Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • ASCI Milestone Awards
    • Video Abstracts
    • Conversations with Giants in Medicine
  • Reviews
    • View all reviews ...
    • Clinical innovation and scientific progress in GLP-1 medicine (Nov 2025)
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • ASCI Milestone Awards
  • Video Abstracts
  • Conversations with Giants in Medicine
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

In-Press Preview

  • 2,330 Articles
  • 0 Posts
  • ← Previous
  • 1
  • 2
  • …
  • 64
  • 65
  • 66
  • …
  • 232
  • 233
  • Next →
Pro-thrombotic autoantibodies targeting Platelet Factor 4/polyanion are associated with pediatric cerebral malaria
Iset M. Vera, Anne Kessler, Visopo Harawa, Ajisa Ahmadu, Thomas E. Keller, Stephen T.J. Ray, Terrie E. Taylor, Stephen J. Rogerson, Wilson L. Mandala, Morayma Reyes Gil, Karl B. Seydel, Kami Kim
Iset M. Vera, Anne Kessler, Visopo Harawa, Ajisa Ahmadu, Thomas E. Keller, Stephen T.J. Ray, Terrie E. Taylor, Stephen J. Rogerson, Wilson L. Mandala, Morayma Reyes Gil, Karl B. Seydel, Kami Kim
View: Text | PDF

Pro-thrombotic autoantibodies targeting Platelet Factor 4/polyanion are associated with pediatric cerebral malaria

  • Text
  • PDF
Abstract

BACKGROUND. Features of consumptive coagulopathy and thromboinflammation are prominent in cerebral malaria (CM). We hypothesized that thrombogenic autoantibodies contribute to a procoagulant state in CM. METHODS. Plasma from children with uncomplicated malaria (UM, n = 124) and CM (n = 136) was analyzed by ELISA for a panel of 8 autoantibodies including anti-Platelet Factor 4/polyanion (anti-PF4/P), anti-Phospholipid, anti-Phosphatidylserine, anti-Myeloperoxidase, anti-Proteinase 3, anti-dsDNA, anti-Beta-2-Glycoprotein I (β2GPI), and anti-Cardiolipin. Non-malaria coma (NMC, n = 49) and healthy controls (HC, n = 56) were assayed for comparison. Associations with clinical and immune biomarkers were determined using univariate and logistic regression analyses. RESULTS. Median anti-PF4/P and anti-PS IgG levels were elevated with malaria infection relative to HC (P < 0.001) and NMC (PF4/P: P < 0.001). Anti-PF4/P IgG levels were elevated in CM (median = 0.27, IQR: 0.19–0.41) compared to UM (median = 0.19, IQR: 0.14–0.22, P ≤ 0.0001). Anti-PS IgG levels did not differ between UM and CM (P = 0.39). When CM cases were stratified by malaria retinopathy (Ret) status, levels of anti-PF4/P IgG correlated negatively with peripheral platelet count in Ret+ CM cases (Rs = 0.201, P = 0.04) and associated positively with mortality (OR = 15.2, 95% CI: 1.02–275, P = 0.048). Plasma from CM patients induced a greater platelet activation capacity in an ex-vivo assay relative to plasma from UM patients (P = 0.02). Platelet activation was associated with anti-PF4/P IgG levels (Rs = 0.293, P = 0.035). CONCLUSIONS. Thrombosis mediated by elevated anti-PF4/P autoantibodies may be one mechanism contributing to the clinical complications of CM.

Authors

Iset M. Vera, Anne Kessler, Visopo Harawa, Ajisa Ahmadu, Thomas E. Keller, Stephen T.J. Ray, Terrie E. Taylor, Stephen J. Rogerson, Wilson L. Mandala, Morayma Reyes Gil, Karl B. Seydel, Kami Kim

×

Sedentary behavior in mice induces metabolic inflexibility by suppressing skeletal muscle pyruvate metabolism
Piyarat Siripoksup, Guoshen Cao, Ahmad A. Cluntun, J. Alan Maschek, Quentinn Pearce, Marisa J. Lang, Mi-Young Jeong, Hiroaki Eshima, Patrick J. Ferrara, Precious C. Opurum, Ziad S. Mahmassani, Alek D. Peterlin, Shinya Watanabe, Maureen A. Walsh, Eric B. Taylor, James E. Cox, Micah J. Drummond, Jared Rutter, Katsuhiko Funai
Piyarat Siripoksup, Guoshen Cao, Ahmad A. Cluntun, J. Alan Maschek, Quentinn Pearce, Marisa J. Lang, Mi-Young Jeong, Hiroaki Eshima, Patrick J. Ferrara, Precious C. Opurum, Ziad S. Mahmassani, Alek D. Peterlin, Shinya Watanabe, Maureen A. Walsh, Eric B. Taylor, James E. Cox, Micah J. Drummond, Jared Rutter, Katsuhiko Funai
View: Text | PDF

Sedentary behavior in mice induces metabolic inflexibility by suppressing skeletal muscle pyruvate metabolism

  • Text
  • PDF
Abstract

Carbohydrates and lipids provide the majority of substrates to fuel mitochondrial oxidative phosphorylation (OXPHOS). Metabolic inflexibility, defined as an impaired ability to switch between these fuels, is implicated in a number of metabolic diseases. Here we explore the mechanism by which physical inactivity promotes metabolic inflexibility in skeletal muscle. We developed a mouse model of sedentariness, small mouse cage (SMC) that, unlike other classic models of disuse in mice, faithfully recapitulated metabolic responses that occur in humans. Bioenergetic phenotyping of skeletal muscle mitochondria displayed metabolic inflexibility induced by physical inactivity, demonstrated by a reduction in pyruvate-stimulated respiration (JO2) in absence of a change in palmitate-stimulated JO2. Pyruvate resistance in these mitochondria was likely driven by a decrease in phosphatidylethanolamine (PE) abundance in the mitochondrial membrane. Reduction in mitochondrial PE by heterozygous deletion of phosphatidylserine decarboxylase (PSD) was sufficient to induce metabolic inflexibility measured at the whole-body level, as well as at the level of skeletal muscle mitochondria. Low mitochondrial PE in C2C12 myotubes was sufficient to increase glucose flux towards lactate. We further implicate that resistance to pyruvate metabolism is due to attenuated mitochondrial entry via mitochondrial pyruvate carrier (MPC). These findings suggest a mechanism by which mitochondrial PE directly regulates MPC activity to modulate metabolic flexibility in mice.

Authors

Piyarat Siripoksup, Guoshen Cao, Ahmad A. Cluntun, J. Alan Maschek, Quentinn Pearce, Marisa J. Lang, Mi-Young Jeong, Hiroaki Eshima, Patrick J. Ferrara, Precious C. Opurum, Ziad S. Mahmassani, Alek D. Peterlin, Shinya Watanabe, Maureen A. Walsh, Eric B. Taylor, James E. Cox, Micah J. Drummond, Jared Rutter, Katsuhiko Funai

×

The secreted micropeptide C4orf48 enhances renal fibrosis via an RNA-binding mechanism
Jiayi Yang, Hongjie Zhuang, Jinhua Li, Ana B. Nunez-Nescolarde, Ning Luo, Huiting Chen, Andy Li, Xinli Qu, Qing Wang, Jinjin Fan, Xiaoyan Bai, Zhiming Ye, Bing Gu, Yue Meng, Xingyuan Zhang, Di Wu, Youyang Sia, Xiaoyun Jiang, Wei Chen, Alexander N. Combes, David J. Nikolic-Paterson, Xueqing Yu
Jiayi Yang, Hongjie Zhuang, Jinhua Li, Ana B. Nunez-Nescolarde, Ning Luo, Huiting Chen, Andy Li, Xinli Qu, Qing Wang, Jinjin Fan, Xiaoyan Bai, Zhiming Ye, Bing Gu, Yue Meng, Xingyuan Zhang, Di Wu, Youyang Sia, Xiaoyun Jiang, Wei Chen, Alexander N. Combes, David J. Nikolic-Paterson, Xueqing Yu
View: Text | PDF

The secreted micropeptide C4orf48 enhances renal fibrosis via an RNA-binding mechanism

  • Text
  • PDF
Abstract

Renal interstitial fibrosis is an important mechanism in the progression of chronic kidney disease (CKD) to end-stage kidney disease. However, we lack specific treatments to slow or halt renal fibrosis. Ribosome profiling identified upregulation of a secreted micropeptide, C4orf48 (Cf48), in mouse diabetic nephropathy. Cf48 RNA and protein levels were upregulated in tubular epithelial cells in human and experimental CKD. Serum Cf48 levels were increased in human CKD and correlated with loss of kidney function, increasing CKD stage, and the degree of active interstitial fibrosis. Cf48 overexpression in mice accelerated renal fibrosis, while Cf48 gene deletion or knockdown by antisense oligonucleotides significantly reduced renal fibrosis in CKD models. In vitro, recombinant Cf48 (rCf48) enhanced TGF-β1-induced fibrotic responses in renal fibroblasts and epithelial cells independent of Smad3 phosphorylation. Cellular uptake of Cf48 and its pro-fibrotic response in fibroblasts operated via the transferrin receptor. RNA immunoprecipitation-sequencing identified Cf48 binding to mRNA of genes involved in the fibrotic response, including Serpine1, Acta2, Ccn2, and Col4a1. rCf48 binds to the 3′-untranslated region of Serpine1 and increases mRNA half-life. We identify the secreted Cf48 micropeptide as a potential enhancer of renal fibrosis which operates as an RNA-binding peptide to promote the production of extracellular matrix.

Authors

Jiayi Yang, Hongjie Zhuang, Jinhua Li, Ana B. Nunez-Nescolarde, Ning Luo, Huiting Chen, Andy Li, Xinli Qu, Qing Wang, Jinjin Fan, Xiaoyan Bai, Zhiming Ye, Bing Gu, Yue Meng, Xingyuan Zhang, Di Wu, Youyang Sia, Xiaoyun Jiang, Wei Chen, Alexander N. Combes, David J. Nikolic-Paterson, Xueqing Yu

×

The estrogen signaling pathway reprograms prostate cancer cell metabolism and supports proliferation and disease progression
Camille Lafront, Lucas Germain, Gabriel H. Campolina-Silva, Cindy Weidmann, Line Berthiaume, Hélène Hovington, Hervé Brisson, Cynthia Jobin, Lilianne Frégeau-Proulx, Raul Cotau, Kevin Gonthier, Aurélie Lacouture, Patrick Caron, Claire Ménard, Chantal Atallah, Julie Riopel, Éva Latulippe, Alain Bergeron, Paul Toren, Chantal Guillemette, Martin Pelletier, Yves Fradet, Clémence Belleannée, Frédéric Pouliot, Louis Lacombe, Éric Lévesque, Étienne Audet-Walsh
Camille Lafront, Lucas Germain, Gabriel H. Campolina-Silva, Cindy Weidmann, Line Berthiaume, Hélène Hovington, Hervé Brisson, Cynthia Jobin, Lilianne Frégeau-Proulx, Raul Cotau, Kevin Gonthier, Aurélie Lacouture, Patrick Caron, Claire Ménard, Chantal Atallah, Julie Riopel, Éva Latulippe, Alain Bergeron, Paul Toren, Chantal Guillemette, Martin Pelletier, Yves Fradet, Clémence Belleannée, Frédéric Pouliot, Louis Lacombe, Éric Lévesque, Étienne Audet-Walsh
View: Text | PDF

The estrogen signaling pathway reprograms prostate cancer cell metabolism and supports proliferation and disease progression

  • Text
  • PDF
Abstract

Just as the androgen receptor (AR), the estrogen receptor α (ERα) is expressed in the prostate and is thought to influence prostate cancer (PCa) biology. Yet, the incomplete understanding of ERα functions in PCa hinders our ability to fully comprehend its clinical relevance and restricts the repurposing of estrogen-targeted therapies for the treatment of this disease. Using two human PCa tissue microarray cohorts, we first demonstrated that nuclear ERα expression was heterogeneous among patients, being only detected in half of tumors. Positive nuclear ERα levels were correlated with disease recurrence, progression to metastatic PCa, and patient survival. Using in vitro and in vivo models of the normal prostate and PCa, bulk and single-cell RNA-Seq analyses revealed that estrogens partially mimic the androgen transcriptional response and induce specific biological pathways linked to proliferation and metabolism. Bioenergetic flux assays and metabolomics confirmed the regulation of cancer metabolism by estrogens, supporting proliferation. Using cancer cell lines and patient-derived organoids, selective estrogen receptor modulators, a pure anti-estrogen, and genetic approaches impaired cancer cell proliferation and growth in an ERα-dependent manner. Overall, our study revealed that, when expressed, ERα functionally reprograms PCa metabolism, is associated with disease progression, and could be targeted for therapeutic purposes.

Authors

Camille Lafront, Lucas Germain, Gabriel H. Campolina-Silva, Cindy Weidmann, Line Berthiaume, Hélène Hovington, Hervé Brisson, Cynthia Jobin, Lilianne Frégeau-Proulx, Raul Cotau, Kevin Gonthier, Aurélie Lacouture, Patrick Caron, Claire Ménard, Chantal Atallah, Julie Riopel, Éva Latulippe, Alain Bergeron, Paul Toren, Chantal Guillemette, Martin Pelletier, Yves Fradet, Clémence Belleannée, Frédéric Pouliot, Louis Lacombe, Éric Lévesque, Étienne Audet-Walsh

×

Neuronally differentiated macula densa cells regulate tissue remodeling and regeneration in the kidney
Georgina Gyarmati, Urvi Nikhil Shroff, Anne Riquier-Brison, Dorinne Desposito, Wenjun Ju, Sean D. Stocker, Audrey Izuhara, Sachin Deepak, Alejandra Becerra Calderon, James L. Burford, Hiroyuki Kadoya, Ju-Young Moon, Yibu Chen, Markus M. Rinschen, Nariman Ahmadi, Lester Lau, Daniel Biemesderfer, Aaron W. James, Liliana Minichiello, Berislav Zlokovic, Inderbir S. Gill, Matthias Kretzler, János Peti-Peterdi
Georgina Gyarmati, Urvi Nikhil Shroff, Anne Riquier-Brison, Dorinne Desposito, Wenjun Ju, Sean D. Stocker, Audrey Izuhara, Sachin Deepak, Alejandra Becerra Calderon, James L. Burford, Hiroyuki Kadoya, Ju-Young Moon, Yibu Chen, Markus M. Rinschen, Nariman Ahmadi, Lester Lau, Daniel Biemesderfer, Aaron W. James, Liliana Minichiello, Berislav Zlokovic, Inderbir S. Gill, Matthias Kretzler, János Peti-Peterdi
View: Text | PDF

Neuronally differentiated macula densa cells regulate tissue remodeling and regeneration in the kidney

  • Text
  • PDF
Abstract

Tissue regeneration is limited in several organs including the kidney, contributing to the high prevalence of kidney disease globally. However, evolutionary and physiological adaptive responses and the presence of renal progenitor cells suggest existing remodeling capacity. This study uncovered endogenous tissue remodeling mechanisms in the kidney that were activated by the loss of body fluid and salt and regulated by a unique niche of a minority renal cell type called the macula densa (MD). Here we identified neuronal differentiation features of MD cells that sense the local and systemic environment, secrete angiogenic, growth and extracellular matrix remodeling factors, cytokines and chemokines, and control resident progenitor cells. Serial intravital imaging, MD nerve growth factor receptor and Wnt mouse models and transcriptome analysis revealed cellular and molecular mechanisms of these MD functions. Human and therapeutic translation studies illustrated the clinical potential of MD factors including CCN1 as a urinary biomarker and therapeutic target in chronic kidney disease. The concept that a neuronally differentiated key sensory and regulatory cell type responding to organ-specific physiological inputs controls local progenitors to remodel or repair tissues may be applicable to other organs and diverse tissue regenerative therapeutic strategies.

Authors

Georgina Gyarmati, Urvi Nikhil Shroff, Anne Riquier-Brison, Dorinne Desposito, Wenjun Ju, Sean D. Stocker, Audrey Izuhara, Sachin Deepak, Alejandra Becerra Calderon, James L. Burford, Hiroyuki Kadoya, Ju-Young Moon, Yibu Chen, Markus M. Rinschen, Nariman Ahmadi, Lester Lau, Daniel Biemesderfer, Aaron W. James, Liliana Minichiello, Berislav Zlokovic, Inderbir S. Gill, Matthias Kretzler, János Peti-Peterdi

×

Neutrophil-mediated innate immune resistance to bacterial pneumonia is dependent on Tet2 function
Candice Quin, Erica N. DeJong, Elina K. Cook, Yi Zhen Luo, Caitlyn Vlasschaert, Sanathan Sadh, Amy J.M. McNaughton, Marco M. Buttigieg, Jessica A Breznik, Allison E. Kennedy, Kevin Zhao, Jeffrey Mewburn, Kimberly J. Dunham-Snary, Charles C.T. Hindmarch, Alexander G. Bick, Stephen L. Archer, Michael J. Rauh, Dawn M.E. Bowdish
Candice Quin, Erica N. DeJong, Elina K. Cook, Yi Zhen Luo, Caitlyn Vlasschaert, Sanathan Sadh, Amy J.M. McNaughton, Marco M. Buttigieg, Jessica A Breznik, Allison E. Kennedy, Kevin Zhao, Jeffrey Mewburn, Kimberly J. Dunham-Snary, Charles C.T. Hindmarch, Alexander G. Bick, Stephen L. Archer, Michael J. Rauh, Dawn M.E. Bowdish
View: Text | PDF

Neutrophil-mediated innate immune resistance to bacterial pneumonia is dependent on Tet2 function

  • Text
  • PDF
Abstract

Individuals with clonal hematopoiesis of indeterminate potential (CHIP) are at increased risk of aging related health conditions and all-cause mortality, but whether CHIP impacts risk of infection is much less clear. Using UK Biobank data, we revealed a positive association between CHIP and incident pneumonia in 438,421 individuals. We show that inflammation enhanced pneumonia risk, as CHIP carriers with a hypomorphic IL6 receptor polymorphism were protected. To better characterize the pathways of susceptibility, we challenged hematopoietic Tet Methylcytosine Dioxygenase 2 knockout (Tet2–/–) and floxed control mice (Tet2f/f) with Streptococcus pneumoniae. As with human CHIP carriers, Tet2–/– mice had hematopoietic abnormalities resulting in the expansion of inflammatory monocytes and neutrophils in peripheral blood. Yet, these cells were insufficient in defending against S. pneumoniae and resulted in increased pathology, impaired bacterial clearance, and higher mortality in Tet2–/– mice. We delineated the transcriptional landscape of Tet2–/– neutrophils and found that while inflammation-related pathways were upregulated in Tet2–/– neutrophils, migration and motility pathways were compromised. Using live-imaging techniques, we demonstrated impairments in motility, pathogen uptake and neutrophil extracellular trap (NET) formation by Tet2–/– neutrophils. Collectively, we show that CHIP is a risk factor for bacterial pneumonia related to innate immune impairments.

Authors

Candice Quin, Erica N. DeJong, Elina K. Cook, Yi Zhen Luo, Caitlyn Vlasschaert, Sanathan Sadh, Amy J.M. McNaughton, Marco M. Buttigieg, Jessica A Breznik, Allison E. Kennedy, Kevin Zhao, Jeffrey Mewburn, Kimberly J. Dunham-Snary, Charles C.T. Hindmarch, Alexander G. Bick, Stephen L. Archer, Michael J. Rauh, Dawn M.E. Bowdish

×

Inflammatory and tissue injury marker dynamics in pediatric acute respiratory distress syndrome
Nadir Yehya, Thomas J. Booth, Gnana D. Ardhanari, Jill M. Thompson, L.K. Metthew Lam, Jacob E. Till, Mark V. Mai, Garrett Keim, Daniel J. McKeone, E. Scott Halstead, Patrick Lahni, Brian M. Varisco, Wanding Zhou, Erica L. Carpenter, Jason D. Christie, Nilam S. Mangalmurti
Nadir Yehya, Thomas J. Booth, Gnana D. Ardhanari, Jill M. Thompson, L.K. Metthew Lam, Jacob E. Till, Mark V. Mai, Garrett Keim, Daniel J. McKeone, E. Scott Halstead, Patrick Lahni, Brian M. Varisco, Wanding Zhou, Erica L. Carpenter, Jason D. Christie, Nilam S. Mangalmurti
View: Text | PDF

Inflammatory and tissue injury marker dynamics in pediatric acute respiratory distress syndrome

  • Text
  • PDF
Abstract

BACKGROUND. The molecular signature of pediatric acute respiratory distress syndrome (ARDS) is poorly described, and the degree to which hyperinflammation or specific tissue injury contributes to outcomes is unknown. Therefore, we profiled inflammation and tissue injury dynamics over the first 7 days of ARDS, and associated specific biomarkers with mortality, persistent ARDS, and persistent multiple organ dysfunction syndrome (MODS). METHODS. In a single-center prospective cohort of intubated pediatric ARDS, we collected plasma on days 0, 3, and 7. Nineteen biomarkers reflecting inflammation, tissue injury, and damage associated molecular patterns were measured. We assessed the relationship between biomarkers and trajectories with mortality, persistent ARDS, or persistent MODS using multivariable mixed effect models. RESULTS. In 279 subjects (64 [23%] non-survivors), hyperinflammatory cytokines, tissue injury markers, and DAMPs were higher in non-survivors. Survivors and non-survivors showed different biomarker trajectories. IL-1α, sTNFR1, ANG2, and SPD increased in non-survivors, while DAMPs remained persistently elevated. ANG2 and P3NP were associated with persistent ARDS, whereas multiple cytokines, tissue injury markers, and DAMPs were associated with persistent MODS. Corticosteroid use did not impact the association of biomarker levels or trajectory with mortality. CONCLUSIONS. Pediatric ARDS survivors and non-survivors had distinct biomarker trajectories, with cytokines, endothelial and alveolar epithelial injury, and DAMPs elevated in non-survivors. Mortality markers overlapped with markers associated with persistent MODS, rather than persistent ARDS.

Authors

Nadir Yehya, Thomas J. Booth, Gnana D. Ardhanari, Jill M. Thompson, L.K. Metthew Lam, Jacob E. Till, Mark V. Mai, Garrett Keim, Daniel J. McKeone, E. Scott Halstead, Patrick Lahni, Brian M. Varisco, Wanding Zhou, Erica L. Carpenter, Jason D. Christie, Nilam S. Mangalmurti

×

Proteomic profiles of peritoneal-derived small extracellular vesicles correlate with outcome in ovarian cancer patients
Miguel Quiralte, Arantzazu Barquín, Mónica Yagüe Fernández, Paloma Navarro, Tatiana P. Grazioso, Elena Sevillano, Juan F. Rodriguez Moreno, Alejandra Balarezo-Saldivar, Héctor Peinado, Elena Izquierdo, Carlos Millán, Irene López Carrasco, Mario Prieto, Rodrigo Madurga de Lacalle, Ismael Fernández-Miranda, Sergio Ruiz-Llorente, Jesús García-Donas
Miguel Quiralte, Arantzazu Barquín, Mónica Yagüe Fernández, Paloma Navarro, Tatiana P. Grazioso, Elena Sevillano, Juan F. Rodriguez Moreno, Alejandra Balarezo-Saldivar, Héctor Peinado, Elena Izquierdo, Carlos Millán, Irene López Carrasco, Mario Prieto, Rodrigo Madurga de Lacalle, Ismael Fernández-Miranda, Sergio Ruiz-Llorente, Jesús García-Donas
View: Text | PDF

Proteomic profiles of peritoneal-derived small extracellular vesicles correlate with outcome in ovarian cancer patients

  • Text
  • PDF
Abstract

Cancer-derived small extracellular vesicles (sEVs) are capable of modifying tumor microenvironment and promoting tumor progression. Ovarian cancer (OvCa) is a lethal malignancy that preferentially spreads through the abdominal cavity. Thus, the secretion of such vesicles into the peritoneal fluid could be a determinant factor in the dissemination and behavior of this disease. We designed a prospective observational study to assess the impact of peritoneal fluid-derived sEVs (PFD-sEVs) in OvCa clinical outcome. For this purpose, two patient cohorts were enrolled, including OvCa cases who underwent a diagnostic or cytoreductive surgery, and non-oncological patients as controls, who underwent abdominal surgery for benign gynecological conditions. PFD-sEVs systematic extraction from surgical samples enabled us to observe significant quantitative and qualitative differences associated with cancer diagnosis, disease stage and platinum chemosensitivity. Proteomic profiling of PFD-sEVs led to the identification of molecular pathways and proteins of interest and to the biological validation of S100A4 and STX5. In addition, unsupervised analysis of PFD-sEVs proteomic profiles in high-grade serous ovarian carcinomas (HGSOC) revealed two clusters with different outcomes in terms of overall survival. In conclusion, comprehensive characterization of the PFD-sEVs content provided a prognostic value with potential implications in HGSOC clinical management.

Authors

Miguel Quiralte, Arantzazu Barquín, Mónica Yagüe Fernández, Paloma Navarro, Tatiana P. Grazioso, Elena Sevillano, Juan F. Rodriguez Moreno, Alejandra Balarezo-Saldivar, Héctor Peinado, Elena Izquierdo, Carlos Millán, Irene López Carrasco, Mario Prieto, Rodrigo Madurga de Lacalle, Ismael Fernández-Miranda, Sergio Ruiz-Llorente, Jesús García-Donas

×

NFĸB signaling drives myocardial injury via CCR2+ macrophages in a preclinical model of arrhythmogenic cardiomyopathy
Stephen P. Chelko, Vinay R. Penna, Morgan Engel, Emily A. Shiel, Ann M. Centner, Waleed Farra, Elisa N. Cannon, Maicon Landim-Vieira, Niccole Schaible, Kory Lavine, Jeffrey E. Saffitz
Stephen P. Chelko, Vinay R. Penna, Morgan Engel, Emily A. Shiel, Ann M. Centner, Waleed Farra, Elisa N. Cannon, Maicon Landim-Vieira, Niccole Schaible, Kory Lavine, Jeffrey E. Saffitz
View: Text | PDF | Corrigendum

NFĸB signaling drives myocardial injury via CCR2+ macrophages in a preclinical model of arrhythmogenic cardiomyopathy

  • Text
  • PDF
Abstract

Nuclear factor kappa-B (NFκB) is activated in arrhythmogenic cardiomyopathy (ACM) patient-derived iPSC-cardiac myocytes under basal conditions and inhibition of NFκB signaling prevents disease in Dsg2mut/mut mice, a robust mouse model of ACM. Here, we used genetic approaches and single cell RNA sequencing to define the contributions of immune signaling in cardiac myocytes and macrophages in the natural progression of ACM using Dsg2mut/mut mice. We found that NFκB signaling in cardiac myocytes drives myocardial injury, contractile dysfunction, and arrhythmias in Dsg2mut/mut mice. NFκB signaling in cardiac myocytes mobilizes macrophages expressing C-C motif chemokine receptor-2 (CCR2+ cells) to affected areas within the heart, where they mediate myocardial injury and arrhythmias. Contractile dysfunction in Dsg2mut/mut mice is caused both by loss of heart muscle and negative inotropic effects of inflammation in viable muscle. Single nucleus RNA sequencing and cellular indexing of transcriptomes and epitomes (CITE-seq) studies revealed marked pro-inflammatory changes in gene expression and the cellular landscape in hearts of Dsg2mut/mut mice involving cardiac myocytes, fibroblasts and CCR2+ macrophages. Changes in gene expression in cardiac myocytes and fibroblasts in Dsg2mut/mut mice were dependent on CCR2+ macrophage recruitment to the heart. These results highlight complex mechanisms of immune injury and regulatory crosstalk between cardiac myocytes, inflammatory cells and fibroblasts in the pathogenesis of ACM.

Authors

Stephen P. Chelko, Vinay R. Penna, Morgan Engel, Emily A. Shiel, Ann M. Centner, Waleed Farra, Elisa N. Cannon, Maicon Landim-Vieira, Niccole Schaible, Kory Lavine, Jeffrey E. Saffitz

×

Mediator kinase inhibition reverses castration resistance of advanced prostate cancer
Jing Li, Thomas A. Hilimire, Liu Yueying, Lili Wang, Jiaxin Liang, Balázs Győrffy, Vitali Sikirzhytski, Hao Ji, Li Zhang, Chen Cheng, Xiaokai Ding, Kendall R. Kerr, Charles E. Dowling, Alexander A. Chumanevich, Zachary T. Mack, Gary P. Schools, Chang-uk Lim, Leigh Ellis, Xiaolin Zi, Donald C. Porter, Eugenia V. Broude, Campbell McInnes, George Wilding, Michael B. Lilly, Igor B. Roninson, Mengqian Chen
Jing Li, Thomas A. Hilimire, Liu Yueying, Lili Wang, Jiaxin Liang, Balázs Győrffy, Vitali Sikirzhytski, Hao Ji, Li Zhang, Chen Cheng, Xiaokai Ding, Kendall R. Kerr, Charles E. Dowling, Alexander A. Chumanevich, Zachary T. Mack, Gary P. Schools, Chang-uk Lim, Leigh Ellis, Xiaolin Zi, Donald C. Porter, Eugenia V. Broude, Campbell McInnes, George Wilding, Michael B. Lilly, Igor B. Roninson, Mengqian Chen
View: Text | PDF

Mediator kinase inhibition reverses castration resistance of advanced prostate cancer

  • Text
  • PDF
Abstract

Mediator kinases CDK19 and CDK8, pleiotropic regulators of transcriptional reprogramming, are differentially regulated by androgen signaling but both kinases are upregulated in castration-resistant prostate cancer (CRPC). Genetic or pharmacological inhibition of CDK8 and CDK19 reverses the castration-resistant phenotype and restores the sensitivity of CRPC xenografts to androgen deprivation in vivo. Prolonged CDK8/19 inhibitor treatment combined with castration not only suppresses the growth of CRPC xenografts but also induces tumor regression and cures. Transcriptomic analysis revealed that Mediator kinase inhibition amplifies and modulates the effects of castration on gene expression, disrupting CRPC adaptation to androgen deprivation. Mediator kinase inactivation in tumor cells also affects stromal gene expression, indicating that Mediator kinase activity in CRPC molds the tumor microenvironment. The combination of castration and Mediator kinase inhibition downregulates the MYC pathway, and Mediator kinase inhibition suppresses a MYC-driven CRPC tumor model even without castration. CDK8/19 inhibitors show efficacy in patient-derived xenograft models of CRPC, and a gene signature of Mediator kinase activity correlates with tumor progression and overall survival in clinical samples of metastatic CRPC. These results indicate that Mediator kinases mediate androgen-independent in vivo growth of CRPC, supporting the development of CDK8/19 inhibitors for the treatment of this presently incurable disease.

Authors

Jing Li, Thomas A. Hilimire, Liu Yueying, Lili Wang, Jiaxin Liang, Balázs Győrffy, Vitali Sikirzhytski, Hao Ji, Li Zhang, Chen Cheng, Xiaokai Ding, Kendall R. Kerr, Charles E. Dowling, Alexander A. Chumanevich, Zachary T. Mack, Gary P. Schools, Chang-uk Lim, Leigh Ellis, Xiaolin Zi, Donald C. Porter, Eugenia V. Broude, Campbell McInnes, George Wilding, Michael B. Lilly, Igor B. Roninson, Mengqian Chen

×
  • ← Previous
  • 1
  • 2
  • …
  • 64
  • 65
  • 66
  • …
  • 232
  • 233
  • Next →

No posts were found with this tag.

Advertisement

Copyright © 2026 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts