Synaptic plasticity is obstructed by pathogenic tau in the brain, representing a key mechanism that underlies memory loss in Alzheimer’s disease (AD) and related tauopathies. Here, we found that reduced levels of the memory-associated protein KIdney/BRAin (KIBRA) in the brain and increased KIBRA protein levels in cerebrospinal fluid are associated with cognitive impairment and pathological tau levels in disease. We next defined a mechanism for plasticity repair in vulnerable neurons using the C-terminus of the KIBRA protein (CT-KIBRA). We showed that CT-KIBRA restored plasticity and memory in transgenic mice expressing pathogenic human tau; however, CT-KIBRA did not alter tau levels or prevent tau-induced synapse loss. Instead, we found that CT-KIBRA stabilized the protein kinase Mζ (PKMζ) to maintain synaptic plasticity and memory despite tau-mediated pathogenesis. Thus, our results distinguished KIBRA both as a biomarker of synapse dysfunction and as the foundation for a synapse repair mechanism to reverse cognitive impairment in tauopathy.
Grant Kauwe, Kristeen A. Pareja-Navarro, Lei Yao, Jackson H. Chen, Ivy Wong, Rowan Saloner, Helen Cifuentes, Alissa L. Nana, Samah Shah, Yaqiao Li, David Le, Salvatore Spina, Lea T. Grinberg, William W. Seeley, Joel H. Kramer, Todd C. Sacktor, Birgit Schilling, Li Gan, Kaitlin B. Casaletto, Tara E. Tracy
Heterozygous (HET) truncating variant mutations in the TTN gene (TTNtvs), encoding the giant titin protein, are the most common genetic cause of dilated cardiomyopathy (DCM). However, the molecular mechanisms by which TTNtv mutations induce DCM are controversial. Here, we studied 127 clinically identified DCM human cardiac samples with next-generation sequencing (NGS), high-resolution gel electrophoresis, Western blot analysis, and super-resolution microscopy in order to dissect the structural and functional consequences of TTNtv mutations. The occurrence of TTNtv was found to be 15% in the DCM cohort. Truncated titin proteins matching, by molecular weight, the gene sequence predictions were detected in the majority of the TTNtv+ samples. Full-length titin was reduced in TTNtv+ compared with TTNtv– samples. Proteomics analysis of washed myofibrils and stimulated emission depletion (STED) super-resolution microscopy of myocardial sarcomeres labeled with sequence-specific anti-titin antibodies revealed that truncated titin was structurally integrated into the sarcomere. Sarcomere length–dependent anti–titin epitope position, shape, and intensity analyses pointed at possible structural defects in the I/A junction and the M-band of TTNtv+ sarcomeres, which probably contribute, possibly via faulty mechanosensor function, to the development of manifest DCM.
Dalma Kellermayer, Hedvig Tordai, Balázs Kiss, György Török, Dániel M. Péter, Alex Ali Sayour, Miklós Pólos, István Hartyánszky, Bálint Szilveszter, Siegfried Labeit, Ambrus Gángó, Gábor Bedics, Csaba Bödör, Tamás Radovits, Béla Merkely, Miklós S.Z. Kellermayer
Gestational diabetes is a common medical complication of pregnancy that is associated with adverse perinatal outcomes and an increased risk of metabolic diseases and atherosclerosis in adult offspring. The mechanisms responsible for this delayed pathological transmission remain unknown. In mouse models, we found that the development of atherosclerosis in adult offspring born to diabetic pregnancy can be in part linked to hematopoietic alterations. Although they do not show any gross metabolic disruptions, the adult offspring maintain hematopoietic features associated with diabetes, indicating the acquisition of a lasting diabetic hematopoietic memory. We show that the induction of this hematopoietic memory during gestation relies on the activity of the advanced glycation end product receptor (AGER) and the nucleotide binding and oligomerization domain-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome, which lead to increased placental inflammation. In adult offspring, we find that this memory is associated with DNA methyltransferase 1 (DNMT1) upregulation and epigenetic changes in hematopoietic progenitors. Together, our results demonstrate that the hematopoietic system can acquire a lasting memory of gestational diabetes and that this memory constitutes a pathway connecting gestational health to adult pathologies.
Vinothini Govindarajah, Masahide Sakabe, Samantha Good, Michael Solomon, Ashok Arasu, Nong Chen, Xuan Zhang, H. Leighton Grimes, Ady Kendler, Mei Xin, Damien Reynaud
Targeted metagenomic sequencing is an emerging strategy to survey disease-specific microbiome biomarkers for clinical diagnosis and prognosis. However, this approach often yields inconsistent or conflicting results owing to inadequate study power and sequencing bias. We introduce Taxa4Meta, a bioinformatics pipeline explicitly designed to compensate for technical and demographic bias. We designed and validated Taxa4Meta for accurate taxonomic profiling of 16S rRNA amplicon data acquired from different sequencing strategies. Taxa4Meta offers significant potential in identifying clinical dysbiotic features that can reliably predict human disease, validated comprehensively via reanalysis of individual patient 16S data sets. We leveraged the power of Taxa4Meta’s pan-microbiome profiling to generate 16S-based classifiers that exhibited excellent utility for stratification of diarrheal patients with Clostridioides difficile infection, irritable bowel syndrome, or inflammatory bowel diseases, which represent common misdiagnoses and pose significant challenges for clinical management. We believe that Taxa4Meta represents a new “best practices” approach to individual microbiome surveys that can be used to define gut dysbiosis at a population-scale level.
Qinglong Wu, Shyam Badu, Sik Yu So, Todd J. Treangen, Tor C. Savidge
About 25% of people in the general population are insulin resistant, increasing the risk for type 2 diabetes (T2D) and metabolic disease. Transcriptomic analysis of induced pluripotent stem cells differentiated into myoblasts (iMyos) from insulin-resistant (I-Res) versus insulin-sensitive (I-Sen) nondiabetic individuals revealed that 306 genes increased and 271 genes decreased in expression in iMyos from I-Res donors with differences of 2-fold or more. Over 30 of the genes changed in I-Res iMyos were associated with T2D by SNPs and were functionally linked to insulin action and control of metabolism. Interestingly, we also identified more than 1,500 differences in gene expression that were dependent on the sex of the cell donor, some of which modified the insulin resistance effects. Many of these sex differences were associated with increased DNA methylation in cells from female donors and were reversed by 5-azacytidine. By contrast, the insulin sensitivity differences were not reversed and thus appear to reflect genetic or methylation-independent epigenetic effects.
Nida Haider, C. Ronald Kahn
Alzheimer’s disease is characterized by the accumulation of amyloid-β plaques, aggregation of hyperphosphorylated tau (pTau), and microglia activation. Galectin-3 (Gal3) is a β-galactoside–binding protein that has been implicated in amyloid pathology. Its role in tauopathy remains enigmatic. Here, we showed that Gal3 was upregulated in the microglia of humans and mice with tauopathy. pTau triggered the release of Gal3 from human induced pluripotent stem cell–derived microglia in both its free and extracellular vesicular–associated (EV-associated) forms. Both forms of Gal3 increased the accumulation of pathogenic tau in recipient cells. Binding of Gal3 to pTau greatly enhanced tau fibrillation. Besides Gal3, pTau was sorted into EVs for transmission. Moreover, pTau markedly enhanced the number of EVs released by iMGL in a Gal3-dependent manner, suggesting a role of Gal3 in biogenesis of EVs. Single-cell RNA-Seq analysis of the hippocampus of a mouse model of tauopathy (THY-Tau22) revealed a group of pathogenic tau-evoked, Gal3-associated microglia with altered cellular machineries implicated in neurodegeneration, including enhanced immune and inflammatory responses. Genetic removal of Gal3 in THY-Tau22 mice suppressed microglia activation, reduced the level of pTau and synaptic loss in neurons, and rescued memory impairment. Collectively, Gal3 is a potential therapeutic target for tauopathy.
Jian Jing Siew, Hui-Mei Chen, Feng-Lan Chiu, Chia-Wei Lee, Yao-Ming Chang, Hung-Lin Chen, Thi Ngoc Anh Nguyen, Hung-Ting Liao, Mengyu Liu, Hsiao-Tien Hagar, Yung-Chen Sun, Hsing-Lin Lai, Min-Hao Kuo, David Blum, Luc Buée, Lee-Way Jin, Shih-Yu Chen, Tai-Ming Ko, Jie-Rong Huang, Hung-Chih Kuo, Fu-Tong Liu, Yijuang Chern
Suppressor of lin-12-like–HMG-CoA reductase degradation 1 (SEL1L-HRD1) ER-associated degradation (ERAD) plays a critical role in many physiological processes in mice, including immunity, water homeostasis, and energy metabolism; however, its relevance and importance in humans remain unclear, as no disease variant has been identified. Here, we report a biallelic SEL1L variant (p. Cys141Tyr) in 5 patients from a consanguineous Slovakian family. These patients presented with not only ERAD-associated neurodevelopmental disorders with onset in infancy (ENDI) syndromes, but infantile-onset agammaglobulinemia with no mature B cells, resulting in frequent infections and early death. This variant disrupted the formation of a disulfide bond in the luminal fibronectin II domain of SEL1L, largely abolishing the function of the SEL1L-HRD1 ERAD complex in part via proteasomal-mediated self destruction by HRD1. This study reports a disease entity termed ENDI-agammaglobulinemia (ENDI-A) syndrome and establishes an inverse correlation between SEL1L-HRD1 ERAD functionality and disease severity in humans.
Denisa Weis, Liangguang L. Lin, Huilun H. Wang, Zexin Jason Li, Katarina Kusikova, Peter Ciznar, Hermann M. Wolf, Alexander Leiss-Piller, Zhihong Wang, Xiaoqiong Wei, Serge Weis, Katarina Skalicka, Gabriela Hrckova, Lubos Danisovic, Andrea Soltysova, Tingxuan T. Yang, René Günther Feichtinger, Johannes A. Mayr, Ling Qi
Recent studies using cell type–specific knockout mouse models have improved our understanding of the pathophysiological relevance of suppressor of lin-12-like–HMG-CoA reductase degradation 1 (SEL1L-HRD1) endoplasmic reticulum–associated (ER-associated) degradation (ERAD); however, its importance in humans remains unclear, as no disease variant has been identified. Here, we report the identification of 3 biallelic missense variants of SEL1L and HRD1 (or SYVN1) in 6 children from 3 independent families presenting with developmental delay, intellectual disability, microcephaly, facial dysmorphisms, hypotonia, and/or ataxia. These SEL1L (p.Gly585Asp, p.Met528Arg) and HRD1 (p.Pro398Leu) variants were hypomorphic and impaired ERAD function at distinct steps of ERAD, including substrate recruitment (SEL1L p.Gly585Asp), SEL1L-HRD1 complex formation (SEL1L p.Met528Arg), and HRD1 activity (HRD1 p.Pro398Leu). Our study not only provides insights into the structure-function relationship of SEL1L-HRD1 ERAD, but also establishes the importance of SEL1L-HRD1 ERAD in humans.
Huilun H. Wang, Liangguang L. Lin, Zexin J. Li, Xiaoqiong Wei, Omar Askander, Gerarda Cappuccio, Mais O. Hashem, Laurence Hubert, Arnold Munnich, Mashael Alqahtani, Qi Pang, Margit Burmeister, You Lu, Karine Poirier, Claude Besmond, Shengyi Sun, Nicola Brunetti-Pierri, Fowzan S. Alkuraya, Ling Qi
Adolescent idiopathic scoliosis (AIS) is the most common form of spinal deformity, affecting millions of adolescents worldwide, but it lacks a defined theory of etiopathogenesis. Because of this, treatment of AIS is limited to bracing and/or invasive surgery after onset. Preonset diagnosis or preventive treatment remains unavailable. Here, we performed a genetic analysis of a large multicenter AIS cohort and identified disease-causing and predisposing variants of SLC6A9 in multigeneration families, trios, and sporadic patients. Variants of SLC6A9, which encodes glycine transporter 1 (GLYT1), reduced glycine-uptake activity in cells, leading to increased extracellular glycine levels and aberrant glycinergic neurotransmission. Slc6a9 mutant zebrafish exhibited discoordination of spinal neural activities and pronounced lateral spinal curvature, a phenotype resembling human patients. The penetrance and severity of curvature were sensitive to the dosage of functional glyt1. Administration of a glycine receptor antagonist or a clinically used glycine neutralizer (sodium benzoate) partially rescued the phenotype. Our results indicate a neuropathic origin for “idiopathic” scoliosis, involving the dysfunction of synaptic neurotransmission and central pattern generators (CPGs), potentially a common cause of AIS. Our work further suggests avenues for early diagnosis and intervention of AIS in preadolescents.
Xiaolu Wang, Ming Yue, Jason Pui Yin Cheung, Prudence Wing Hang Cheung, Yanhui Fan, Meicheng Wu, Xiaojun Wang, Sen Zhao, Anas M. Khanshour, Jonathan J. Rios, Zheyi Chen, Xiwei Wang, Wenwei Tu, Danny Chan, Qiuju Yuan, Dajiang Qin, Guixing Qiu, Zhihong Wu, Terry Jianguo Zhang, Shiro Ikegawa, Nan Wu, Carol A. Wise, Yong Hu, Keith Dip Kei Luk, You-Qiang Song, Bo Gao
Glycogen storage disease type III (GSDIII) is a rare inborn error of metabolism affecting liver, skeletal muscle, and heart due to mutations of the AGL gene encoding for the glycogen debranching enzyme (GDE). No curative treatment exists for GSDIII. The 4.6 kb GDE cDNA represents the major technical challenge toward the development of a single recombinant adeno-associated virus–derived (rAAV-derived) vector gene therapy strategy. Using information on GDE structure and molecular modeling, we generated multiple truncated GDEs. Among them, an N-terminal–truncated mutant, ΔNter2-GDE, had a similar efficacy in vivo compared with the full-size enzyme. A rAAV vector expressing ΔNter2-GDE allowed significant glycogen reduction in heart and muscle of Agl–/– mice 3 months after i.v. injection, as well as normalization of histology features and restoration of muscle strength. Similarly, glycogen accumulation and histological features were corrected in a recently generated Agl–/– rat model. Finally, transduction with rAAV vectors encoding ΔNter2-GDE corrected glycogen accumulation in an in vitro human skeletal muscle cellular model of GSDIII. In conclusion, our results demonstrated the ability of a single rAAV vector expressing a functional mini-GDE transgene to correct the muscle and heart phenotype in multiple models of GSDIII, supporting its clinical translation to patients with GSDIII.
Antoine Gardin, Jérémy Rouillon, Valle Montalvo-Romeral, Lucille Rossiaud, Patrice Vidal, Romain Launay, Mallaury Vie, Youssef Krimi Benchekroun, Jérémie Cosette, Bérangère Bertin, Tiziana La Bella, Guillaume Dubreuil, Justine Nozi, Louisa Jauze, Romain Fragnoud, Nathalie Daniele, Laetitia Van Wittenberghe, Jérémy Esque, Isabelle André, Xavier Nissan, Lucile Hoch, Giuseppe Ronzitti
No posts were found with this tag.