullick, Jose O. Aleman, M. Mahmood Hussain, William C. Sessa, Nada A. Abumrad, Ira J. Goldberg

×

Melanocortin 4 receptor signals at the neuronal primary cilium to control food intake and body weight
Yi Wang, … , Jeremy F. Reiter, Christian Vaisse
Yi Wang, … , Jeremy F. Reiter, Christian Vaisse
Published May 3, 2021
Citation Information: J Clin Invest. 2021;131(9):e142064. https://doi.org/10.1172/JCI142064.
View: Text | PDF

Melanocortin 4 receptor signals at the neuronal primary cilium to control food intake and body weight

  • Text
  • PDF
Abstract

The melanocortin 4 receptor (MC4R) plays a critical role in the long-term regulation of energy homeostasis, and mutations in the MC4R are the most common cause of monogenic obesity. However, the precise molecular and cellular mechanisms underlying the maintenance of energy balance within MC4R-expressing neurons are unknown. We recently reported that the MC4R localizes to the primary cilium, a cellular organelle that allows for partitioning of incoming cellular signals, raising the question of whether the MC4R functions in this organelle. Here, using mouse genetic approaches, we found that cilia were required specifically on MC4R-expressing neurons for the control of energy homeostasis. Moreover, these cilia were critical for pharmacological activators of the MC4R to exert an anorexigenic effect. The MC4R is expressed in multiple brain regions. Using targeted deletion of primary cilia, we found that cilia in the paraventricular nucleus of the hypothalamus (PVN) were essential to restrict food intake. MC4R activation increased adenylyl cyclase (AC) activity. As with the removal of cilia, inhibition of AC activity in the cilia of MC4R-expressing neurons of the PVN caused hyperphagia and obesity. Thus, the MC4R signaled via PVN neuron cilia to control food intake and body weight. We propose that defects in ciliary localization of the MC4R cause obesity in human inherited obesity syndromes and ciliopathies.

Authors

Yi Wang, Adelaide Bernard, Fanny Comblain, Xinyu Yue, Christophe Paillart, Sumei Zhang, Jeremy F. Reiter, Christian Vaisse

×

Duodenopancreatectomy as a model to demonstrate the fundamental role of dysfunctional β cell in predicting diabetes
Teresa Mezza, … , Sergio Alfieri, Andrea Giaccari
Teresa Mezza, … , Sergio Alfieri, Andrea Giaccari
Published April 27, 2021
Citation Information: J Clin Invest. 2021. https://doi.org/10.1172/JCI146788.
View: Text | PDF

Duodenopancreatectomy as a model to demonstrate the fundamental role of dysfunctional β cell in predicting diabetes

  • Text
  • PDF
Abstract

BACKGROUND.The appearance of hyperglycemia is due to insulin resistance, functional deficits in the secretion of insulin and a reduction of β-cell mass. There is a long-standing debate as to the relative contribution of these factors to clinically manifest β-cell dysfunction. The aim of this study was to verify the effect of one of these factors, the reduction of β-cell mass, on the subsequent development of hyperglycemia. METHODS. To pursue this aim, non-diabetic patients, scheduled for identical pancreaticoduodenectomy surgery, underwent oral glucose tolerance tests (OGTT) and hyperglycaemic clamps (HC), followed by arginine stimulation before and after surgery. Based on post-surgery OGTT, subjects were divided into 3 groups depending on glucose tolerance: normal (post-NGT), impaired (post-IGT) or diabetic (post-DM). RESULTS. At baseline the three groups showed similar fasting glucose and insulin levels, however, examining the various parameters, we found that reduced first-phase insulin secretion and reduced glucose sensitivity and rate sensitivity were predictors of eventual post-surgery development of impaired glucose tolerance and diabetes. CONCLUSION. Despite comparable functional mass and fasting glucose and insulin levels at baseline, and the very same 50% mass reduction, only reduced 1st phase insulin secretion and glucose sensitivity predicted the appearance of hyperglycemia. These functional alterations could be pivotal to the pathogenesis of type 2 diabetes (T2DM). TRIAL REGISTRATION. ClinicalTrials.gov Identifier: NCT02175459. FUNDING. Università Cattolica del Sacro Cuore; the Italian Ministry of Education, University and Research, European Foundation for the Study of Diabetes.

Authors

Teresa Mezza, Pietro Manuel Ferraro, Gianfranco Di Giuseppe, Simona Moffa, Chiara M.A. Cefalo, Francesca Cinti, Flavia Impronta, Umberto Capece, Giuseppe Quero, Alfredo Pontecorvi, Andrea Mari, Sergio Alfieri, Andrea Giaccari

×

Residual β cell function in long-term type 1 diabetes associates with reduced incidence of hypoglycemia
Rose A. Gubitosi-Klug, … , Jerry P. Palmer, the DCCT/EDIC Research Group
Rose A. Gubitosi-Klug, … , Jerry P. Palmer, the DCCT/EDIC Research Group
Published February 1, 2021
Citation Information: J Clin Invest. 2021;131(3):e143011. https://doi.org/10.1172/JCI143011.
View: Text | PDF

Residual β cell function in long-term type 1 diabetes associates with reduced incidence of hypoglycemia

  • Text
  • PDF
Abstract

BACKGROUND We investigated residual β cell function in Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications (DCCT/EDIC) study participants with an average 35-year duration of type 1 diabetes mellitus (T1DM).METHODS Serum C-peptide was measured during a 4-hour mixed-meal tolerance test. Associations with metabolic outcomes and complications were explored among nonresponders (all C-peptide values after meal <0.003 nmol/L) and 3 categories of responders, classified by peak C-peptide concentration (nmol/L) as high (>0.2), intermediate (>0.03 to ≤0.2), and low (≥ 0.003 to ≤0.03).RESULTS Of the 944 participants, 117 (12.4%) were classified as responders. Residual C-peptide concentrations were associated with higher DCCT baseline concentrations of stimulated C-peptide (P value for trend = 0.0001). Residual C-peptide secretion was not associated with current or mean HbA1c, HLA high-risk haplotypes for T1DM, or the current presence of T1DM autoantibodies. The proportion of subjects with a history of severe hypoglycemia was lower with high (27%) and intermediate (48%) residual C-peptide concentrations than with low (74%) and no (70%) residual C-peptide concentrations (P value for trend = 0.0001). Responders and nonresponders demonstrated similar rates of advanced microvascular complications.CONCLUSION β Cell function can persist in long-duration T1DM. With a peak C-peptide concentration of >0.03 nmol/L, we observed clinically meaningful reductions in the prevalence of severe hypoglycemia.TRIAL REGISTRATION ClinicalTrials.gov NCT00360815 and NCT00360893.FUNDING Division of Diabetes Endocrinology and Metabolic Diseases of the National Institute of Diabetes and Digestive and Kidney Diseases (DP3-DK104438, U01 DK094176, and U01 DK094157).

Authors

Rose A. Gubitosi-Klug, Barbara H. Braffett, Susan Hitt, Valerie Arends, Diane Uschner, Kimberly Jones, Lisa Diminick, Amy B. Karger, Andrew D. Paterson, Delnaz Roshandel, Santica Marcovina, John M. Lachin, Michael Steffes, Jerry P. Palmer, the DCCT/EDIC Research Group

×

An abundant biliary fatty acid metabolite derived from dietary omega-3 polyunsaturated fatty acids regulates triglycerides
Trisha J. Grevengoed, … , Benjamin Cravatt, Matthew P. Gillum
Trisha J. Grevengoed, … , Benjamin Cravatt, Matthew P. Gillum
Published January 28, 2021
Citation Information: J Clin Invest. 2021. https://doi.org/10.1172/JCI143861.
View: Text | PDF

An abundant biliary fatty acid metabolite derived from dietary omega-3 polyunsaturated fatty acids regulates triglycerides

  • Text
  • PDF
Abstract

Omega-3 fatty acids from fish oil reduce triglyceride levels in mammals, yet the mechanisms underlying this effect have not been fully clarified despite the clinical use of omega-3 ethyl esters to treat severe hypertriglyceridemia and reduce cardiovascular disease risk in humans. Here we identified in bile a class of hypotriglyceridemic omega-3 fatty acid-derived N-acyl taurines (NATs) that, after dietary omega-3 fatty acid supplementation, increased to concentrations similar to those of steroidal bile acids. The biliary docosahexaenoic acid (DHA) containing NAT, C22:6 NAT, was increased in human and mouse plasma after dietary omega-3 fatty acid supplementation and potently inhibited intestinal triacylglycerol hydrolysis and lipid absorption. Supporting this observation, genetic elevation of endogenous NAT levels in mice impaired lipid absorption, while selective augmentation of C22:6 NAT levels protected against hypertriglyceridemia and fatty liver. When administered pharmacologically, C22:6 NAT accumulated in bile and reduced high fat diet-induced, but not sucrose-induced, hepatic lipid accumulation in mice, suggesting that C22:6 NAT was a negative feedback mediator that limited excess intestinal lipid absorption. Thus, biliary omega-3 NATs may contribute to the hypotriglyceridemic mechanism of action of fish oil and could influence the design of more potent omega-3 fatty acid-based therapeutics.

Authors

Trisha J. Grevengoed, Samuel A. J. Trammell, Jens S. Svenningsen, Mikhail Makarov, Thomas Svava Nielsen, Jens C. B. Jacobsen, Philip C. Calder, Marie E. Migaud, Benjamin Cravatt, Matthew P. Gillum

×
  • ← Previous
  • 1
  • 2
  • …
  • 7
  • 8
  • 9
  • …
  • 28
  • 29
  • Next →
Dynamin 2 prevents insulin granule traffic jams
Fan Fan and colleagues demonstrate that dynamin 2 is important for maintaining insulin secretion dynamics in β cells…
Published September 28, 2015
Scientific Show StopperEndocrinology

UPR stress gets β cells going
Rohit Sharma and colleagues reveal that insulin demand-induced β cell proliferation is regulated by the unfolded protein response…
Published September 21, 2015
Scientific Show StopperEndocrinology

Restricting β cell growth
Sung Hee Um and colleagues reveal that S6K1-dependent alterations of β cell size and function are independent of intrauterine growth restriction…
Published June 15, 2015
Scientific Show StopperEndocrinology

Insight into Kallmann syndrome
Anna Cariboni and colleagues demonstrate that dysfunctional SEMA3E results in gonadotropin-releasing hormone neuron deficiency…
Published May 18, 2015
Scientific Show StopperEndocrinology

L cells to the rescue
Natalia Peterson and colleagues demonstrate that increasing L cell populations in the gut improves insulin responses and glucose tolerance in a murine type 2 diabetes model…
Published December 15, 2014
Scientific Show StopperEndocrinology
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts