Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Research Article

  • 25,432 Articles
  • 0 Posts
  • ← Previous
  • 1
  • 2
  • …
  • 219
  • 220
  • 221
  • …
  • 2543
  • 2544
  • Next →
The COPII cargo adapter SEC24C is essential for neuronal homeostasis
Bo Wang, … , David Ginsburg, Mondira Kundu
Bo Wang, … , David Ginsburg, Mondira Kundu
Published June 25, 2018
Citation Information: J Clin Invest. 2018. https://doi.org/10.1172/JCI98194.
View: Text | PDF

The COPII cargo adapter SEC24C is essential for neuronal homeostasis

  • Text
  • PDF
Abstract

SEC24 family members are components of the coat protein complex II (COPII) machinery that interact directly with cargo or with other adapters to ensure proper sorting of secretory cargo into COPII vesicles. SEC24C is 1 of 4 mammalian SEC24 paralogs (SEC24A–D), which segregate into 2 subfamilies on the basis of sequence homology (SEC24A/SEC24B and SEC24C/SEC24D). Here, we demonstrate that postmitotic neurons, unlike professional secretory cells in other tissues, are exquisitely sensitive to loss of SEC24C. Conditional KO of Sec24c in neural progenitors during embryogenesis caused perinatal mortality and microcephaly, with activation of the unfolded protein response and apoptotic cell death of postmitotic neurons in the murine cerebral cortex. The cell-autonomous function of SEC24C in postmitotic neurons was further highlighted by the loss of cell viability caused by disrupting Sec24c expression in forebrain neurons of mice postnatally and in differentiated neurons derived from human induced pluripotent stem cells. The neuronal cell death associated with Sec24c deficiency was rescued in knockin mice expressing Sec24d in place of Sec24c. These data suggest that SEC24C is a major cargo adapter for COPII-dependent transport in postmitotic neurons in developing and adult brains and that its functions overlap at least partially with those of SEC24D in mammals.

Authors

Bo Wang, Joung Hyuck Joo, Rebecca Mount, Brett J. W. Teubner, Alison Krenzer, Amber L. Ward, Viraj P. Ichhaporia, Elizabeth J. Adams, Rami Khoriaty, Samuel T. Peters, Shondra M. Pruett-Miller, Stanislav S. Zakharenko, David Ginsburg, Mondira Kundu

×

Th1/Th17 polarization persists following whole-cell pertussis vaccination despite repeated acellular boosters
Ricardo da Silva Antunes, … , Bjorn Peters, Alessandro Sette
Ricardo da Silva Antunes, … , Bjorn Peters, Alessandro Sette
Published June 19, 2018
Citation Information: J Clin Invest. 2018. https://doi.org/10.1172/JCI121309.
View: Text | PDF

Th1/Th17 polarization persists following whole-cell pertussis vaccination despite repeated acellular boosters

  • Text
  • PDF
Abstract

In the mid-1990s, whole-cell (wP) pertussis vaccines were associated with local and systemic adverse events, which prompted their replacement with acellular (aP) vaccines in many high-income countries. In the past decade rates of pertussis disease have increased in children receiving only acellular pertussis vaccines. We compared the immune responses to acellular pertussis boosters in children who received their initial doses with either wP or aP vaccines using activation-induced marker (AIM) assays. Specifically, we examined pertussis-specific memory CD4+ T cell responses ex vivo, highlighting a Type 2/Th2 versus Type 1/Th1 and Th17 differential polarization as a function of childhood vaccination. Remarkably, after a contemporary aP booster, cells from donors originally primed with aP were 1) associated with increased IL-4, IL-5, IL-13, IL-9 and TGF-β and decreased IFNγ and IL-17 production; 2) defective in their ex vivo capacity to expand memory cells; and 3) less capable to proliferate in vitro. These differences appeared to be T cell-specific, since equivalent increases of antibody titers and plasmablasts after aP boost were seen in both groups. In conclusion, our data suggest that long lasting effects and differential polarization and proliferation exists between adults originally vaccinated with aP versus wP despite repeated acellular boosters.

Authors

Ricardo da Silva Antunes, Mariana Babor, Chelsea Carpenter, Natalie Khalil, Mario Cortese, Alexander J Mentzer, Grégory Seumois, Christopher D. Petro, Lisa A. Purcell, Pandurangan Vijayanand, Shane Crotty, Bali Pulendran, Bjorn Peters, Alessandro Sette

×

Expression of mutant Sftpc in murine alveolar epithelia drives spontaneous lung fibrosis
Shin-Ichi Nureki, … , Surafel Mulugeta, Michael F. Beers
Shin-Ichi Nureki, … , Surafel Mulugeta, Michael F. Beers
Published June 19, 2018
Citation Information: J Clin Invest. 2018. https://doi.org/10.1172/JCI99287.
View: Text | PDF

Expression of mutant Sftpc in murine alveolar epithelia drives spontaneous lung fibrosis

  • Text
  • PDF
Abstract

Epithelial cell dysfunction is postulated as an important component in the pathogenesis of Idiopathic Pulmonary Fibrosis (IPF). Mutations in the Surfactant Protein C [SP-C] gene [SFTPC], an alveolar type 2 (AT2) cell restricted protein, have been found in sporadic and familial IPF. To causally link these events, we developed a knock-in mouse model capable of regulated expression of an IPF-associated Isoleucine to Threonine substitution at codon 73 [I73T] in Sftpc (SP-CI73T). Tamoxifen treated SP-CI73T cohorts developed rapid increases in SftpcI73T mRNA and misprocessed proSP-CI73T protein accompanied by increased early mortality (days 7-14). This acute phase was marked by diffuse parenchymal lung injury, tissue infiltration by monocytes, polycellular alveolitis, and elevations in bronchoalveolar lavage and AT2 mRNA contents of select inflammatory cytokines. Resolution of alveolitis (2-4 weeks), commensurate with a rise in TGFB1, was followed by aberrant remodeling marked by collagen deposition, AT2 cell hyperplasia, a-SMA positive cells, and restrictive lung physiology. The translational relevance of the model was supported by detection of multiple IPF biomarkers previously reported in human cohorts. These data provide proof of principle that mutant SP-C expression in vivo causes spontaneous lung fibrosis strengthening the role of AT2 dysfunction as a key upstream driver of IPF pathogenesis.

Authors

Shin-Ichi Nureki, Yaniv Tomer, Alessandro Venosa, Jeremy Katzen, Scott J. Russo, Sarita Jamil, Matthew Barrett, Vivian Nguyen, Meghan Kopp, Surafel Mulugeta, Michael F. Beers

×

Itaconic acid mediates crosstalk between macrophage metabolism and peritoneal tumors
Jonathan M. Weiss, … , David A. Wink, Daniel W. McVicar
Jonathan M. Weiss, … , David A. Wink, Daniel W. McVicar
Published June 19, 2018
Citation Information: J Clin Invest. 2018. https://doi.org/10.1172/JCI99169.
View: Text | PDF

Itaconic acid mediates crosstalk between macrophage metabolism and peritoneal tumors

  • Text
  • PDF
Abstract

Control of cellular metabolism is critical for efficient cell function, although little is known about the interplay between cell subset-specific metabolites in situ, especially in the tumor setting. Here, we determine how a macrophage-specific metabolite, itaconic acid, can regulate tumor progression in the peritoneum. We show peritoneal tumors (B16 melanoma or ID8 ovarian carcinoma) elicited a fatty acid oxidation-mediated increase in oxidative phosphorylation (OXPHOS) and glycolysis in peritoneal tissue-resident macrophages (pResMφ). Unbiased metabolomics identified itaconic acid, the product of Irg1-mediated catabolism of mitochondrial cis-aconitate, among the most highly upregulated metabolites in pResMφ of tumor-bearing mice. Administration of lentivirally-encoded Irg1 shRNA significantly reduced peritoneal tumors. This resulted in reductions in OXPHOS and OXPHOS-driven production of reactive oxygen species (ROS) in pResMφ and ROS-mediated MAP kinase activation in tumor cells. Our findings demonstrate that tumors profoundly alter pResMφ metabolism, leading to the production of itaconic acid, which potentiates tumor growth. Monocytes isolated from ovarian carcinoma patient ascites fluid expressed significantly elevated levels of Irg1. Therefore, Irg1 in pResMφ represents a potential therapeutic target for peritoneal tumors.

Authors

Jonathan M. Weiss, Luke C. Davies, Megan Karwan, Lilia Ileva, Michelle K. Ozaki, Robert Y.S. Cheng, Lisa A. Ridnour, Christina M. Annunziata, David A. Wink, Daniel W. McVicar

×

HECTD3 mediates TRAF3 polyubiquitination and type I interferon induction during bacterial infection
Fubing Li, … , Ceshi Chen, Xiaopeng Qi
Fubing Li, … , Ceshi Chen, Xiaopeng Qi
Published June 19, 2018
Citation Information: J Clin Invest. 2018. https://doi.org/10.1172/JCI120406.
View: Text | PDF

HECTD3 mediates TRAF3 polyubiquitination and type I interferon induction during bacterial infection

  • Text
  • PDF
Abstract

Lysine-63 (K63)–linked polyubiquitination of TRAF3 coordinates the engagement of pattern recognition receptors to recruited adaptor proteins and downstream activator TBK1 in pathways that induce type I interferon (IFN). Whether auto-ubiquitination or other E3 ligases mediate K63-linked TRAF3 polyubiquitination remains unclear. We demonstrated that mice deficient in E3 ligase gene Hectd3 remarkably increased host defense against infection by intracellular bacteria F. novicida, Mycobacterium, and Listeria by limiting bacterial dissemination. In the absence of HECTD3, type I IFN response was impaired during bacterial infection both in vivo and in vitro. HECTD3 regulated type I IFN production by mediating K63-linked polyubiquitination of TRAF3 at residue K138. The catalytic domain of HECTD3 regulated TRAF3 K63 polyubiquitination, which enabled TRAF3–TBK1 complex formation. Our study offers novel insights into mechanisms of TRAF3 modulation and provides potential therapeutic targets against infections by intracellular bacteria and inflammatory diseases.

Authors

Fubing Li, Yang Li, Huichun Liang, Tao Xu, Yanjie Kong, Maobo Huang, Ji Xiao, Xi Chen, Houjun Xia, Yingying Wu, Zhongmei Zhou, Xiaomin Guo, Chunmiao Hu, Chuanyu Yang, Xu Cheng, Ceshi Chen, Xiaopeng Qi

×

Autophagy orchestrates the regulatory program of tumor-associated myeloid-derived suppressor cells
Themis Alissafi, … , Helen Gogas, Panayotis Verginis
Themis Alissafi, … , Helen Gogas, Panayotis Verginis
Published June 19, 2018
Citation Information: J Clin Invest. 2018. https://doi.org/10.1172/JCI120888.
View: Text | PDF

Autophagy orchestrates the regulatory program of tumor-associated myeloid-derived suppressor cells

  • Text
  • PDF
Abstract

Myeloid-derived suppressor cells (MDSCs) densely accumulate into tumors and potently suppress anti-tumor immune responses promoting tumor development. Targeting MDSCs in tumor immunotherapy has been hampered by lack of understanding of the molecular pathways that govern MDSC differentiation and function. Herein, we identify autophagy as a crucial pathway for MDSC-mediated suppression of anti-tumor immunity. Specifically, MDSCs in melanoma patients and mouse melanoma exhibited increased levels of functional autophagy. Ablation of autophagy in myeloid cells, significantly delayed tumor growth and endowed anti-tumor immune responses. Notably, tumor-infiltrating autophagy-deficient monocytic MDSCs (M-MDSCs) demonstrated impaired suppressive activity in vitro and in vivo, while transcriptome analysis revealed significant differences in genes related to lysosomal function. Accordingly, autophagy-deficient M-MDSCs exhibited impaired lysosomal degradation thereby enhancing surface expression of MHC class II molecules, resulting in efficient activation of tumor-specific CD4+ T cells. Finally, targeting of the membrane-associated RING-CH1 (MARCH1) E3 ubiquitin ligase, that mediates the lysosomal degradation of MHC II, in M-MDSCs, attenuated their suppressive function, and resulted in significantly decreased tumor volume followed by development of a robust anti-tumor immunity. Collectively, these findings depict autophagy as a novel molecular target of MDSC-mediated suppression of anti-tumor immunity.

Authors

Themis Alissafi, Aikaterini Hatzioannou, Konstantinos Mintzas, Roza Maria Barouni, Aggelos Banos, Sundary Sormendi, Alexandros Polyzos, Maria Xilouri, Ben Wielockx, Helen Gogas, Panayotis Verginis

×

Motivational valence is determined by striatal melanocortin 4 receptors
Anna Mathia Klawonn, … , Michael Michaelides, David Engblom
Anna Mathia Klawonn, … , Michael Michaelides, David Engblom
Published June 18, 2018
Citation Information: J Clin Invest. 2018. https://doi.org/10.1172/JCI97854.
View: Text | PDF

Motivational valence is determined by striatal melanocortin 4 receptors

  • Text
  • PDF
Abstract

It is critical for survival to assign positive or negative valence to salient stimuli in a correct manner. Accordingly, harmful stimuli and internal states characterized by perturbed homeostasis are accompanied by discomfort, unease, and aversion. Aversive signaling causes extensive suffering during chronic diseases, including inflammatory conditions, cancer, and depression. Here, we investigated the role of melanocortin 4 receptors (MC4Rs) in aversive processing using genetically modified mice and a behavioral test in which mice avoid an environment that they have learned to associate with aversive stimuli. In normal mice, robust aversions were induced by systemic inflammation, nausea, pain, and κ opioid receptor–induced dysphoria. In sharp contrast, mice lacking MC4Rs displayed preference or indifference toward the aversive stimuli. The unusual flip from aversion to reward in mice lacking MC4Rs was dopamine dependent and associated with a change from decreased to increased activity of the dopamine system. The responses to aversive stimuli were normalized when MC4Rs were reexpressed on dopamine D1 receptor–expressing cells or in the striatum of mice otherwise lacking MC4Rs. Furthermore, activation of arcuate nucleus proopiomelanocortin neurons projecting to the ventral striatum increased the activity of striatal neurons in an MC4R-dependent manner and elicited aversion. Our findings demonstrate that melanocortin signaling through striatal MC4Rs is critical for assigning negative motivational valence to harmful stimuli.

Authors

Anna Mathia Klawonn, Michael Fritz, Anna Nilsson, Jordi Bonaventura, Kiseko Shionoya, Elahe Mirrasekhian, Urban Karlsson, Maarit Jaarola, Björn Granseth, Anders Blomqvist, Michael Michaelides, David Engblom

×

Endothelial cells in the innate response to allergens and initiation of atopic asthma
Kewal Asosingh, … , Mark Aronica, Serpil Erzurum
Kewal Asosingh, … , Mark Aronica, Serpil Erzurum
Published June 18, 2018
Citation Information: J Clin Invest. 2018. https://doi.org/10.1172/JCI97720.
View: Text | PDF

Endothelial cells in the innate response to allergens and initiation of atopic asthma

  • Text
  • PDF
Abstract

Protease-activated receptor 2 (PAR-2), an airway epithelial pattern recognition receptor (PRR), participates in the genesis of house dust mite–induced (HDM-induced) asthma. Here, we hypothesized that lung endothelial cells and proangiogenic hematopoietic progenitor cells (PACs) that express high levels of PAR-2 contribute to the initiation of atopic asthma. HDM extract (HDME) protease allergens were found deep in the airway mucosa and breaching the endothelial barrier. Lung endothelial cells and PACs released the Th2-promoting cytokines IL-1α and GM-CSF in response to HDME, and the endothelium had PAC-derived VEGF-C–dependent blood vessel sprouting. Blockade of the angiogenic response by inhibition of VEGF-C signaling lessened the development of inflammation and airway remodeling in the HDM model. Reconstitution of the bone marrow in WT mice with PAR-2–deficient bone marrow also reduced airway inflammation and remodeling. Adoptive transfer of PACs that had been exposed to HDME induced angiogenesis and Th2 inflammation with remodeling similar to that induced by allergen challenge. Our findings identify that lung endothelium and PACs in the airway sense allergen and elicit an angiogenic response that is central to the innate nonimmune origins of Th2 inflammation.

Authors

Kewal Asosingh, Kelly Weiss, Kimberly Queisser, Nicholas Wanner, Mei Yin, Mark Aronica, Serpil Erzurum

×

Fasting-induced JMJD3 histone demethylase epigenetically activates mitochondrial fatty acid β-oxidation
Sunmi Seok, … , Byron Kemper, Jongsook Kim Kemper
Sunmi Seok, … , Byron Kemper, Jongsook Kim Kemper
Published June 18, 2018
Citation Information: J Clin Invest. 2018. https://doi.org/10.1172/JCI97736.
View: Text | PDF

Fasting-induced JMJD3 histone demethylase epigenetically activates mitochondrial fatty acid β-oxidation

  • Text
  • PDF
Abstract

Jumonji D3 (JMJD3) histone demethylase epigenetically regulates development and differentiation, immunity, and tumorigenesis by demethylating a gene repression histone mark, H3K27-me3, but a role for JMJD3 in metabolic regulation has not been described. SIRT1 deacetylase maintains energy balance during fasting by directly activating both hepatic gluconeogenic and mitochondrial fatty acid β-oxidation genes, but the underlying epigenetic and gene-specific mechanisms remain unclear. In this study, JMJD3 was identified unexpectedly as a gene-specific transcriptional partner of SIRT1 and epigenetically activated mitochondrial β-oxidation, but not gluconeogenic, genes during fasting. Mechanistically, JMJD3, together with SIRT1 and the nuclear receptor PPARα, formed a positive autoregulatory loop upon fasting-activated PKA signaling and epigenetically activated β-oxidation–promoting genes, including Fgf21, Cpt1a, and Mcad. Liver-specific downregulation of JMJD3 resulted in intrinsic defects in β-oxidation, which contributed to hepatosteatosis as well as glucose and insulin intolerance. Remarkably, the lipid-lowering effects by JMJD3 or SIRT1 in diet-induced obese mice were mutually interdependent. JMJD3 histone demethylase may serve as an epigenetic drug target for obesity, hepatosteatosis, and type 2 diabetes that allows selective lowering of lipid levels without increasing glucose levels.

Authors

Sunmi Seok, Young-Chae Kim, Sangwon Byun, Sunge Choi, Zhen Xiao, Naoki Iwamori, Yang Zhang, Chaochen Wang, Jian Ma, Kai Ge, Byron Kemper, Jongsook Kim Kemper

×

Altered immune cell follicular dynamics in HIV infection following influenza vaccination
Eirini Moysi, … , Constantinos Petrovas, Savita Pahwa
Eirini Moysi, … , Constantinos Petrovas, Savita Pahwa
Published June 18, 2018
Citation Information: J Clin Invest. 2018. https://doi.org/10.1172/JCI99884.
View: Text | PDF

Altered immune cell follicular dynamics in HIV infection following influenza vaccination

  • Text
  • PDF
Abstract

HIV infection changes the lymph node (LN) tissue architecture, potentially impairing the immunologic response to antigenic challenge. The tissue-resident immune cell dynamics in virologically suppressed HIV+ patients on combination antiretroviral therapy (cART) are not clear. We obtained LN biopsies before and 10 to 14 days after trivalent seasonal influenza immunization from healthy controls (HCs) and HIV+ volunteers on cART to investigate CD4+ T follicular helper (Tfh) and B cell dynamics by flow cytometry and quantitative imaging analysis. Prior to vaccination, compared with those in HCs, HIV+ LNs exhibited an altered follicular architecture, but harbored higher numbers of Tfh cells and increased IgG+ follicular memory B cells. Moreover, Tfh cell numbers were dependent upon preservation of the follicular dendritic cell (FDC) network and were predictive of the magnitude of the vaccine-induced IgG responses. Interestingly, postvaccination LN samples in HIV+ participants had significantly (P = 0.0179) reduced Tfh cell numbers compared with prevaccination samples, without evidence for peripheral Tfh (pTfh) cell reduction. We conclude that influenza vaccination alters the cellularity of draining LNs of HIV+ persons in conjunction with development of antigen-specific humoral responses. The underlying mechanism of Tfh cell decline warrants further investigation, as it could bear implications for the rational design of HIV vaccines.

Authors

Eirini Moysi, Suresh Pallikkuth, Leslie R. De Armas, Louis E. Gonzalez, David Ambrozak, Varghese George, David Huddleston, Rajendra Pahwa, Richard A. Koup, Constantinos Petrovas, Savita Pahwa

×
  • ← Previous
  • 1
  • 2
  • …
  • 219
  • 220
  • 221
  • …
  • 2543
  • 2544
  • Next →

No posts were found with this tag.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts