Background. An increase in intrahepatic triglyceride (IHTG) is the hallmark feature of nonalcoholic fatty liver disease (NAFLD) and is decreased by weight loss. Hepatic de novo lipogenesis (DNL) contributes to steatosis in people with NAFLD. The physiological factors that stimulate hepatic DNL and the effect of weight loss on hepatic DNL are not clear.Methods. Hepatic DNL, 24-h integrated plasma insulin and glucose concentrations, and both liver and whole-body insulin sensitivity were determined in people who were lean (n = 14), obese with normal IHTG content (Obese, n = 26) and obese with NAFLD (Obese-NAFLD, n = 27). Hepatic DNL was assessed by using the deuterated water method corrected for the potential confounding contribution of adipose tissue DNL. Liver and whole-body insulin sensitivity were assessed by using the hyperinsulinemic-euglycemic clamp procedure in conjunction with glucose tracer infusion. Six subjects in the Obese-NAFLD group were also evaluated before and after 10% diet-induced weight loss.Results. The contribution of hepatic DNL to IHTG-palmitate was 11%, 19% and 38% in the Lean, Obese and Obese-NAFLD groups, respectively. Hepatic DNL was inversely correlated with hepatic and whole-body insulin sensitivity, but directly correlated with 24-h plasma glucose and insulin concentrations. Weight loss decreased IHTG content, in conjunction with a decrease in hepatic DNL and 24-h plasma glucose and insulin concentrations. Conclusions. These data suggest hepatic DNL is an important regulator of IHTG content, and that increases in circulating glucose and insulin stimulate hepatic DNL in people with NAFLD. Weight loss decreases IHTG content, at least in part, by decreasing hepatic DNL.
Gordon I. Smith, Mahalakshmi Shankaran, Mihoko Yoshino, George G. Schweitzer, Maria Chondronikola, Joseph W. Beals, Adewole L. Okunade, Bruce W. Patterson, Edna Nyangau, Tyler Field, Claude B. Sirlin, Saswata Talukdar, Marc K. Hellerstein, Samuel Klein
Background: In retinitis pigmentosa (RP) rod photoreceptors degenerate from one of many mutations after which cones are compromised by oxidative stress. N-acetylcysteine (NAC) reduces oxidative damage and increases cone function/survival in RP models. We tested the safety, tolerability, and visual function effects of oral NAC in RP patients. Methods: Subjects (n = 10 per cohort) received 600 mg (cohort 1), 1200 mg (cohort 2), or 1800 mg (cohort 3) NAC BID for 12 weeks and then TID for 12 weeks. Best-corrected visual acuity (BCVA), macular sensitivity, ellipsoid zone (EZ) width, and aqueous NAC were measured. Linear mixed effects models were used to estimate the rates of changes during the treatment period. Results: There were 9 drug-related gastrointestinal adverse events which resolved spontaneously or with dose reduction (MTD 1800 mg bid). During the 24 week treatment period, mean BCVA significantly improved at 0.4 (95% CI 0.2–0.6, P < 0.001), 0.5 (95% CI 0.3–0.7, P < 0.001) and 0.2 (95% CI 0.02–0.4, P = 0.03) letters/month in cohorts 1, 2 and 3, respectively. There was no significant improvement in mean sensitivity (MS) over time in cohorts 1 and 2, but there was in cohort 3 (0.15 dB/month, 95%CI 0.04–0.26). There was no significant change in mean EZ width in any cohort. Conclusion: Oral NAC is safe and well-tolerated in patients with moderately advanced RP and may improve suboptimally functioning macular cones. A randomized, placebo-controlled trial is needed to determine if oral NAC can provide long term stabilization and/or improvement in visual function in patients with RP.
Peter A. Campochiaro, Mustafa Iftikhar, Gulnar Hafiz, Anam Akhlaq, Grace Tsai, Dagmar Wehling, Lili Lu, G. Michael Wall, Mandeep S. Singh, Xiangrong Kong
Background: Ceramides are sphingolipids that play causative roles in diabetes and heart disease, with their serum levels measured clinically as biomarkers of cardiovascular disease (CVD). Methods: We performed targeted lipidomics on serum samples of individuals with familial coronary artery disease (CAD) (n = 462) and population-based controls (n = 212) to explore the relationship between serum sphingolipids and CAD, employing unbiased machine learning to identify sphingolipid species positively associated with CAD. Results: Nearly every sphingolipid measured (n = 30 of 32) was significantly elevated in subjects with CAD compared with population controls. We generated a novel Sphingolipid Inclusive CAD risk score, termed SIC, that demarcates CAD patients independently and more effectively than conventional clinical CVD biomarkers including LDL-cholesterol and serum triglycerides. This new metric comprises several minor lipids which likely serve as measures of flux through the ceramide biosynthesis pathway, rather than the abundant deleterious ceramide species that are incorporated in other ceramide-based scores. Conclusion: This study validates serum ceramides as candidate biomarkers of cardiovascular disease and suggests that comprehensive sphingolipid panels be considered as measures of CVD.
Annelise M. Poss, J. Alan Maschek, James E. Cox, Benedikt J. Hauner, Paul N. Hopkins, Steven C. Hunt, William L. Holland, Scott A. Summers, Mary C. Playdon
Background: Chronic HCV-infection is characterized by a severe impairment of HCV-specific CD4 T cell help that is driven by chronic antigen stimulation. We aimed to study the fate of HCV-specific CD4 T cells after viral elimination. Methods:HCV-specific CD4 T cell responses were longitudinally analyzed using MHC class II tetramer-technology, multicolor flow cytometry and RNA sequencing in a cohort of chronically HCV-infected patients undergoing therapy with direct-acting antivirals. In addition, HCV-specific neutralizing antibodies and CXCL13 levels were analyzed. Results: We observed that the frequency of HCV-specific CD4 T cells increased within two weeks after initiation of DAA therapy. Multicolor flow cytometry revealed a downregulation of exhaustion and activation markers and an upregulation of memory-associated markers. While cells with a Th1 phenotype were the predominant subset at baseline, cells with phenotypic and transcriptional characteristics of follicular T helper cells increasingly shaped the circulating HCV-specific CD4 T cell repertoire, suggesting antigen-independent survival of this subset. These changes were accompanied by a decline of HCV-specific neutralizing antibodies and the germinal center activity. Conclusion: We identified a population of HCV-specific CD4 T cells with a follicular T helper cell signature that is maintained after therapy-induced elimination of persistent infection and may constitute an important target population for vaccination efforts to prevent re-infection and immunotherapeutic approaches for persistent viral infections.
Maike Smits, Katharina Zoldan, Naveed Ishaque, Zuguang Gu, Katharina Jechow, Dominik Wieland, Christian Conrad, Roland Eils, Catherine Fauvelle, Thomas F. Baumert, Florian Emmerich, Bertram Bengsch, Christoph Neumann-Haefelin, Maike Hofmann, Robert Thimme, Tobias Boettler
Background: Adoptive transfer of donor-derived EBV-specific T-cells (EBV-CTLs) can eradicate EBV associated lymphomas post hematopoietic cell (HCT) or solid organ (SOT) transplants but is not available for most patients. Methods: We developed a 3rd-party, allogeneic, off-the-shelf bank of 330 GMP grade EBV-CTL lines from specifically consented healthy HCT donors. We treated 46 recipients of HCT (N=33) or SOT (N=13) with established EBV associated lymphomas, who failed rituximab therapy, with 3rd-party EBV-CTLs. Treatment cycles consisted of 3 weekly infusions of EBV-CTLs and 3 weeks of observation. Results: The EBV-CTLs did not induce significant toxicities or graft injury. One patient developed grade I skin GVHD requiring topical therapy. Complete and sustained partial remissions were achieved in 68% of HCT recipients and 54% of SOT recipients. For patients who achieved CR/PR or stable disease after cycle 1, overall survival was 88.9% and 81.8% respectively at 1 year. Although only 1/11 patients (9.1%) with progression of disease (POD) after cycle 1 who received additional EBV-CTLs from the same donor survived, 3 of 5 with POD subsequently treated with EBV-CTLs from a different donor achieved CR or durable PR (60%) and survive > 1 year. Maximal responses were achieved after a median of 2 cycles. Conclusions: Third party EBV-CTLs of defined HLA restriction provide safe, immediately accessible treatment for EBV PTLD. Secondary treatment with EBV-CTLs restricted by a different HLA allele (switch therapy) can also induce remissions if initial EBV-CTLs are ineffective. These results suggest a promising potential therapy for patients with rituximab refractory EBV-associated lymphoma post transplant. Phase II protocols (NCT01498484 and NCT00002663) were approved by the Institutional Review Board at Memorial Sloan Kettering Cancer Center, Food and Drug Administration and National Marrow Donor Program. This work was supported through NIH grants CA23766, NIH R21CA162002, Aubrey Fund, The Claire Tow Foundation, Major Family Foundation, Max Cure Foundation, Richard “Rick” J. EIsemann Pediatric Research Fund, Banbury Foundation, Edith Robertson Foundation, Larry Smead Foundation. In June 2015 Atara Biotherapeutics licensed the EBV-CTL bank and is developing this as ATA-129.
Susan Prockop, Ekaterina Doubrovina, Stephanie Suser, Glenn Heller, Juliet Barker, Parastoo Dahi, Miguel A. Perales, Esperanza Papadopoulos, Craig Sauter, Hugo Castro-Malaspina, Farid Boulad, Kevin J. Curran, Sergio Giralt, Boglarka Gyurkocza, Katharine C. Hsu, Ann Jakubowski, Alan M. Hanash, Nancy A. Kernan, Rachel Kobos, Guenther Koehne, Heather Landau, Doris Ponce, Barbara Spitzer, James W. Young, Gerald Behr, Mark Dunphy, Sofia Haque, Julie Teruya-Feldstein, Maria Arcila, Christine Moung, Susan Hsu, Aisha Hasan, Richard J. O'Reilly
Background: Proteinuria is considered as an unfavorable clinical condition that accelerates renal and cardiovascular disease. However, it is not clear if all forms of proteinuria are damaging. Mutations in CUBN cause Imerslund-Gräsbeck syndrome (IGS) featured by intestinal malabsorption of vitamin B12 and in some cases proteinuria. CUBN encodes for cubilin, an intestinal and proximal tubular uptake receptor containing 27 CUB domains for ligand binding. Methods: We used next-generation sequencing for renal disease genes to genotype cohorts of patients with suspected hereditary renal disease and chronic proteinuria. CUBN variants were analyzed using bioinformatics, structural modeling and epidemiological methods. Results: We identified 39 patients, in whom biallelic pathogenic variants in the CUBN gene are associated with chronic isolated proteinuria with childhood onset. Since the proteinuria displayed a high proportion of albuminuria, glomerular diseases such as steroid-resistant nephrotic syndrome or Alport syndrome were often the primary clinical diagnosis, motivating renal biopsies and proteinuria-lowering treatments. Yet, renal function was normal in all cases. By contrast, we did not find any biallelic pathogenic CUBN variants in patients with reduced renal function or focal segmental glomerulosclerosis. Unlike the more N-terminal IGS mutations, 37 out of the 41 proteinuria-associated CUBN variants led to modifications or truncations after the vitamin B12-binding domain. Finally, we show that four C-terminal CUBN variants are associated with albuminuria and moderately increased GFR in meta-analyses of large population-based cohorts. Conclusions: Collectively, our data suggest an important role for the C-terminal half of cubilin in renal albumin reabsorption. Albuminuria due to reduced cubilin function could be an unexpectedly common benign condition in humans that may not require any proteinuria-lowering treatment or renal biopsies.
Mathilda Bedin, Olivia Boyer, Aude Servais, Yong Li, Laure Villoing-Gaudé, Marie-Josephe Tête, Alexandra Cambier, Julien Hogan, Veronique Baudouin, Saoussen Krid, Albert Bensman, Florie Lammens, Ferielle Louillet, Bruno Ranchin, Cecile Vigneau, Iseline Bouteau, Corinne Isnard-Bagnis, Christoph J. Mache, Tobias Schäfer, Lars Pape, Markus Gödel, Tobias B. Huber, Marcus Benz, Günter Klaus, Matthias Hansen, Kay Latta, Olivier Gribouval, Vincent Morinière, Carole Tournant, Maik Grohmann, Elisa Kuhn, Timo Wagner, Christine Bole-Feysot, Fabienne Jabot-Hanin, Patrick Nitschké, Tarunveer S. Ahluwalia, Anna Köttgen, Christian Brix Folsted Andersen, Carsten Bergmann, Corinne Antignac, Matias Simons
BACKGROUND Spinal muscular atrophy (SMA) is caused by deficient expression of survival motor neuron (SMN) protein. New SMN-enhancing therapeutics are associated with variable clinical benefits. Limited knowledge of baseline and drug-induced SMN levels in disease-relevant tissues hinders efforts to optimize these treatments.METHODS SMN mRNA and protein levels were quantified in human tissues isolated during expedited autopsies.RESULTS SMN protein expression varied broadly among prenatal control spinal cord samples, but was restricted at relatively low levels in controls and SMA patients after 3 months of life. A 2.3-fold perinatal decrease in median SMN protein levels was not paralleled by comparable changes in SMN mRNA. In tissues isolated from nusinersen-treated SMA patients, antisense oligonucleotide (ASO) concentration and full-length (exon 7 including) SMN2 (SMN2-FL) mRNA level increases were highest in lumbar and thoracic spinal cord. An increased number of cells showed SMN immunolabeling in spinal cord of treated patients, but was not associated with an increase in whole-tissue SMN protein levels.CONCLUSIONS A normally occurring perinatal decrease in whole-tissue SMN protein levels supports efforts to initiate SMN-inducing therapies as soon after birth as possible. Limited ASO distribution to rostral spinal and brain regions in some patients likely limits clinical response of motor units in these regions for those patients. These results have important implications for optimizing treatment of SMA patients and warrant further investigations to enhance bioavailability of intrathecally administered ASOs.FUNDING SMA Foundation, SMART, NIH (R01-NS09677, R01-NS062269), Ionis Pharmaceuticals, and PTC Therapeutics. Biogen provided support for absolute real-time RT-PCR.
Daniel M. Ramos, Constantin d’Ydewalle, Vijayalakshmi Gabbeta, Amal Dakka, Stephanie K. Klein, Daniel A. Norris, John Matson, Shannon J. Taylor, Phillip G. Zaworski, Thomas W. Prior, Pamela J. Snyder, David Valdivia, Christine L. Hatem, Ian Waters, Nikhil Gupte, Kathryn J. Swoboda, Frank Rigo, C. Frank Bennett, Nikolai Naryshkin, Sergey Paushkin, Thomas O. Crawford, Charlotte J. Sumner
BACKGROUND RV144 is the only preventive HIV vaccine regimen demonstrating efficacy in humans. Attempting to build upon RV144 immune responses, we conducted a phase 1, multicenter, randomized, double-blind trial to assess the safety and immunogenicity of regimens substituting the DNA-HIV-PT123 (DNA) vaccine for ALVAC-HIV in different sequences or combinations with AIDSVAX B/E (protein).METHODS One hundred and four HIV-uninfected participants were randomized to 4 treatment groups (T1, T2, T3, and T4) and received intramuscular injections at 0, 1, 3, and 6 months (M): T1 received protein at M0 and M1 and DNA at M3 and M6; T2 received DNA at M0 and M1 and protein at M3 and M6; T3 received DNA at M0, M1, M3, and M6 with protein coadministered at M3 and M6; and T4 received protein and DNA coadministered at each vaccination visit.RESULTS All regimens were well tolerated. Antibodies binding to gp120 and V1V2 scaffold were observed in 95%–100% of participants in T3 and T4, two weeks after final vaccination at high magnitude. While IgG3 responses were highest in T3, a lower IgA/IgG ratio was observed in T4. Binding antibodies persisted at 12 months in 35%–100% of participants. Antibody-dependent cell-mediated cytotoxicity and tier 1 neutralizing-antibody responses had higher response rates for T3 and T4, respectively. CD4+ T cell responses were detectable in all treatment groups (32%–64%) without appreciable CD8+ T cell responses.CONCLUSION The DNA/protein combination regimens induced high-magnitude and long-lasting HIV V1V2–binding antibody responses, and early coadministration of the 2 vaccines led to a more rapid induction of these potentially protective responses.TRIAL REGISTRATION ClinicalTrials.gov NCT02207920.FUNDING National Institute of Allergy and Infectious Diseases (NIAID) grants UM1 AI068614, UM1 AI068635, UM1 AI068618, UM1 AI069511, UM1 AI069470, UM1 AI069534, P30 AI450008, UM1 AI069439, UM1 AI069481, and UM1 AI069496; the National Center for Advancing Translational Sciences, NIH (grant UL1TR001873); and the Bill & Melinda Gates Foundation (grant OPP52845).
Nadine G. Rouphael, Cecilia Morgan, Shuying S. Li, Ryan Jensen, Brittany Sanchez, Shelly Karuna, Edith Swann, Magdalena E. Sobieszczyk, Ian Frank, Gregory J. Wilson, Hong-Van Tieu, Janine Maenza, Aliza Norwood, James Kobie, Faruk Sinangil, Giuseppe Pantaleo, Song Ding, M. Juliana McElrath, Stephen C. De Rosa, David C. Montefiori, Guido Ferrari, Georgia D. Tomaras, Michael C. Keefer, the HVTN 105 Protocol Team and the NIAID HIV Vaccine Trials Network
BACKGROUND Adenoid cystic carcinoma (ACC) is a rare malignancy arising in salivary glands and other sites, characterized by high rates of relapse and distant spread. Recurrent/metastatic (R/M) ACCs are generally incurable, due to a lack of active systemic therapies. To improve outcomes, deeper understanding of genetic alterations and vulnerabilities in R/M tumors is needed.METHODS An integrated genomic analysis of 1,045 ACCs (177 primary, 868 R/M) was performed to identify alterations associated with advanced and metastatic tumors. Intratumoral genetic heterogeneity, germline mutations, and therapeutic actionability were assessed.RESULTS Compared with primary tumors, R/M tumors were enriched for alterations in key Notch (NOTCH1, 26.3% vs. 8.5%; NOTCH2, 4.6% vs. 2.3%; NOTCH3, 5.7% vs. 2.3%; NOTCH4, 3.6% vs. 0.6%) and chromatin-remodeling (KDM6A, 15.2% vs. 3.4%; KMT2C/MLL3, 14.3% vs. 4.0%; ARID1B, 14.1% vs. 4.0%) genes. TERT promoter mutations (13.1% of R/M cases) were mutually exclusive with both NOTCH1 mutations (q = 3.3 × 10–4) and MYB/MYBL1 fusions (q = 5.6 × 10–3), suggesting discrete, alternative mechanisms of tumorigenesis. This network of alterations defined 4 distinct ACC subgroups: MYB+NOTCH1+, MYB+/other, MYBWTNOTCH1+, and MYBWTTERT+. Despite low mutational load, we identified numerous samples with marked intratumoral genetic heterogeneity, including branching evolution across multiregion sequencing.CONCLUSION These observations collectively redefine the molecular underpinnings of ACC progression and identify further targets for precision therapies.FUNDING Adenoid Cystic Carcinoma Research Foundation, Pershing Square Sohn Cancer Research grant, the PaineWebber Chair, Stand Up 2 Cancer, NIH R01 CA205426, the STARR Cancer Consortium, NCI R35 CA232097, the Frederick Adler Chair, Cycle for Survival, the Jayme Flowers Fund, The Sebastian Nativo Fund, NIH K08 DE024774 and R01 DE027738, and MSKCC through NIH/NCI Cancer Center Support Grant (P30 CA008748).
Allen S. Ho, Angelica Ochoa, Gowtham Jayakumaran, Ahmet Zehir, Cristina Valero Mayor, Justin Tepe, Vladimir Makarov, Martin G. Dalin, Jie He, Mark Bailey, Meagan Montesion, Jeffrey S. Ross, Vincent A. Miller, Lindsay Chan, Ian Ganly, Snjezana Dogan, Nora Katabi, Petros Tsipouras, Patrick Ha, Nishant Agrawal, David B. Solit, P. Andrew Futreal, Adel K. El Naggar, Jorge S. Reis-Filho, Britta Weigelt, Alan L. Ho, Nikolaus Schultz, Timothy A. Chan, Luc G.T. Morris
BACKGROUND. Impaired T-cell immunity in transplant recipients is associated with infection-related morbidity and mortality. We recently reported the successful use of adoptive T-cell therapy (ACT) against drug-resistant/recurrent cytomegalovirus in solid-organ transplant recipients. METHODS. In the present study, we employed high-throughput T-cell receptor Vβ sequencing and T-cell functional profiling to delineate the impact of ACT on T-cell repertoire remodelling in the context of pre-therapy immunity and ACT products. RESULTS. These analyses indicated that a clinical response was coincident with significant changes in the T-cell receptor Vβ landscape post-therapy. This restructuring was associated with the emergence of effector memory (EM) T cells in responding patients, while non-responders displayed dramatic pre-therapy T-cell expansions with minimal change following ACT. Furthermore, immune reconstitution included both adoptively transferred clonotypes and endogenous clonotypes not detected in the ACT products. CONCLUSION. These observations demonstrate that immune control following ACT requires significant repertoire remodelling, which may be impaired in non-responders due to the pre-existing immune environment. Immunological interventions that can modulate this environment may improve clinical outcomes.
Corey Smith, Dillon Corvino, Leone Beagley, Sweera Rehan, Michelle A. Neller, Pauline Crooks, Katherine K. Matthews, Matthew Solomon, Laetitia Le Texier, Scott Campbell, Ross S. Francis, Daniel Chambers, Rajiv Khanna
No posts were found with this tag.