Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Research Article

  • 25,432 Articles
  • 0 Posts
  • ← Previous
  • 1
  • 2
  • …
  • 163
  • 164
  • 165
  • …
  • 2543
  • 2544
  • Next →
PIK3Cδ expression by fibroblasts promotes triple-negative breast cancer progression
Teresa Gagliano, … , Justin Stebbing, Georgios Giamas
Teresa Gagliano, … , Justin Stebbing, Georgios Giamas
Published March 10, 2020
Citation Information: J Clin Invest. 2020. https://doi.org/10.1172/JCI128313.
View: Text | PDF

PIK3Cδ expression by fibroblasts promotes triple-negative breast cancer progression

  • Text
  • PDF
Abstract

As there is growing evidence for the tumor microenvironment’s role in tumorigenesis, we investigated the role of fibroblast-expressed kinases in triple-negative breast cancer (TNBC). Using a high-throughput kinome screen combined with 3D invasion assays, we identified fibroblast-expressed PIK3Cδ (f-PIK3Cδ) as a key regulator of cancer progression. Although PIK3Cδ was expressed in primary fibroblasts derived from TNBC patients, it was barely detectable in breast cancer (BC) cell lines. Genetic and pharmacological gain- and loss-of-function experiments verified the contribution of f-PIK3Cδ in TNBC cell invasion. Integrated secretomics and transcriptomics analyses revealed a paracrine mechanism via which f-PIK3Cδ confers its protumorigenic effects. Inhibition of f-PIK3Cδ promoted the secretion of factors, including PLGF and BDNF, that led to upregulation of NR4A1 in TNBC cells, where it acts as a tumor suppressor. Inhibition of PIK3Cδ in an orthotopic BC mouse model reduced tumor growth only after inoculation with fibroblasts, indicating a role of f-PIK3Cδ in cancer progression. Similar results were observed in the MMTV-PyMT transgenic BC mouse model, along with a decrease in tumor metastasis, emphasizing the potential immune-independent effects of PIK3Cδ inhibition. Finally, analysis of BC patient cohorts and TCGA data sets identified f-PIK3Cδ (protein and mRNA levels) as an independent prognostic factor for overall and disease-free survival, highlighting it as a therapeutic target for TNBC.

Authors

Teresa Gagliano, Kalpit Shah, Sofia Gargani, Liyan Lao, Mansour Alsaleem, Jianing Chen, Vasileios Ntafis, Penghan Huang, Angeliki Ditsiou, Viviana Vella, Kritika Yadav, Kamila Bienkowska, Giulia Bresciani, Kai Kang, Leping Li, Philip Carter, Graeme Benstead-Hume, Timothy O’Hanlon, Michael Dean, Frances M.G. Pearl, Soo-Chin Lee, Emad A. Rakha, Andrew R. Green, Dimitris L. Kontoyiannis, Erwei Song, Justin Stebbing, Georgios Giamas

×

S100A8/A9 regulates CD11b expression and neutrophil recruitment during chronic tuberculosis
Ninecia R. Scott, … , Joaquín Zúñiga, Shabaana A. Khader
Ninecia R. Scott, … , Joaquín Zúñiga, Shabaana A. Khader
Published March 5, 2020
Citation Information: J Clin Invest. 2020. https://doi.org/10.1172/JCI130546.
View: Text | PDF

S100A8/A9 regulates CD11b expression and neutrophil recruitment during chronic tuberculosis

  • Text
  • PDF
Abstract

Neutrophil accumulation is associated with lung pathology during active tuberculosis (ATB). However, the molecular mechanism or mechanisms by which neutrophils accumulate in the lung and contribute to TB immunopathology are not fully delineated. Using the well-established mouse model of TB, our new data provide evidence that the alarmin S100A8/A9 mediates neutrophil accumulation during progression to chronic TB. Depletion of neutrophils or S100A8/A9 deficiency resulted in improved Mycobacterium tuberculosis (Mtb) control during chronic but not acute TB. Mechanistically, we demonstrate that, following Mtb infection, S100A8/A9 expression is required for upregulation of the integrin molecule CD11b specifically on neutrophils, mediating their accumulation during chronic TB disease. These findings are further substantiated by increased expression of S100A8 and S100A9 mRNA in whole blood in human TB progressors when compared with nonprogressors and rapidly decreased S100A8/A9 protein levels in the serum upon TB treatment. Furthermore, we demonstrate that S100A8/A9 serum levels along with chemokines are useful in distinguishing between ATB and asymptomatic Mtb-infected latent individuals. Thus, our results support targeting S100A8/A9 pathways as host-directed therapy for TB.

Authors

Ninecia R. Scott, Rosemary V. Swanson, Noor Al-Hammadi, Racquel Domingo-Gonzalez, Javier Rangel-Moreno, Belinda A. Kriel, Allison N. Bucsan, Shibali Das, Mushtaq Ahmed, Smriti Mehra, Puthayalai Treerat, Alfredo Cruz-Lagunas, Luis Jimenez-Alvarez, Marcela Muñoz-Torrico, Karen Bobadilla-Lozoya, Thomas Vogl, Gerhard Walzl, Nelita du Plessis, Deepak Kaushal, Thomas J. Scriba, Joaquín Zúñiga, Shabaana A. Khader

×

Minimal PD-1 expression in mouse and human NK cells under diverse conditions
Sean J. Judge, … , Robert J. Canter, William J. Murphy
Sean J. Judge, … , Robert J. Canter, William J. Murphy
Published March 5, 2020
Citation Information: J Clin Invest. 2020. https://doi.org/10.1172/JCI133353.
View: Text | PDF

Minimal PD-1 expression in mouse and human NK cells under diverse conditions

  • Text
  • PDF
Abstract

PD-1 expression is a hallmark of both early antigen-specific T cell activation and later chronic stimulation, suggesting key roles in both naive T cell priming and memory T cell responses. Although significant similarities exist between T cells and NK cells, there are critical differences in their biology and functions reflecting their respective adaptive and innate immune effector functions. Expression of PD-1 on NK cells is controversial despite rapid incorporation into clinical cancer trials. Our objective was to stringently and comprehensively assess expression of PD-1 on both mouse and human NK cells under multiple conditions and using a variety of readouts. We evaluated NK cells from primary human tumor samples, after ex vivo culturing, and from multiple mouse tumor and viral models using flow cytometry, quantitative reverse-transcriptase PCR (qRT-PCR), and RNA-Seq for PD-1 expression. We demonstrate that, under multiple conditions, human and mouse NK cells consistently lack PD-1 expression despite the marked upregulation of other activation/regulatory markers, such as TIGIT. This was in marked contrast to T cells, which were far more prominent within all tumors and expressed PD-1. These data have important implications when attempting to discern NK from T cell effects and to determine whether PD-1 targeting can be expected to have direct effects on NK cell functions.

Authors

Sean J. Judge, Cordelia Dunai, Ethan G. Aguilar, Sarah C. Vick, Ian R. Sturgill, Lam T. Khuat, Kevin M. Stoffel, Jonathan Van Dyke, Dan L. Longo, Morgan A. Darrow, Stephen K. Anderson, Bruce R. Blazar, Arta M. Monjazeb, Jonathan S. Serody, Robert J. Canter, William J. Murphy

×

Post-sepsis immunosuppression depends on NKT cell regulation of mTOR/IFN-γ in NK cells
Edy Y. Kim, … , Tal Shay, Michael B. Brenner
Edy Y. Kim, … , Tal Shay, Michael B. Brenner
Published March 10, 2020
Citation Information: J Clin Invest. 2020. https://doi.org/10.1172/JCI128075.
View: Text | PDF

Post-sepsis immunosuppression depends on NKT cell regulation of mTOR/IFN-γ in NK cells

  • Text
  • PDF
Abstract

As treatment of the early, inflammatory phase of sepsis improves, post-sepsis immunosuppression and secondary infection have increased in importance. How early inflammation drives immunosuppression remains unclear. Although IFN-γ typically helps microbial clearance, we found that increased plasma IFN-γ in early clinical sepsis was associated with the later development of secondary Candida infection. Consistent with this observation, we found that exogenous IFN-γ suppressed macrophage phagocytosis of zymosan in vivo, and antibody blockade of IFN-γ after endotoxemia improved survival of secondary candidemia. Transcriptomic analysis of innate lymphocytes during endotoxemia suggested that NKT cells drove IFN-γ production by NK cells via mTORC1. Activation of invariant NKT (iNKT) cells with glycolipid antigen drove immunosuppression. Deletion of iNKT cells in Cd1d–/– mice or inhibition of mTOR by rapamycin reduced immunosuppression and susceptibility to secondary Candida infection. Thus, although rapamycin is typically an immunosuppressive medication, in the context of sepsis, rapamycin has the opposite effect. These results implicated an NKT cell/mTOR/IFN-γ axis in immunosuppression following endotoxemia or sepsis. In summary, in vivo iNKT cells activated mTORC1 in NK cells to produce IFN-γ, which worsened macrophage phagocytosis, clearance of secondary Candida infection, and mortality.

Authors

Edy Y. Kim, Hadas Ner-Gaon, Jack Varon, Aidan M. Cullen, Jingyu Guo, Jiyoung Choi, Diana Barragan-Bradford, Angelica Higuera, Mayra Pinilla-Vera, Samuel A.P. Short, Antonio Arciniegas-Rubio, Tomoyoshi Tamura, David E. Leaf, Rebecca M. Baron, Tal Shay, Michael B. Brenner

×

DNA hypermethylation during tuberculosis dampens host immune responsiveness
Andrew R. DiNardo, … , Cristian Coarfa, Anna M. Mandalakas
Andrew R. DiNardo, … , Cristian Coarfa, Anna M. Mandalakas
Published March 3, 2020
Citation Information: J Clin Invest. 2020. https://doi.org/10.1172/JCI134622.
View: Text | PDF

DNA hypermethylation during tuberculosis dampens host immune responsiveness

  • Text
  • PDF
Abstract

Mycobacterium tuberculosis (M. tuberculosis) has coevolved with humans for millennia and developed multiple mechanisms to evade host immunity. Restoring host immunity in order to improve outcomes and potentially shorten existing therapy will require identification of the full complement by which host immunity is inhibited. Perturbation of host DNA methylation is a mechanism induced by chronic infections such as HIV, HPV, lymphocytic choriomeningitis virus (LCMV), and schistosomiasis to evade host immunity. Here, we evaluated the DNA methylation status of patients with tuberculosis (TB) and their asymptomatic household contacts and found that the patients with TB have DNA hypermethylation of the IL-2/STAT5, TNF/NF-κB, and IFN-γ signaling pathways. We performed methylation-sensitive restriction enzyme–quantitative PCR (MSRE-qPCR) and observed that multiple genes of the IL-12/IFN-γ signaling pathway (IL12B, IL12RB2, TYK2, IFNGR1, JAK1, and JAK2) were hypermethylated in patients with TB. The DNA hypermethylation of these pathways was associated with decreased immune responsiveness with decreased mitogen-induced upregulation of IFN-γ, TNF, IL-6, CXCL9, CXCL10, and IL-1β production. The DNA hypermethylation of the IL-12/IFN-γ pathway was associated with decreased IFN-γ–induced gene expression and decreased IL-12–inducible upregulation of IFN-γ. This study demonstrates that immune cells from patients with TB are characterized by DNA hypermethylation of genes critical to mycobacterial immunity resulting in decreased mycobacteria-specific and nonspecific immune responsiveness.

Authors

Andrew R. DiNardo, Kimal Rajapakshe, Tomoki Nishiguchi, Sandra L. Grimm, Godwin Mtetwa, Qiniso Dlamini, Jaqueline Kahari, Sanjana Mahapatra, Alexander Kay, Gugu Maphalala, Emily M. Mace, George Makedonas, Jeffrey D. Cirillo, Mihai G. Netea, Reinout van Crevel, Cristian Coarfa, Anna M. Mandalakas

×

Melatonin inhibits cytosolic mitochondrial DNA–induced neuroinflammatory signaling in accelerated aging and neurodegeneration
Abhishek Jauhari, … , Diane L. Carlisle, Robert M. Friedlander
Abhishek Jauhari, … , Diane L. Carlisle, Robert M. Friedlander
Published March 17, 2020
Citation Information: J Clin Invest. 2020. https://doi.org/10.1172/JCI135026.
View: Text | PDF | Corrigendum

Melatonin inhibits cytosolic mitochondrial DNA–induced neuroinflammatory signaling in accelerated aging and neurodegeneration

  • Text
  • PDF
Abstract

Chronic inflammation is a pathologic feature of neurodegeneration and aging; however, the mechanism regulating this process is not understood. Melatonin, an endogenous free radical scavenger synthesized by neuronal mitochondria, decreases with aging and neurodegeneration. We proposed that insufficient melatonin levels impair mitochondrial homeostasis, resulting in mitochondrial DNA (mtDNA) release and activation of cytosolic DNA-mediated inflammatory response in neurons. We found increased mitochondrial oxidative stress and decreased mitochondrial membrane potential, with higher mtDNA release in brain and primary cerebro-cortical neurons of melatonin-deficient aralkylamine N-acetyltransferase (AANAT) knockout mice. Cytosolic mtDNA activated the cGAS/STING/IRF3 pathway, stimulating inflammatory cytokine generation. We found that Huntington’s disease mice had increased mtDNA release, cGAS activation, and inflammation, all inhibited by exogenous melatonin. Thus, we demonstrated that cytosolic mtDNA activated the inflammatory response in aging and neurodegeneration, a process modulated by melatonin. Furthermore, our data suggest that AANAT knockout mice are a model of accelerated aging.

Authors

Abhishek Jauhari, Sergei V. Baranov, Yalikun Suofu, Jinho Kim, Tanisha Singh, Svitlana Yablonska, Fang Li, Xiaomin Wang, Patrick Oberly, M. Beth Minnigh, Samuel M. Poloyac, Diane L. Carlisle, Robert M. Friedlander

×

B cell–intrinsic TLR9 expression is protective in murine lupus
Jeremy S. Tilstra, … , Kevin M. Nickerson, Mark J. Shlomchik
Jeremy S. Tilstra, … , Kevin M. Nickerson, Mark J. Shlomchik
Published March 19, 2020
Citation Information: J Clin Invest. 2020. https://doi.org/10.1172/JCI132328.
View: Text | PDF

B cell–intrinsic TLR9 expression is protective in murine lupus

  • Text
  • PDF
Abstract

Toll-like receptor 9 (TLR9) is a regulator of disease pathogenesis in systemic lupus erythematosus (SLE). Why TLR9 represses disease while TLR7 and MyD88 have the opposite effect remains undefined. To begin to address this question, we created 2 alleles to manipulate TLR9 expression, allowing for either selective deletion or overexpression. We used these to test cell type–specific effects of Tlr9 expression on the regulation of SLE pathogenesis. Notably, Tlr9 deficiency in B cells was sufficient to exacerbate nephritis while extinguishing anti–nucleosome antibodies, whereas Tlr9 deficiency in dendritic cells (DCs), plasmacytoid DCs, and neutrophils had no discernable effect on disease. Thus, B cell–specific Tlr9 deficiency unlinked disease from autoantibody production. Critically, B cell–specific Tlr9 overexpression resulted in ameliorated nephritis, opposite of the effect of deleting Tlr9. Our findings highlight the nonredundant role of B cell–expressed TLR9 in regulating lupus and suggest therapeutic potential in modulating and perhaps even enhancing TLR9 signals in B cells.

Authors

Jeremy S. Tilstra, Shinu John, Rachael A. Gordon, Claire Leibler, Michael Kashgarian, Sheldon Bastacky, Kevin M. Nickerson, Mark J. Shlomchik

×

IRF4 instructs effector Treg differentiation and immune suppression in human cancer
Giorgia Alvisi, … , Giulia Veronesi, Enrico Lugli
Giorgia Alvisi, … , Giulia Veronesi, Enrico Lugli
Published March 3, 2020
Citation Information: J Clin Invest. 2020. https://doi.org/10.1172/JCI130426.
View: Text | PDF

IRF4 instructs effector Treg differentiation and immune suppression in human cancer

  • Text
  • PDF
Abstract

The molecular mechanisms responsible for the high immunosuppressive capacity of CD4+ Tregs in tumors are not well known. High-dimensional single-cell profiling of T cells from chemotherapy-naive individuals with non–small-cell lung cancer identified the transcription factor IRF4 as specifically expressed by a subset of intratumoral CD4+ effector Tregs with superior suppressive activity. In contrast to the IRF4– counterparts, IRF4+ Tregs expressed a vast array of suppressive molecules, and their presence correlated with multiple exhausted subpopulations of T cells. Integration of transcriptomic and epigenomic data revealed that IRF4, either alone or in combination with its partner BATF, directly controlled a molecular program responsible for immunosuppression in tumors. Accordingly, deletion of Irf4 exclusively in Tregs resulted in delayed tumor growth in mice while the abundance of IRF4+ Tregs correlated with poor prognosis in patients with multiple human cancers. Thus, a common mechanism underlies immunosuppression in the tumor microenvironment irrespective of the tumor type.

Authors

Giorgia Alvisi, Jolanda Brummelman, Simone Puccio, Emilia M.C. Mazza, Elisa Paoluzzi Tomada, Agnese Losurdo, Veronica Zanon, Clelia Peano, Federico S. Colombo, Alice Scarpa, Marco Alloisio, Ajithkumar Vasanthakumar, Rahul Roychoudhuri, Marinos Kallikourdis, Massimiliano Pagani, Egesta Lopci, Pierluigi Novellis, Jonas Blume, Axel Kallies, Giulia Veronesi, Enrico Lugli

×

Inherited human IFN-γ deficiency underlies mycobacterial disease
Gaspard Kerner, … , Jean-Laurent Casanova, Jacinta Bustamante
Gaspard Kerner, … , Jean-Laurent Casanova, Jacinta Bustamante
Published March 12, 2020
Citation Information: J Clin Invest. 2020. https://doi.org/10.1172/JCI135460.
View: Text | PDF

Inherited human IFN-γ deficiency underlies mycobacterial disease

  • Text
  • PDF
Abstract

Mendelian susceptibility to mycobacterial disease (MSMD) is characterized by a selective predisposition to clinical disease caused by the Bacille Calmette-Guérin (BCG) vaccine and environmental mycobacteria. The known genetic etiologies of MSMD are inborn errors of IFN-γ immunity due to mutations of 15 genes controlling the production of or response to IFN-γ. Since the first MSMD-causing mutations were reported in 1996, biallelic mutations in the genes encoding IFN-γ receptor 1 (IFN-γR1) and IFN-γR2 have been reported in many patients of diverse ancestries. Surprisingly, mutations of the gene encoding the IFN-γ cytokine itself have not been reported, raising the remote possibility that there might be other agonists of the IFN-γ receptor. We describe 2 Lebanese cousins with MSMD, living in Kuwait, who are both homozygous for a small deletion within the IFNG gene (c.354_357del), causing a frameshift that generates a premature stop codon (p.T119Ifs4*). The mutant allele is loss of expression and loss of function. We also show that the patients’ herpesvirus Saimiri–immortalized T lymphocytes did not produce IFN-γ, a phenotype that can be rescued by retrotransduction with WT IFNG cDNA. The blood T and NK lymphocytes from these patients also failed to produce and secrete detectable amounts of IFN-γ. Finally, we show that human IFNG has evolved under stronger negative selection than IFNGR1 or IFNGR2, suggesting that it is less tolerant to heterozygous deleterious mutations than IFNGR1 or IFNGR2. This may account for the rarity of patients with autosomal-recessive, complete IFN-γ deficiency relative to patients with complete IFN-γR1 and IFN-γR2 deficiencies.

Authors

Gaspard Kerner, Jérémie Rosain, Antoine Guérin, Ahmad Al-Khabaz, Carmen Oleaga-Quintas, Franck Rapaport, Michel J. Massaad, Jing-Ya Ding, Taushif Khan, Fatima Al Ali, Mahbuba Rahman, Caroline Deswarte, Rubén Martinez-Barricarte, Raif S. Geha, Valentine Jeanne-Julien, Diane Garcia, Chih-Yu Chi, Rui Yang, Manon Roynard, Bernhard Fleckenstein, Flore Rozenberg, Stéphanie Boisson-Dupuis, Cheng-Lung Ku, Yoann Seeleuthner, Vivien Béziat, Nico Marr, Laurent Abel, Waleed Al-Herz, Jean-Laurent Casanova, Jacinta Bustamante

×

Single residue in CD28-costimulated CAR-T cells limits long-term persistence and antitumor durability
Sonia Guedan, … , Carl H. June, Avery D. Posey Jr.
Sonia Guedan, … , Carl H. June, Avery D. Posey Jr.
Published February 18, 2020
Citation Information: J Clin Invest. 2020. https://doi.org/10.1172/JCI133215.
View: Text | PDF

Single residue in CD28-costimulated CAR-T cells limits long-term persistence and antitumor durability

  • Text
  • PDF
Abstract

Chimeric antigen receptor–T (CAR-T) cell therapies can eliminate relapsed and refractory tumors, but the durability of antitumor activity requires in vivo persistence. Differential signaling through the CAR costimulatory domain can alter the T cell metabolism, memory differentiation, and influence long-term persistence. CAR-T cells costimulated with 4-1BB or ICOS persist in xenograft models but those constructed with CD28 exhibit rapid clearance. Here, we show that a single amino acid residue in CD28 drove T cell exhaustion and hindered the persistence of CD28-based CAR-T cells and changing this asparagine to phenylalanine (CD28-YMFM) promoted durable antitumor control. In addition, CD28-YMFM CAR-T cells exhibited reduced T cell differentiation and exhaustion as well as increased skewing toward Th17 cells. Reciprocal modification of ICOS-containing CAR-T cells abolished in vivo persistence and antitumor activity. This finding suggests modifications to the costimulatory domains of CAR-T cells can enable longer persistence and thereby improve antitumor response.

Authors

Sonia Guedan, Aviv Madar, Victoria Casado-Medrano, Carolyn Shaw, Anna Wing, Fang Liu, Regina M. Young, Carl H. June, Avery D. Posey Jr.

×
  • ← Previous
  • 1
  • 2
  • …
  • 163
  • 164
  • 165
  • …
  • 2543
  • 2544
  • Next →

No posts were found with this tag.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts