Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Research Article

  • 25,558 Articles
  • 0 Posts
  • ← Previous
  • 1
  • 2
  • …
  • 219
  • 220
  • 221
  • …
  • 2555
  • 2556
  • Next →
Bacterial sepsis triggers an antiviral response that causes translation shutdown
Takashi Hato, … , Michael T. Eadon, Pierre C. Dagher
Takashi Hato, … , Michael T. Eadon, Pierre C. Dagher
Published December 3, 2018
Citation Information: J Clin Invest. 2018. https://doi.org/10.1172/JCI123284.
View: Text | PDF

Bacterial sepsis triggers an antiviral response that causes translation shutdown

  • Text
  • PDF
Abstract

In response to viral pathogens, the host upregulates antiviral genes that suppress translation of viral mRNAs. However, induction of such antiviral responses may not be exclusive to viruses, as the pathways lie at the intersection of broad inflammatory networks that can also be induced by bacterial pathogens. Using a model of Gram-negative sepsis, we show that propagation of kidney damage initiated by a bacterial origin ultimately involves antiviral responses that result in host translation shutdown. We determined that activation of the eukaryotic translation initiation factor 2-α kinase 2/eukaryotic translation initiation factor 2α (Eif2ak2/Eif2α) axis is the key mediator of translation initiation block in late-phase sepsis. Reversal of this axis mitigated kidney injury. Furthermore, temporal profiling of the kidney translatome revealed that multiple genes involved in formation of the initiation complex were translationally altered during bacterial sepsis. Collectively, our findings imply that translation shutdown is indifferent to the specific initiating pathogen and is an important determinant of tissue injury in sepsis.

Authors

Takashi Hato, Bernhard Maier, Farooq Syed, Jered Myslinski, Amy Zollman, Zoya Plotkin, Michael T. Eadon, Pierre C. Dagher

×

Lipin 2/3 phosphatidic acid phosphatases maintain phospholipid homeostasis to regulate chylomicron synthesis
Peixiang Zhang, … , Stephen G. Young, Karen Reue
Peixiang Zhang, … , Stephen G. Young, Karen Reue
Published December 3, 2018
Citation Information: J Clin Invest. 2018. https://doi.org/10.1172/JCI122595.
View: Text | PDF

Lipin 2/3 phosphatidic acid phosphatases maintain phospholipid homeostasis to regulate chylomicron synthesis

  • Text
  • PDF
Abstract

The lipin phosphatidic acid phosphatase (PAP) enzymes are required for triacylglycerol (TAG) synthesis from glycerol 3-phosphate in most mammalian tissues. The 3 lipin proteins (lipin 1, lipin 2, and lipin 3) each have PAP activity, but have distinct tissue distributions, with lipin 1 being the predominant PAP enzyme in many metabolic tissues. One exception is the small intestine, which is unique in expressing exclusively lipin 2 and lipin 3. TAG synthesis in small intestinal enterocytes utilizes 2-monoacylglycerol and does not require the PAP reaction, making the role of lipin proteins in enterocytes unclear. Enterocyte TAGs are stored transiently as cytosolic lipid droplets or incorporated into lipoproteins (chylomicrons) for secretion. We determined that lipin enzymes are critical for chylomicron biogenesis, through regulation of membrane phospholipid composition and association of apolipoprotein B48 with nascent chylomicron particles. Lipin 2/3 deficiency caused phosphatidic acid accumulation and mammalian target of rapamycin complex 1 (mTORC1) activation, which were associated with enhanced protein levels of a key phospholipid biosynthetic enzyme (CTP:phosphocholine cytidylyltransferase α) and altered membrane phospholipid composition. Impaired chylomicron synthesis in lipin 2/3 deficiency could be rescued by normalizing phospholipid synthesis levels. These data implicate lipin 2/3 as a control point for enterocyte phospholipid homeostasis and chylomicron biogenesis.

Authors

Peixiang Zhang, Lauren S. Csaki, Emilio Ronquillo, Lynn J. Baufeld, Jason Y. Lin, Alexis Gutierrez, Jennifer R. Dwyer, David N. Brindley, Loren G. Fong, Peter Tontonoz, Stephen G. Young, Karen Reue

×

Chemogenetic silencing of hippocampal neurons suppresses epileptic neural circuits
Qi-Gang Zhou, … , Imad M. Najm, Hoonkyo Suh
Qi-Gang Zhou, … , Imad M. Najm, Hoonkyo Suh
Published December 3, 2018
Citation Information: J Clin Invest. 2018. https://doi.org/10.1172/JCI95731.
View: Text | PDF

Chemogenetic silencing of hippocampal neurons suppresses epileptic neural circuits

  • Text
  • PDF
Abstract

We investigated how pathological changes in newborn hippocampal dentate granule cells (DGCs) lead to epilepsy. Using a rabies virus–mediated retrograde tracing system and a designer receptors exclusively activated by designer drugs (DREADD) chemogenetic method, we demonstrated that newborn hippocampal DGCs are required for the formation of epileptic neural circuits and the induction of spontaneous recurrent seizures (SRS). A rabies virus–mediated mapping study revealed that aberrant circuit integration of hippocampal newborn DGCs formed excessive de novo excitatory connections as well as recurrent excitatory loops, allowing the hippocampus to produce, amplify, and propagate excessive recurrent excitatory signals. In epileptic mice, DREADD-mediated–specific suppression of hippocampal newborn DGCs dramatically reduced epileptic spikes and SRS in an inducible and reversible manner. Conversely, specific activation of hippocampal newborn DGCs increased both epileptic spikes and SRS. Our study reveals an essential role for hippocampal newborn DGCs in the formation and function of epileptic neural circuits, providing critical insights into DGCs as a potential therapeutic target for treating epilepsy.

Authors

Qi-Gang Zhou, Ashley D. Nemes, Daehoon Lee, Eun Jeoung Ro, Jing Zhang, Amy S. Nowacki, Susan M. Dymecki, Imad M. Najm, Hoonkyo Suh

×

Fc-dependent functions are redundant to efficacy of anti-HIV antibody PGT121 in macaques
Matthew S. Parsons, … , Miles P. Davenport, Stephen J. Kent
Matthew S. Parsons, … , Miles P. Davenport, Stephen J. Kent
Published November 26, 2018
Citation Information: J Clin Invest. 2018. https://doi.org/10.1172/JCI122466.
View: Text | PDF

Fc-dependent functions are redundant to efficacy of anti-HIV antibody PGT121 in macaques

  • Text
  • PDF
Abstract

A considerable body of evidence suggests that Fc-dependent functions improve the capacity of broadly neutralizing antibodies (BnAbs) to protect against and control HIV-1 infection. This phenomenon, however, has not been formally tested in robust cell-associated macaque simian-human immunodeficiency virus (SHIV) models with newer-generation BnAbs. We studied both the WT BnAb PGT121 and a LALA mutant of PGT121 (which has impaired Fc-dependent functions) for their ability to protect pigtail macaques from an i.v. high-dose cell-associated SHIVSF162P3 challenge. We found that both WT and LALA PGT121 completely protected all 12 macaques studied. Further, partial depletion of NK cells, key mediators of Fc-dependent functions, did not abrogate the protective efficacy of PGT121 in 6 macaques. Additionally, in animals with established SHIVSF162P3 infection, SHIV viremia levels were equally rapidly reduced by LALA and WT PGT121. Our studies suggest that the potent neutralizing capacity of PGT121 renders the Fc-dependent functions of the Ab at least partially redundant. These findings have implications for Ab-mediated protection from and control of HIV-1 infection.

Authors

Matthew S. Parsons, Wen Shi Lee, Anne B. Kristensen, Thakshila Amarasena, Georges Khoury, Adam K. Wheatley, Arnold Reynaldi, Bruce D. Wines, P. Mark Hogarth, Miles P. Davenport, Stephen J. Kent

×

Bone marrow transplantation generates T cell–dependent control of myeloma in mice
Slavica Vuckovic, … , Mark J. Smyth, Geoffrey R. Hill
Slavica Vuckovic, … , Mark J. Smyth, Geoffrey R. Hill
Published October 9, 2018
Citation Information: J Clin Invest. 2018. https://doi.org/10.1172/JCI98888.
View: Text | PDF

Bone marrow transplantation generates T cell–dependent control of myeloma in mice

  • Text
  • PDF
Abstract

Transplantation with autologous hematopoietic progenitors remains an important consolidation treatment for patients with multiple myeloma (MM) and is thought to prolong the disease plateau phase by providing intensive cytoreduction. However, transplantation induces inflammation in the context of profound lymphodepletion that may cause hitherto unexpected immunological effects. We developed preclinical models of bone marrow transplantation (BMT) for MM using Vk*MYC myeloma–bearing recipient mice and donor mice that were myeloma naive or myeloma experienced to simulate autologous transplantation. Surprisingly, we demonstrated broad induction of T cell–dependent myeloma control, most efficiently from memory T cells within myeloma-experienced grafts, but also through priming of naive T cells after BMT. CD8+ T cells from mice with controlled myeloma had a distinct T cell receptor (TCR) repertoire and higher clonotype overlap relative to myeloma-free BMT recipients. Furthermore, T cell–dependent myeloma control could be adoptively transferred to secondary recipients and was myeloma cell clone specific. Interestingly, donor-derived IL-17A acted directly on myeloma cells expressing the IL-17 receptor to induce a transcriptional landscape that promoted tumor growth and immune escape. Conversely, donor IFN-γ secretion and signaling were critical to protective immunity and were profoundly augmented by CD137 agonists. These data provide new insights into the mechanisms of action of transplantation in myeloma and provide rational approaches to improving clinical outcomes.

Authors

Slavica Vuckovic, Simone A. Minnie, David Smith, Kate H. Gartlan, Thomas S. Watkins, Kate A. Markey, Pamela Mukhopadhyay, Camille Guillerey, Rachel D. Kuns, Kelly R. Locke, Antonia L. Pritchard, Peter A. Johansson, Antiopi Varelias, Ping Zhang, Nicholas D. Huntington, Nicola Waddell, Marta Chesi, John J. Miles, Mark J. Smyth, Geoffrey R. Hill

×

Osteopontin mediates glioblastoma-associated macrophage infiltration and is a potential therapeutic target
Jun Wei, … , Shulin Li, Amy B. Heimberger
Jun Wei, … , Shulin Li, Amy B. Heimberger
Published October 11, 2018
Citation Information: J Clin Invest. 2018. https://doi.org/10.1172/JCI121266.
View: Text | PDF

Osteopontin mediates glioblastoma-associated macrophage infiltration and is a potential therapeutic target

  • Text
  • PDF
Abstract

Glioblastoma is highly enriched with macrophages, and osteopontin (OPN) expression levels correlate with glioma grade and the degree of macrophage infiltration; thus, we studied whether OPN plays a crucial role in immune modulation. Quantitative PCR, immunoblotting, and ELISA were used to determine OPN expression. Knockdown of OPN was achieved using complementary siRNA, shRNA, and CRISPR/Cas9 techniques, followed by a series of in vitro functional migration and immunological assays. OPN gene–deficient mice were used to examine the roles of non-tumor-derived OPN on survival of mice harboring intracranial gliomas. Patients with mesenchymal glioblastoma multiforme (GBM) show high OPN expression, a negative survival prognosticator. OPN is a potent chemokine for macrophages, and its blockade significantly impaired the ability of glioma cells to recruit macrophages. Integrin αvβ5 (ITGαvβ5) is highly expressed on glioblastoma-infiltrating macrophages and constitutes a major OPN receptor. OPN maintains the M2 macrophage gene signature and phenotype. Both tumor-derived and host-derived OPN were critical for glioma development. OPN deficiency in either innate immune or glioma cells resulted in a marked reduction in M2 macrophages and elevated T cell effector activity infiltrating the glioma. Furthermore, OPN deficiency in the glioma cells sensitized them to direct CD8+ T cell cytotoxicity. Systemic administration in mice of 4-1BB–OPN bispecific aptamers was efficacious, increasing median survival time by 68% (P < 0.05). OPN is thus an important chemokine for recruiting macrophages to glioblastoma, mediates crosstalk between tumor cells and the innate immune system, and has the potential to be exploited as a therapeutic target.

Authors

Jun Wei, Anantha Marisetty, Brett Schrand, Konrad Gabrusiewicz, Yuuri Hashimoto, Martina Ott, Zacharia Grami, Ling-Yuan Kong, Xiaoyang Ling, Hillary Caruso, Shouhao Zhou, Y. Alan Wang, Gregory N. Fuller, Jason Huse, Eli Gilboa, Nannan Kang, Xingxu Huang, Roel Verhaak, Shulin Li, Amy B. Heimberger

×

CDCA7 and HELLS mutations undermine nonhomologous end joining in centromeric instability syndrome
Motoko Unoki, … , Claire Francastel, Hiroyuki Sasaki
Motoko Unoki, … , Claire Francastel, Hiroyuki Sasaki
Published October 11, 2018
Citation Information: J Clin Invest. 2018. https://doi.org/10.1172/JCI99751.
View: Text | PDF

CDCA7 and HELLS mutations undermine nonhomologous end joining in centromeric instability syndrome

  • Text
  • PDF
Abstract

Mutations in CDCA7 and HELLS that respectively encode a CXXC-type zinc finger protein and an SNF2 family chromatin remodeler cause immunodeficiency, centromeric instability, and facial anomalies (ICF) syndrome types 3 and 4. Here, we demonstrate that the classical nonhomologous end joining (C-NHEJ) proteins Ku80 and Ku70, as well as HELLS, coimmunoprecipitated with CDCA7. The coimmunoprecipitation of the repair proteins was sensitive to nuclease treatment and an ICF3 mutation in CDCA7 that impairs its chromatin binding. The functional importance of these interactions was strongly suggested by the compromised C-NHEJ activity and significant delay in Ku80 accumulation at DNA damage sites in CDCA7- and HELLS-deficient HEK293 cells. Consistent with the repair defect, these cells displayed increased apoptosis, abnormal chromosome segregation, aneuploidy, centrosome amplification, and significant accumulation of γH2AX signals. Although less prominent, cells with mutations in the other ICF genes DNMT3B and ZBTB24 (responsible for ICF types 1 and 2, respectively) showed similar defects. Importantly, lymphoblastoid cells from ICF patients shared the same changes detected in the mutant HEK293 cells to varying degrees. Although the C-NHEJ defect alone did not cause CG hypomethylation, CDCA7 and HELLS are involved in maintaining CG methylation at centromeric and pericentromeric repeats. The defect in C-NHEJ may account for some common features of ICF cells, including centromeric instability, abnormal chromosome segregation, and apoptosis.

Authors

Motoko Unoki, Hironori Funabiki, Guillaume Velasco, Claire Francastel, Hiroyuki Sasaki

×

Spec-seq unveils transcriptional subpopulations of antibody-secreting cells following influenza vaccination
Karlynn E. Neu, … , Aly A. Khan, Patrick C. Wilson
Karlynn E. Neu, … , Aly A. Khan, Patrick C. Wilson
Published November 19, 2018
Citation Information: J Clin Invest. 2018. https://doi.org/10.1172/JCI121341.
View: Text | PDF

Spec-seq unveils transcriptional subpopulations of antibody-secreting cells following influenza vaccination

  • Text
  • PDF
Abstract

Vaccines are among the most effective public health tools for combating certain infectious diseases such as influenza. The role of the humoral immune system in vaccine-induced protection is widely appreciated; however, our understanding of how antibody specificities relate to B cell function remains limited due to the complexity of polyclonal antibody responses. To address this, we developed the Spec-seq framework, which allows for simultaneous monoclonal antibody (mAb) characterization and transcriptional profiling from the same single cell. Here, we present the first application of the Spec-seq framework, which we applied to human plasmablasts after influenza vaccination in order to characterize transcriptional differences governed by B cell receptor (BCR) isotype and vaccine reactivity. Our analysis did not find evidence of long-term transcriptional specialization between plasmablasts of different isotypes. However, we did find enhanced transcriptional similarity between clonally related B cells, as well as distinct transcriptional signatures ascribed by BCR vaccine recognition. These data suggest IgG and IgA vaccine–positive plasmablasts are largely similar, whereas IgA vaccine–negative cells appear to be transcriptionally distinct from conventional, terminally differentiated, antigen-induced peripheral blood plasmablasts.

Authors

Karlynn E. Neu, Jenna J. Guthmiller, Min Huang, Jennifer La, Marcos C. Vieira, Kangchon Kim, Nai-Ying Zheng, Mario Cortese, Micah E. Tepora, Natalie J. Hamel, Karla Thatcher Rojas, Carole Henry, Dustin Shaw, Charles L. Dulberger, Bali Pulendran, Sarah Cobey, Aly A. Khan, Patrick C. Wilson

×

TNF/TNFR axis promotes pyrin inflammasome activation and distinctly modulates pyrin inflammasomopathy
Deepika Sharma, … , Peter Vogel, Thirumala-Devi Kanneganti
Deepika Sharma, … , Peter Vogel, Thirumala-Devi Kanneganti
Published November 19, 2018
Citation Information: J Clin Invest. 2018. https://doi.org/10.1172/JCI121372.
View: Text | PDF

TNF/TNFR axis promotes pyrin inflammasome activation and distinctly modulates pyrin inflammasomopathy

  • Text
  • PDF
Abstract

Pyrin is an inflammasome sensor that promotes caspase-1–mediated pyroptotic cell death and maturation of proinflammatory cytokines IL-1β and IL-18. Familial Mediterranean fever (FMF), an autoinflammatory disorder, is associated with mutations in the gene encoding pyrin (MEFV). FMF-knockin (FMF-KI) mice that express chimeric pyrin protein with FMF mutation (MefvV726A/V726A) exhibit an autoinflammatory disorder mediated by autoactivation of the pyrin inflammasome. Increase in the levels of TNF are observed in FMF-KI mice, and many features of FMF overlap with the autoinflammatory disorder associated with TNF receptor signaling. In this study, we assessed the contribution of TNF signaling to pyrin inflammasome activation and its consequent role in distinct FMF pathologies. TNF signaling promoted the expression of pyrin in response to multiple stimuli and was required for inflammasome activation in response to canonical pyrin stimuli and in myeloid cells from FMF-KI mice. TNF signaling promoted systemic wasting, anemia, and neutrophilia in the FMF-KI mice. Further, TNF-induced pathology was induced specifically through the TNFR1 receptor, while TNFR2-mediated signaling was distinctly protective in colitis and ankle joint inflammation. Overall, our data show that TNF is a critical modulator of pyrin expression, inflammasome activation, and pyrin-inflammasomopathy. Further, specific blockade of TNFR1 or activation of TNFR2 could provide substantial protection against FMF pathologies.

Authors

Deepika Sharma, Ankit Malik, Clifford Guy, Peter Vogel, Thirumala-Devi Kanneganti

×

PI3K p110δ inactivation antagonizes chronic lymphocytic leukemia and reverses T cell immune suppression
Shuai Dong, … , Amy J. Johnson, John C. Byrd
Shuai Dong, … , Amy J. Johnson, John C. Byrd
Published November 19, 2018
Citation Information: J Clin Invest. 2018. https://doi.org/10.1172/JCI99386.
View: Text | PDF

PI3K p110δ inactivation antagonizes chronic lymphocytic leukemia and reverses T cell immune suppression

  • Text
  • PDF
Abstract

Targeted therapy with small molecules directed at essential survival pathways in leukemia represents a major advance, including the phosphatidylinositol-3′-kinase (PI3K) p110δ inhibitor idelalisib. Here, we found that genetic inactivation of p110δ (p110δD910A/D910A) in the Eμ-TCL1 murine chronic lymphocytic leukemia (CLL) model impaired B cell receptor signaling and B cell migration, and significantly delayed leukemia pathogenesis. Regardless of TCL1 expression, p110δ inactivation led to rectal prolapse in mice resembling autoimmune colitis in patients receiving idelalisib. Moreover, we showed that p110δ inactivation in the microenvironment protected against CLL and acute myeloid leukemia. After receiving higher numbers of TCL1 leukemia cells, half of p110δD910A/D910A mice spontaneously recovered from high disease burden and resisted leukemia rechallenge. Despite disease resistance, p110δD910A/D910A mice exhibited compromised CD4+ and CD8+ T cell response, and depletion of CD4+ or CD8+ T cells restored leukemia. Interestingly, p110δD910A/D910A mice showed significantly impaired Treg expansion that associated with disease clearance. Reconstitution of p110δD910A/D910A mice with p110δWT/WT Tregs reversed leukemia resistance. Our findings suggest that p110δ inhibitors may have direct antileukemic and indirect immune-activating effects, further supporting that p110δ blockade may have a broader immune-modulatory role in types of leukemia that are not sensitive to p110δ inhibition.

Authors

Shuai Dong, Bonnie K. Harrington, Eileen Y. Hu, Joseph T. Greene, Amy M. Lehman, Minh Tran, Ronni L. Wasmuth, Meixiao Long, Natarajan Muthusamy, Jennifer R. Brown, Amy J. Johnson, John C. Byrd

×
  • ← Previous
  • 1
  • 2
  • …
  • 219
  • 220
  • 221
  • …
  • 2555
  • 2556
  • Next →

No posts were found with this tag.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts