Neutrophil infiltration occurs in a variety of liver diseases, but it is unclear how neutrophils and hepatocytes interact. Neutrophils generally use granule proteases to digest phagocytosed bacteria and foreign substances or neutralize them in neutrophil extracellular traps. In certain pathological states, granule proteases play a destructive role against the host as well. More recently, non-destructive actions of neutrophil granule proteins have been reported, such as modulation of tissue remodeling and metabolism. Here we report a completely different mechanism by which neutrophils act non-destructively, by inserting granules directly into hepatocytes. Specifically, elastase-containing granules were transferred to hepatocytes where elastase selectively degraded intracellular calcium channels to reduce cell proliferation without cytotoxicity. In response, hepatocytes increased expression of serpin E2 and A3, which inhibited elastase activity. Elastase insertion was seen in patient specimens of alcohol-associated hepatitis, and the relationship between elastase-mediated ITPR2 degradation and reduced cell proliferation was confirmed in mouse models. Moreover, neutrophils from patients with alcohol-associated hepatitis were more prone to degranulation and more potent in reducing calcium channel expression than neutrophils from healthy subjects. This non-destructive and reversible action on hepatocytes defines a previously unrecognized role for neutrophils in the transient regulation of epithelial calcium signaling mechanisms.
Noriyoshi Ogino, M. Fátima Leite, Mateus T. Guerra, Emma Kruglov, Hiromitsu Asashima, David A. Hafler, Takeshi Ito, João P. Pereira, Brandon J. Peiffer, Zhaoli Sun, Barbara E. Ehrlich, Michael H. Nathanson
Androgen has long been recognized for its pivotal role in the sexual dimorphism of cardiovascular diseases, including aortic aneurysms, a devastating vascular disease with a higher prevalence and fatality rate in men than women. However, the mechanism by which androgen mediates aortic aneurysms is largely unknown. Herein, we found that male mice, not female mice, developed aortic aneurysms when exposed to aldosterone and high salt (Aldo-salt). We revealed that androgen and androgen receptors (AR) were crucial for this sexually dimorphic response to Aldo-salt. We identified programmed cell death protein 1 (PD-1), an immune checkpoint, as a key link between androgen and aortic aneurysms. We demonstrated that administration of anti-PD-1 Ab and adoptive PD-1 deficient T cell transfer reinstated Aldo-salt-induced aortic aneurysms in orchiectomized mice, and genetic deletion of PD-1 exacerbated aortic aneurysms induced by high-fat diet and angiotensin II (Ang II) in non-orchiectomized mice. Mechanistically, we discovered that AR bound to the PD-1 promoter to suppress its expression in the spleen. Thus, our study unveils a mechanism by which androgen aggravates aortic aneurysms by suppressing PD-1 expression in T cells. Moreover, our study suggests that some cancer patients might benefit from screenings for aortic aneurysms during immune checkpoint therapy.
Xufang Mu, Shu Liu, Zhuoran Wang, Kai Jiang, Tim McClintock, Arnold J. Stromberg, Alejandro V. Tezanos, Eugene S. Lee, John A. Curci, Ming C. Gong, Zhenheng Guo
BACKGROUND. Obesity is the foremost risk factor in the development of endometrial cancer (EC). However, the impact of obesity on the response to immune checkpoint inhibitors (ICI) in EC remains poorly understood. This retrospective study investigates the association between body mass index (BMI), body fat distribution, and clinical and molecular characteristics of EC patients treated with ICI. METHODS. We analyzed progression-free survival (PFS) and overall survival (OS) in EC patients treated with ICI, categorized by BMI, fat mass distribution, and molecular subtypes. Incidence of immune-related adverse events (irAE) after ICI was also assessed based on BMI status. RESULTS. 524 EC patients were included in the study. Overweight and obese patients exhibited a significantly prolonged PFS and OS compared to normal BMI patients after treatment with ICI. Multivariable Cox regression analysis confirmed the independent association of overweight and obesity with improved PFS and OS. Elevated visceral adipose tissue (VAT) was identified as a strong independent predictor for improved PFS to ICI. Associations between obesity and OS/PFS were particularly significant in the copy number-high/TP53abnormal (CN-H/TP53abn) EC molecular subtype. Finally, obese patients demonstrated a higher irAE rate compared to normal BMI individuals. CONCLUSION. Obesity is associated with improved outcomes to ICI in EC patients and a higher rate of irAEs. This association is more pronounced in the CN-H/TP53abn EC molecular subtype. FUNDING. NIH/NCI Cancer Center Support Grant P30CA008748 (MSK). K08CA266740 and MSK Gerstner Physician Scholars Program (J.C.O). RUCCTS Grant #UL1 TR001866 (N.G-B and C.S.J). Cycle for survival and Breast Cancer Research Foundation grants (B.W).
Nicolás Gómez-Banoy, Eduardo J. Ortiz, Caroline S. Jiang, Christian Dagher, Carlo Sevilla, Jeffrey Girshman, Andrew M. Pagano, Andrew J. Plodkowski, William A. Zammarrelli, Jennifer J. Mueller, Carol Aghajanian, Britta Weigelt, Vicky Makker, Paul Cohen, Juan C. Osorio
Myostatin (MSTN) has long been recognized as a critical regulator of muscle mass. Recently, there has been an increasing interest in its role in metabolism. In our study, we specifically knocked out MSTN in brown adipose tissue (BAT) from mice (MSTNΔUCP1) and found that the mice gained more weight than controls when fed a high-fat diet, with progressive hepatosteatosis and impaired skeletal muscle activity. RNA-seq analysis indicated signatures of mitochondrial dysfunction and inflammation in the MSTN-ablation BAT. Further studies demonstrated that the the Kruppel-like factor 4 (KLF4) was responsible for the metabolic phenotypes observed, while FGF21 contributed to the microenvironment communication between adipocytes and macrophages induced by the loss of MSTN. Moreover, the MSTN-SMAD2/3-p38 signaling pathway mediated the expression of KLF4 and FGF21 in adipocytes. In summary, our findings suggest that brown adipocytes-derived MSTN regulates BAT thermogenesis via autocrine and paracrine effects on adipocytes or macrophages, ultimately regulating systemic energy homeostasis.
Hui Wang, Shanshan Guo, Huanqing Gao, Jiyang Ding, Hongyun Li, Xingyu Kong, Shuang Zhang, Muyang He, Yonghao Feng, Wei Wu, Kexin Xu, Yuxuan Chen, Hanyin Zhang, Tiemin Liu, Xingxing Kong
Preventing the onset of autoimmune type 1 diabetes (T1D) is feasible through pharmacological interventions that target molecular stress-responsive mechanisms. Cellular stresses, such as nutrient deficiency, viral infection, or unfolded proteins, trigger the integrated stress response (ISR), which curtails protein synthesis by phosphorylating eIF2α. In T1D, maladaptive unfolded protein response (UPR) in insulin-producing beta cells renders these cells susceptible to autoimmunity. We found that inhibition of the eIF2α kinase PERK, a common component of the UPR and ISR, reversed the mRNA translation block in stressed human islets and delayed the onset of diabetes, reduced islet inflammation, and preserved β cell mass in T1D-susceptible mice. Single-cell RNA sequencing of islets from PERK-inhibited mice showed reductions in the UPR and PERK signaling pathways and alterations in antigen processing and presentation pathways in β cells. Spatial proteomics of islets from these mice showed an increase in the immune checkpoint protein PD-L1 in β cells. Golgi membrane protein 1, whose levels increased following PERK inhibition in human islets and EndoC-βH1 human β cells, interacted with and stabilized PD-L1. Collectively, our studies show that PERK activity enhances β cell immunogenicity, and inhibition of PERK may offer a strategy to prevent or delay the development of T1D.
Charanya Muralidharan, Fei Huang, Jacob R. Enriquez, Jiayi E. Wang, Jennifer B. Nelson, Titli Nargis, Sarah C. May, Advaita Chakraborty, Kayla T. Figatner, Svetlana Navitskaya, Cara M. Anderson, Veronica Calvo, David Surguladze, Mark J. Mulvihill, Xiaoyan Yi, Soumyadeep Sarkar, Scott A. Oakes, Bobbie-Jo M. Webb-Robertson, Emily K. Sims, Kirk A. Staschke, Decio L. Eizirik, Ernesto S. Nakayasu, Michael E. Stokes, Sarah A. Tersey, Raghavendra G. Mirmira
We report that diazepam binding inhibitor (DBI) is a glial messenger mediating satellite glia-sensory neuron crosstalk in the dorsal root ganglion (DRG). DBI is highly expressed in satellite glia cells (SGCs) of mice, rat and human, but not in sensory neurons or most other DRG-resident cells. Knockdown of DBI results in a robust mechanical hypersensitivity without major effects on other sensory modalities. In vivo overexpression of DBI in SGCs reduces sensitivity to mechanical stimulation and alleviates mechanical allodynia in neuropathic and inflammatory pain models. We further show that DBI acts as an unconventional agonist and positive allosteric modulator at the neuronal GABAA receptors, particularly strongly effecting those with a high-affinity benzodiazepine binding site. Such receptors are selectively expressed by a subpopulation of mechanosensitive DRG neurons and these are also more enwrapped with DBI-expressing glia, as compared to other DRG neurons, suggesting a mechanism for specific effect of DBI on mechanosensation. These findings identified a new, peripheral neuron-glia communication mechanism modulating pain signalling, which can be targeted therapeutically.
Xinmeng Li, Arthur Silveira Prudente, Vincenzo Prato, Xianchuan Guo, Han Hao, Frederick Jones, Sofia Figoli, Pierce Mullen, Yujin Wang, Raquel Tonello, Sang Hoon Lee, Shihab Shah, Benito Maffei, Temugin Berta, Xiaona Du, Nikita Gamper
Tolerance of mouse kidney allografts arises in grafts that develop regulatory Tertiary Lymphoid Organs (rTLOs). scRNAseq data and adoptive transfer of alloreactive T cells post-transplant showed that cytotoxic CD8+ T cells are reprogrammed within the accepted graft to an exhausted/regulatory-like phenotype mediated by IFN-γ. Establishment of rTLOs was required since adoptive transfer of alloreactive T cells prior to transplantation results in kidney allograft rejection. Despite intragraft CD8+ cells with a regulatory phenotype, they were not essential for the induction and maintenance of kidney allograft tolerance since renal allotransplantation into CD8 KO recipients resulted in acceptance and not rejection. Analysis of scRNAseq data from allograft kidneys and malignant tumors identified similar regulatory-like cell types within the T cell clusters and trajectory analysis showed that cytotoxic CD8+ T cells are reprogrammed into an exhausted/regulatory-like phenotype intratumorally. Induction of cytotoxic CD8+ T cell dysfunction of infiltrating cells appears to be a beneficial mechanistic pathway that protects the kidney allotransplant from rejection through a process we call “defensive tolerance.” This pathway has implications for our understanding of allotransplant tolerance and tumor resistance to host immunity.
Takahiro Yokose, Edward S. Szuter, Ivy Rosales, Michael T. Guinn, Andrew S. Liss, Taisuke Baba, David A. Ruddy, Michelle Piquet, Jamil Azzi, A. Benedict Cosimi, Paul S. Russell, Joren C. Madsen, Robert B. Colvin, Alessandro Alessandrini
The β-secretase BACE1 is a central drug target for Alzheimer’s disease. Clinically tested, BACE1-directed inhibitors also block the homologous protease BACE2. Yet, little is known about physiological BACE2 substrates and functions in vivo. Here, we identify BACE2 as the protease shedding the lymphangiogenic vascular endothelial growth factor receptor 3 (VEGFR3). Inactivation of BACE2, but not BACE1, inhibited shedding of VEGFR3 from primary human lymphatic endothelial cells (LECs) and reduced release of the shed, soluble VEGFR3 (sVEGFR3) ectodomain into the blood of mice, non-human primates and humans. Functionally, BACE2 inactivation increased full-length VEGFR3 and enhanced VEGFR3 signaling in LECs and also in vivo in zebrafish, where enhanced migration of LECs was observed. Thus, this study identifies BACE2 as a modulator of lymphangiogenic VEGFR3 signaling and demonstrates the utility of sVEGFR3 as a pharmacodynamic plasma marker for BACE2 activity in vivo, a prerequisite for developing BACE1-selective inhibitors for a safer prevention of Alzheimer’s disease.
Andree Schmidt, Brian Hrupka, Frauke van Bebber, Sanjay Sunil Kumar, Xiao Feng, Sarah K. Tschirner, Marlene Aßfalg, Stephan A. Müller, Laura Sophie Hilger, Laura I. Hofmann, Martina Pigoni, Georg Jocher, Iryna Voytyuk, Emily L. Self, Mana Ito, Kana Hyakkoku, Akimasa Yoshimura, Naotaka Horiguchi, Regina Feederle, Bart De Strooper, Stefan Schulte-Merker, Eckhard Lammert, Dieder Moechars, Bettina Schmid, Stefan F. Lichtenthaler
Immunoglobulin G4-related disease (IgG4-RD) is a systemic immune-mediated’ fibroinflammatory disease. The pathomechanisms remain poorly understood. Here, we identified gene variants in familial IgG4-RD and determined their functional consequences. All three affected members shared mutations of the transcription factor IKAROS, encoded by IKZF1, and the E3 ubiquitin ligase UBR4. The IKAROS mutation increased binding to the FYN promoter resulting in higher transcription of FYN in T cells. The UBR4 mutation prevented the lysosomal degradation of the phosphatase CD45. In the presence of elevated FYN, CD45 functioned as a positive regulatory loop, lowering the threshold for T cell activation. Consequently, T cells from affected family members were hyperresponsive to stimulation. When transduced with a low avidity, autoreactive T cell receptor, they responded to the autoantigenic peptide. In parallel, the high expression of FYN in T cells biased their differentiation towards TH2 polarization by stabilizing the transcription factor JunB. This bias is consistent with the frequent atopic manifestations in IgG4-RD patients including our afflicted family members. Building on the functional consequences of these two mutations, we propose a disease model that is not only instructive for IgG4-RD but also for atopic diseases for autoimmune diseases associated with an IKZF1 risk haplotype.
Qingxiang Liu, Yanyan Zheng, Ines Sturmlechner, Abhinav Jain, Maryam Own, Qiankun Yang, Huimin Zhang, Filippo Pinto e Vairo, Karen Cerosaletti, Jane H. Buckner, Kenneth J. Warrington, Matthew J. Koster, Cornelia M. Weyand, Jorg J. Goronzy
Osteogenesis imperfecta (OI) type V is the second most common form of OI, distinguished by hyperplastic callus formation and calcification of the interosseous membranes in addition to bone fragility. It is caused by a recurrent, dominant pathogenic variant (c.-14C>T) in IFITM5. Here, we generated a conditional Rosa26 knock-in mouse model to study the mechanistic consequences of the recurrent mutation. Expression of the mutant Ifitm5 in osteo-chondroprogenitor or chondrogenic cells resulted in low bone mass and growth retardation. Mutant limbs showed impaired endochondral ossification, cartilage overgrowth, and abnormal growth plate architecture. The cartilage phenotype correlates with the pathology reported in OI type V patients. Surprisingly, expression of mutant Ifitm5 in mature osteoblasts caused no obvious skeletal abnormalities. In contrast, earlier expression in osteo-chondroprogenitors was associated with increase in the skeletal progenitor population within the periosteum. Lineage tracing showed that chondrogenic cells expressing the mutant Ifitm5 showed decreased differentiation into osteoblastic cells in diaphyseal bone. Moreover, mutant IFITM5 disrupts early skeletal homeostasis in part by activating ERK signaling and downstream SOX9 protein, and inhibition of these pathways partially rescued the phenotype in mutant animals. These data identify the contribution of a signaling defect altering osteo-chondroprogenitor differentiation as a driver in the pathogenesis of OI type V.
Ronit Marom, I-Wen Song, Emily C. Busse, Megan E. Washington, Ava S. Berrier, Vittoria C. Rossi, Laura Ortinau, Youngjae Jeong, Ming-Ming Jiang, Brian C. Dawson, Mary Adeyeye, Carolina Leynes, Caressa D. Lietman, Bridget M. Stroup, Dominyka Batkovskyte, Mahim Jain, Yuqing Chen, Racel Cela, Alexis Castellon, Alyssa A. Tran, Isabel Lorenzo, D. Nicole Meyers, Shixia Huang, Alicia Turner, Vinitha Shenava, Maegen Wallace, Eric Orwoll, Dongsu Park, Catherine G. Ambrose, Sandesh C.S. Nagamani, Jason D. Heaney, Brendan H. Lee
No posts were found with this tag.