Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Research Article

  • 25,558 Articles
  • 0 Posts
  • ← Previous
  • 1
  • 2
  • …
  • 47
  • 48
  • 49
  • …
  • 2555
  • 2556
  • Next →
Renal cell carcinoma histologic subtypes exhibit distinct transcriptional profiles
Pedro Barata, … , Chadi Nabhan, Rana R. McKay
Pedro Barata, … , Chadi Nabhan, Rana R. McKay
Published April 23, 2024
Citation Information: J Clin Invest. 2024;134(11):e178915. https://doi.org/10.1172/JCI178915.
View: Text | PDF

Renal cell carcinoma histologic subtypes exhibit distinct transcriptional profiles

  • Text
  • PDF
Abstract

Molecular profiling of clear cell renal cell carcinoma (ccRCC) tumors of patients in a clinical trial has identified distinct transcriptomic signatures with predictive value, yet data in non–clear cell variants (nccRCC) are lacking. We examined the transcriptional profiles of RCC tumors representing key molecular pathways, from a multi-institutional, real-world patient cohort, including ccRCC and centrally reviewed nccRCC samples. ccRCC had increased angiogenesis signature scores compared with the heterogeneous group of nccRCC tumors, while cell cycle, fatty acid oxidation/AMPK signaling, and fatty acid synthesis/pentose phosphate signature scores were increased in one or more nccRCC subtypes. Among both ccRCC and nccRCC tumors, T effector scores statistically correlated with increased immune cell infiltration and were more commonly associated with immunotherapy-related markers (PD-L1+/TMBhi/MSIhi). In conclusion, this study provides evidence of differential gene transcriptional profiles among ccRCC versus nccRCC tumors, providing insights for optimizing personalized and histology-specific therapeutic strategies for patients with advanced RCC.

Authors

Pedro Barata, Shuchi Gulati, Andrew Elliott, Hans J. Hammers, Earle Burgess, Benjamin A. Gartrell, Sourat Darabi, Mehmet A. Bilen, Arnab Basu, Daniel M. Geynisman, Nancy A. Dawson, Matthew R. Zibelman, Tian Zhang, Shuanzeng Wei, Charles J. Ryan, Elisabeth I. Heath, Kelsey A. Poorman, Chadi Nabhan, Rana R. McKay

×

IgG hexamers initiate complement-dependent acute lung injury
Simon J. Cleary, … , James C. Zimring, Mark R. Looney
Simon J. Cleary, … , James C. Zimring, Mark R. Looney
Published March 26, 2024
Citation Information: J Clin Invest. 2024;134(11):e178351. https://doi.org/10.1172/JCI178351.
View: Text | PDF

IgG hexamers initiate complement-dependent acute lung injury

  • Text
  • PDF
Abstract

Antibodies can initiate lung injury in a variety of disease states such as autoimmunity, in reactions to transfusions, or after organ transplantation, but the key factors determining in vivo pathogenicity of injury-inducing antibodies are unclear. Harmful antibodies often activate the complement cascade. A model for how IgG antibodies trigger complement activation involves interactions between IgG Fc domains driving the assembly of IgG hexamer structures that activate C1 complexes. The importance of IgG hexamers in initiating injury responses was not clear, so we tested their relevance in a mouse model of alloantibody- and complement-mediated acute lung injury. We used 3 approaches to block alloantibody hexamerization (antibody carbamylation, the K439E Fc mutation, or treatment with domain B from staphylococcal protein A), all of which reduced acute lung injury. Conversely, Fc mutations promoting spontaneous hexamerization made a harmful alloantibody into a more potent inducer of acute lung injury and rendered an innocuous alloantibody pathogenic. Treatment with a recombinant Fc hexamer “decoy” therapeutic protected mice from lung injury, including in a model with transgenic human FCGR2A expression that exacerbated pathology. These results indicate an in vivo role of IgG hexamerization in initiating acute lung injury and the potential for therapeutics that inhibit or mimic hexamerization to treat antibody-mediated diseases.

Authors

Simon J. Cleary, Yurim Seo, Jennifer J. Tian, Nicholas Kwaan, David P. Bulkley, Arthur E.H. Bentlage, Gestur Vidarsson, Éric Boilard, Rolf Spirig, James C. Zimring, Mark R. Looney

×

NR2E3 loss disrupts photoreceptor cell maturation and fate in human organoid models of retinal development
Nathaniel K. Mullin, … , Edwin M. Stone, Budd A. Tucker
Nathaniel K. Mullin, … , Edwin M. Stone, Budd A. Tucker
Published April 23, 2024
Citation Information: J Clin Invest. 2024;134(11):e173892. https://doi.org/10.1172/JCI173892.
View: Text | PDF

NR2E3 loss disrupts photoreceptor cell maturation and fate in human organoid models of retinal development

  • Text
  • PDF
Abstract

While dysfunction and death of light-detecting photoreceptor cells underlie most inherited retinal dystrophies, knowledge of the species-specific details of human rod and cone photoreceptor cell development remains limited. Here, we generated retinal organoids carrying retinal disease–causing variants in NR2E3, as well as isogenic and unrelated controls. Organoids were sampled using single-cell RNA sequencing (scRNA-Seq) across the developmental window encompassing photoreceptor specification, emergence, and maturation. Using scRNA-Seq data, we reconstruct the rod photoreceptor developmental lineage and identify a branch point unique to the disease state. We show that the rod-specific transcription factor NR2E3 is required for the proper expression of genes involved in phototransduction, including rhodopsin, which is absent in divergent rods. NR2E3-null rods additionally misexpress several cone-specific phototransduction genes. Using joint multimodal single-cell sequencing, we further identify putative regulatory sites where rod-specific factors act to steer photoreceptor cell development. Finally, we show that rod-committed photoreceptor cells form and persist throughout life in a patient with NR2E3-associated disease. Importantly, these findings are strikingly different from those observed in Nr2e3 rodent models. Together, these data provide a road map of human photoreceptor development and leverage patient induced pluripotent stem cells to define the specific roles of rod transcription factors in photoreceptor cell emergence and maturation in health and disease.

Authors

Nathaniel K. Mullin, Laura R. Bohrer, Andrew P. Voigt, Lola P. Lozano, Allison T. Wright, Vera L. Bonilha, Robert F. Mullins, Edwin M. Stone, Budd A. Tucker

×

Neuronally differentiated macula densa cells regulate tissue remodeling and regeneration in the kidney
Georgina Gyarmati, … , Matthias Kretzler, János Peti-Peterdi
Georgina Gyarmati, … , Matthias Kretzler, János Peti-Peterdi
Published April 10, 2024
Citation Information: J Clin Invest. 2024;134(11):e174558. https://doi.org/10.1172/JCI174558.
View: Text | PDF

Neuronally differentiated macula densa cells regulate tissue remodeling and regeneration in the kidney

  • Text
  • PDF
Abstract

Tissue regeneration is limited in several organs, including the kidney, contributing to the high prevalence of kidney disease globally. However, evolutionary and physiological adaptive responses and the presence of renal progenitor cells suggest an existing remodeling capacity. This study uncovered endogenous tissue remodeling mechanisms in the kidney that were activated by the loss of body fluid and salt and regulated by a unique niche of a minority renal cell type called the macula densa (MD). Here, we identified neuronal differentiation features of MD cells that sense the local and systemic environment and secrete angiogenic, growth, and extracellular matrix remodeling factors, cytokines and chemokines, and control resident progenitor cells. Serial intravital imaging, MD nerve growth factor receptor and Wnt mouse models, and transcriptome analysis revealed cellular and molecular mechanisms of these MD functions. Human and therapeutic translation studies illustrated the clinical potential of MD factors, including CCN1, as a urinary biomarker and therapeutic target in chronic kidney disease. The concept that a neuronally differentiated key sensory and regulatory cell type responding to organ-specific physiological inputs controls local progenitors to remodel or repair tissues may be applicable to other organs and diverse tissue-regenerative therapeutic strategies.

Authors

Georgina Gyarmati, Urvi Nikhil Shroff, Anne Riquier-Brison, Dorinne Desposito, Wenjun Ju, Sean D. Stocker, Audrey Izuhara, Sachin Deepak, Alejandra Becerra Calderon, James L. Burford, Hiroyuki Kadoya, Ju-Young Moon, Yibu Chen, Markus M. Rinschen, Nariman Ahmadi, Lester Lau, Daniel Biemesderfer, Aaron W. James, Liliana Minichiello, Berislav V. Zlokovic, Inderbir S. Gill, Matthias Kretzler, János Peti-Peterdi

×

Type 2 cannabinoid receptor expression on microglial cells regulates neuroinflammation during graft-versus-host disease
Alison Moe, … , Cecilia J. Hillard, William R. Drobyski
Alison Moe, … , Cecilia J. Hillard, William R. Drobyski
Published April 25, 2024
Citation Information: J Clin Invest. 2024;134(11):e175205. https://doi.org/10.1172/JCI175205.
View: Text | PDF

Type 2 cannabinoid receptor expression on microglial cells regulates neuroinflammation during graft-versus-host disease

  • Text
  • PDF
Abstract

Neuroinflammation is a recognized complication of immunotherapeutic approaches such as immune checkpoint inhibitor treatment, chimeric antigen receptor therapy, and graft versus host disease (GVHD) occurring after allogeneic hematopoietic stem cell transplantation. While T cells and inflammatory cytokines play a role in this process, the precise interplay between the adaptive and innate arms of the immune system that propagates inflammation in the central nervous system remains incompletely understood. Using a murine model of GVHD, we demonstrate that type 2 cannabinoid receptor (CB2R) signaling plays a critical role in the pathophysiology of neuroinflammation. In these studies, we identify that CB2R expression on microglial cells induces an activated inflammatory phenotype that potentiates the accumulation of donor-derived proinflammatory T cells, regulates chemokine gene regulatory networks, and promotes neuronal cell death. Pharmacological targeting of this receptor with a brain penetrant CB2R inverse agonist/antagonist selectively reduces neuroinflammation without deleteriously affecting systemic GVHD severity. Thus, these findings delineate a therapeutically targetable neuroinflammatory pathway and have implications for the attenuation of neurotoxicity after GVHD and potentially other T cell–based immunotherapeutic approaches.

Authors

Alison Moe, Aditya Rayasam, Garrett Sauber, Ravi K. Shah, Ashley Doherty, Cheng-Yin Yuan, Aniko Szabo, Bob M. Moore II, Marco Colonna, Weiguo Cui, Julian Romero, Anthony E. Zamora, Cecilia J. Hillard, William R. Drobyski

×

Human NLRC4 expression promotes cancer survival and associates with type I interferon signaling and immune infiltration
Charlotte Domblides, … , David Furman, Benjamin Faustin
Charlotte Domblides, … , David Furman, Benjamin Faustin
Published April 23, 2024
Citation Information: J Clin Invest. 2024;134(11):e166085. https://doi.org/10.1172/JCI166085.
View: Text | PDF

Human NLRC4 expression promotes cancer survival and associates with type I interferon signaling and immune infiltration

  • Text
  • PDF
Abstract

The immune system can control cancer progression. However, even though some innate immune sensors of cellular stress are expressed intrinsically in epithelial cells, their potential role in cancer aggressiveness and subsequent overall survival in humans is mainly unknown. Here, we show that nucleotide-binding oligomerization domain–like receptor (NLR) family CARD domain–containing 4 (NLRC4) is downregulated in epithelial tumor cells of patients with colorectal cancer (CRC) by using spatial tissue imaging. Strikingly, only the loss of tumor NLRC4, but not stromal NLRC4, was associated with poor immune infiltration (mainly DCs and CD4+ and CD8+ T cells) and accurately predicted progression to metastatic stage IV and decrease in overall survival. By combining multiomics approaches, we show that restoring NLRC4 expression in human CRC cells triggered a broad inflammasome-independent immune reprogramming consisting of type I interferon (IFN) signaling genes and the release of chemokines and myeloid growth factors involved in the tumor infiltration and activation of DCs and T cells. Consistently, such reprogramming in cancer cells was sufficient to directly induce maturation of human DCs toward a Th1 antitumor immune response through IL-12 production in vitro. In multiple human carcinomas (colorectal, lung, and skin), we confirmed that NLRC4 expression in patient tumors was strongly associated with type I IFN genes, immune infiltrates, and high microsatellite instability. Thus, we shed light on the epithelial innate immune sensor NLRC4 as a therapeutic target to promote an efficient antitumor immune response against the aggressiveness of various carcinomas.

Authors

Charlotte Domblides, Steven Crampton, Hong Liu, Juliet M. Bartleson, Annie Nguyen, Claudia Champagne, Emily E. Landy, Lindsey Spiker, Christopher Proffitt, Sunil Bhattarai, Anissa P. Grawe, Matias Fuentealba Valenzuela, Lydia Lartigue, Isabelle Mahouche, Jeremy Dupaul-Chicoine, Kazuho Nishimura, Félix Lefort, Marie Decraecker, Valérie Velasco, Sonia Netzer, Vincent Pitard, Christian Roy, Isabelle Soubeyran, Victor Racine, Patrick Blanco, Julie Déchanet-Merville, Maya Saleh, Scott W. Canna, David Furman, Benjamin Faustin

×

Sedentary behavior in mice induces metabolic inflexibility by suppressing skeletal muscle pyruvate metabolism
Piyarat Siripoksup, … , Jared Rutter, Katsuhiko Funai
Piyarat Siripoksup, … , Jared Rutter, Katsuhiko Funai
Published April 23, 2024
Citation Information: J Clin Invest. 2024;134(11):e167371. https://doi.org/10.1172/JCI167371.
View: Text | PDF

Sedentary behavior in mice induces metabolic inflexibility by suppressing skeletal muscle pyruvate metabolism

  • Text
  • PDF
Abstract

Carbohydrates and lipids provide the majority of substrates to fuel mitochondrial oxidative phosphorylation. Metabolic inflexibility, defined as an impaired ability to switch between these fuels, is implicated in a number of metabolic diseases. Here, we explore the mechanism by which physical inactivity promotes metabolic inflexibility in skeletal muscle. We developed a mouse model of sedentariness, small mouse cage (SMC), that, unlike other classic models of disuse in mice, faithfully recapitulated metabolic responses that occur in humans. Bioenergetic phenotyping of skeletal muscle mitochondria displayed metabolic inflexibility induced by physical inactivity, demonstrated by a reduction in pyruvate-stimulated respiration (JO2) in the absence of a change in palmitate-stimulated JO2. Pyruvate resistance in these mitochondria was likely driven by a decrease in phosphatidylethanolamine (PE) abundance in the mitochondrial membrane. Reduction in mitochondrial PE by heterozygous deletion of phosphatidylserine decarboxylase (PSD) was sufficient to induce metabolic inflexibility measured at the whole-body level, as well as at the level of skeletal muscle mitochondria. Low mitochondrial PE in C2C12 myotubes was sufficient to increase glucose flux toward lactate. We further implicate that resistance to pyruvate metabolism is due to attenuated mitochondrial entry via mitochondrial pyruvate carrier (MPC). These findings suggest a mechanism by which mitochondrial PE directly regulates MPC activity to modulate metabolic flexibility in mice.

Authors

Piyarat Siripoksup, Guoshen Cao, Ahmad A. Cluntun, J. Alan Maschek, Quentinn Pearce, Marisa J. Brothwell, Mi-Young Jeong, Hiroaki Eshima, Patrick J. Ferrara, Precious C. Opurum, Ziad S. Mahmassani, Alek D. Peterlin, Shinya Watanabe, Maureen A. Walsh, Eric B. Taylor, James E. Cox, Micah J. Drummond, Jared Rutter, Katsuhiko Funai

×

Combining SiRPα decoy–coengineered T cells and antibodies augments macrophage-mediated phagocytosis of tumor cells
Evangelos Stefanidis, … , George Coukos, Melita Irving
Evangelos Stefanidis, … , George Coukos, Melita Irving
Published June 3, 2024
Citation Information: J Clin Invest. 2024;134(11):e161660. https://doi.org/10.1172/JCI161660.
View: Text | PDF

Combining SiRPα decoy–coengineered T cells and antibodies augments macrophage-mediated phagocytosis of tumor cells

  • Text
  • PDF
Abstract

The adoptive transfer of T cell receptor–engineered (TCR-engineered) T cells (ACT) targeting the HLA-A2–restricted cancer-testis epitope NY-ESO-1157–165 (A2/NY) has yielded favorable clinical responses against several cancers. Two approaches to improve ACT are TCR affinity optimization and T cell coengineering to express immunomodulatory molecules that can exploit endogenous immunity. By computational design we previously developed a panel of binding-enhanced A2/NY-TCRs including A97L, which augmented the in vitro function of gene-modified T cells as compared with WT. Here, we demonstrated higher persistence and improved tumor control by A97L–T cells. In order to harness macrophages in tumors, we further coengineered A97L–T cells to secrete a high-affinity signal regulatory protein α (SiRPα) decoy (CV1) that blocks CD47. While CV1-Fc–coengineered A97L–T cells mediated significantly better control of tumor outgrowth and survival in Winn assays, in subcutaneous xenograft models the T cells, coated by CV1-Fc, were depleted. Importantly, there was no phagocytosis of CV1 monomer–coengineered T cells by human macrophages. Moreover, avelumab and cetuximab enhanced macrophage-mediated phagocytosis of tumor cells in vitro in the presence of CV1 and improved tumor control upon coadministration with A97L–T cells. Taken together, our study indicates important clinical promise for harnessing macrophages by combining CV1-coengineered TCR–T cells with targeted antibodies to direct phagocytosis against tumor cells.

Authors

Evangelos Stefanidis, Aikaterini Semilietof, Julien Pujol, Bili Seijo, Kirsten Scholten, Vincent Zoete, Olivier Michielin, Raphael Sandaltzopoulos, George Coukos, Melita Irving

×

Increased endothelial sclerostin caused by elevated DSCAM mediates multiple trisomy 21 phenotypes
David M. McKean, … , J.G. Seidman, Christine E. Seidman
David M. McKean, … , J.G. Seidman, Christine E. Seidman
Published June 3, 2024
Citation Information: J Clin Invest. 2024;134(11):e167811. https://doi.org/10.1172/JCI167811.
View: Text | PDF

Increased endothelial sclerostin caused by elevated DSCAM mediates multiple trisomy 21 phenotypes

  • Text
  • PDF
Abstract

Trisomy 21 (T21), a recurrent aneuploidy occurring in 1:800 births, predisposes to congenital heart disease (CHD) and multiple extracardiac phenotypes. Despite a definitive genetic etiology, the mechanisms by which T21 perturbs development and homeostasis remain poorly understood. We compared the transcriptome of CHD tissues from 49 patients with T21 and 226 with euploid CHD (eCHD). We resolved cell lineages that misexpressed T21 transcripts by cardiac single-nucleus RNA sequencing and RNA in situ hybridization. Compared with eCHD samples, T21 samples had increased chr21 gene expression; 11-fold-greater levels (P = 1.2 × 10–8) of SOST (chr17), encoding the Wnt inhibitor sclerostin; and 1.4-fold-higher levels (P = 8.7 × 10–8) of the SOST transcriptional activator ZNF467 (chr7). Euploid and T21 cardiac endothelial cells coexpressed SOST and ZNF467; however, T21 endothelial cells expressed 6.9-fold more SOST than euploid endothelial cells (P = 2.7 × 10–27). Wnt pathway genes were downregulated in T21 endothelial cells. Expression of DSCAM, residing within the chr21 CHD critical region, correlated with SOST (P = 1.9 × 10–5) and ZNF467 (P = 2.9 × 10–4). Deletion of DSCAM from T21 endothelial cells derived from human induced pluripotent stem cells diminished sclerostin secretion. As Wnt signaling is critical for atrioventricular canal formation, bone health, and pulmonary vascular homeostasis, we concluded that T21-mediated increased sclerostin levels would inappropriately inhibit Wnt activities and promote Down syndrome phenotypes. These findings imply therapeutic potential for anti-sclerostin antibodies in T21.

Authors

David M. McKean, Qi Zhang, Priyanka Narayan, Sarah U. Morton, Viktoria Strohmenger, Vi T. Tang, Sophie McAllister, Ananya Sharma, Daniel Quiat, Daniel Reichart, Daniel M. DeLaughter, Hiroko Wakimoto, Joshua M. Gorham, Kemar Brown, Barbara McDonough, Jon A. Willcox, Min Young Jang, Steven R. DePalma, Tarsha Ward, Pediatric Cardiac Genomics Consortium Investigators, Richard Kim, John D. Cleveland, J.G. Seidman, Christine E. Seidman

×

Calcineurin inhibition rescues alloantigen-specific central memory T cell subsets that promote chronic GVHD
Yewei Wang, … , Ping Zhang, Geoffrey R. Hill
Yewei Wang, … , Ping Zhang, Geoffrey R. Hill
Published June 3, 2024
Citation Information: J Clin Invest. 2024;134(11):e170125. https://doi.org/10.1172/JCI170125.
View: Text | PDF

Calcineurin inhibition rescues alloantigen-specific central memory T cell subsets that promote chronic GVHD

  • Text
  • PDF
Abstract

Calcineurin inhibitors (CNIs) constitute the backbone of modern acute graft-versus-host disease (aGVHD) prophylaxis regimens but have limited efficacy in the prevention and treatment of chronic GVHD (cGVHD). We investigated the effect of CNIs on immune tolerance after stem cell transplantation with discovery-based single-cell gene expression and T cell receptor (TCR) assays of clonal immunity in tandem with traditional protein-based approaches and preclinical modeling. While cyclosporin and tacrolimus suppressed the clonal expansion of CD8+ T cells during GVHD, alloreactive CD4+ T cell clusters were preferentially expanded. Moreover, CNIs mediated reversible dose-dependent suppression of T cell activation and all stages of donor T cell exhaustion. Critically, CNIs promoted the expansion of both polyclonal and TCR-specific alloreactive central memory CD4+ T cells (TCM) with high self-renewal capacity that mediated cGVHD following drug withdrawal. In contrast to posttransplant cyclophosphamide (PT-Cy), CSA was ineffective in eliminating IL-17A–secreting alloreactive T cell clones that play an important role in the pathogenesis of cGVHD. Collectively, we have shown that, although CNIs attenuate aGVHD, they paradoxically rescue alloantigen-specific TCM, especially within the CD4+ compartment in lymphoid and GVHD target tissues, thus predisposing patients to cGVHD. These data provide further evidence to caution against CNI-based immune suppression without concurrent approaches that eliminate alloreactive T cell clones.

Authors

Yewei Wang, Md Ashik Ullah, Olivia G. Waltner, Shruti S. Bhise, Kathleen S. Ensbey, Christine R. Schmidt, Samuel R.W. Legg, Tomoko Sekiguchi, Ethan L. Nelson, Rachel D. Kuns, Nicole S. Nemychenkov, Erden Atilla, Albert C. Yeh, Shuichiro Takahashi, Julie R. Boiko, Antiopi Varelias, Bruce R. Blazar, Motoko Koyama, Simone A. Minnie, Andrew D. Clouston, Scott N. Furlan, Ping Zhang, Geoffrey R. Hill

×
  • ← Previous
  • 1
  • 2
  • …
  • 47
  • 48
  • 49
  • …
  • 2555
  • 2556
  • Next →

No posts were found with this tag.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts