Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Next-Generation Sequencing in Medicine (Upcoming)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • Circadian Rhythm (Oct 2021)
    • Gut-Brain Axis (Jul 2021)
    • Tumor Microenvironment (Mar 2021)
    • 100th Anniversary of Insulin's Discovery (Jan 2021)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact

Hepatology

  • 132 Articles
  • 2 Posts
  • ← Previous
  • 1
  • 2
  • …
  • 7
  • 8
  • 9
  • …
  • 13
  • 14
  • Next →
Intestinal farnesoid X receptor signaling promotes nonalcoholic fatty liver disease
Changtao Jiang, … , Andrew D. Patterson, Frank J. Gonzalez
Changtao Jiang, … , Andrew D. Patterson, Frank J. Gonzalez
Published December 15, 2014
Citation Information: J Clin Invest. 2014. https://doi.org/10.1172/JCI76738.
View: Text | PDF

Intestinal farnesoid X receptor signaling promotes nonalcoholic fatty liver disease

  • Text
  • PDF
Abstract

Nonalcoholic fatty liver disease (NAFLD) is a major worldwide health problem. Recent studies suggest that the gut microbiota influences NAFLD pathogenesis. Here, a murine model of high-fat diet–induced (HFD-induced) NAFLD was used, and the effects of alterations in the gut microbiota on NAFLD were determined. Mice treated with antibiotics or tempol exhibited altered bile acid composition, with a notable increase in conjugated bile acid metabolites that inhibited intestinal farnesoid X receptor (FXR) signaling. Compared with control mice, animals with intestine-specific Fxr disruption had reduced hepatic triglyceride accumulation in response to a HFD. The decrease in hepatic triglyceride accumulation was mainly due to fewer circulating ceramides, which was in part the result of lower expression of ceramide synthesis genes. The reduction of ceramide levels in the ileum and serum in tempol- or antibiotic-treated mice fed a HFD resulted in downregulation of hepatic SREBP1C and decreased de novo lipogenesis. Administration of C16:0 ceramide to antibiotic-treated mice fed a HFD reversed hepatic steatosis. These studies demonstrate that inhibition of an intestinal FXR/ceramide axis mediates gut microbiota–associated NAFLD development, linking the microbiome, nuclear receptor signaling, and NAFLD. This work suggests that inhibition of intestinal FXR is a potential therapeutic target for NAFLD treatment.

Authors

Changtao Jiang, Cen Xie, Fei Li, Limin Zhang, Robert G. Nichols, Kristopher W. Krausz, Jingwei Cai, Yunpeng Qi, Zhong-Ze Fang, Shogo Takahashi, Naoki Tanaka, Dhimant Desai, Shantu G. Amin, Istvan Albert, Andrew D. Patterson, Frank J. Gonzalez

×

Hepatic TRAP80 selectively regulates lipogenic activity of liver X receptor
Geun Hyang Kim, … , Ki-Up Lee, Seung-Whan Kim
Geun Hyang Kim, … , Ki-Up Lee, Seung-Whan Kim
Published December 1, 2014
Citation Information: J Clin Invest. 2014. https://doi.org/10.1172/JCI73615.
View: Text | PDF

Hepatic TRAP80 selectively regulates lipogenic activity of liver X receptor

  • Text
  • PDF
Abstract

Inflammation in response to excess low-density lipoproteins in the blood is an important driver of atherosclerosis development. Due to its ability to enhance ATP–binding cassette A1–dependent (ABCA1-dependent) reverse cholesterol transport (RCT), liver X receptor (LXR) is an attractive target for the treatment of atherosclerosis. However, LXR also upregulates the expression of sterol regulatory element–binding protein 1c (SREBP-1c), leading to increased hepatic triglyceride synthesis, an independent risk factor for atherosclerosis. Here, we developed a strategy to separate the favorable and unfavorable effects of LXR by exploiting the specificity of the coactivator thyroid hormone receptor–associated protein 80 (TRAP80). Using human hepatic cell lines, we determined that TRAP80 selectively promotes the transcription of SREBP-1c but not ABCA1. Adenovirus-mediated expression of shTRAP80 inhibited LXR-dependent SREBP-1c expression and RNA polymerase II recruitment to the LXR responsive element (LXRE) of SREBP-1c, but not to the LXRE of ABCA1. In murine models, liver-specific knockdown of TRAP80 ameliorated liver steatosis and hypertriglyceridemia induced by LXR activation and maintained RCT stimulation by the LXR ligand. Together, these data indicate that TRAP80 is a selective regulator of hepatic lipogenesis and is required for LXR-dependent SREBP-1c activation. Moreover, targeting the interaction between TRAP80 and LXR should facilitate the development of potential LXR agonists that effectively prevent atherosclerosis.

Authors

Geun Hyang Kim, Gyun-Sik Oh, Jin Yoon, Gang Gu Lee, Ki-Up Lee, Seung-Whan Kim

×

Ketogenesis prevents diet-induced fatty liver injury and hyperglycemia
David G. Cotter, … , Gary J. Patti, Peter A. Crawford
David G. Cotter, … , Gary J. Patti, Peter A. Crawford
Published October 27, 2014
Citation Information: J Clin Invest. 2014. https://doi.org/10.1172/JCI76388.
View: Text | PDF

Ketogenesis prevents diet-induced fatty liver injury and hyperglycemia

  • Text
  • PDF
Abstract

Nonalcoholic fatty liver disease (NAFLD) spectrum disorders affect approximately 1 billion individuals worldwide. However, the drivers of progressive steatohepatitis remain incompletely defined. Ketogenesis can dispose of much of the fat that enters the liver, and dysfunction in this pathway could promote the development of NAFLD. Here, we evaluated mice lacking mitochondrial 3-hydroxymethylglutaryl CoA synthase (HMGCS2) to determine the role of ketogenesis in preventing diet-induced steatohepatitis. Antisense oligonucleotide–induced loss of HMGCS2 in chow-fed adult mice caused mild hyperglycemia, increased hepatic gluconeogenesis from pyruvate, and augmented production of hundreds of hepatic metabolites, a suite of which indicated activation of the de novo lipogenesis pathway. High-fat diet feeding of mice with insufficient ketogenesis resulted in extensive hepatocyte injury and inflammation, decreased glycemia, deranged hepatic TCA cycle intermediate concentrations, and impaired hepatic gluconeogenesis due to sequestration of free coenzyme A (CoASH). Supplementation of the CoASH precursors pantothenic acid and cysteine normalized TCA intermediates and gluconeogenesis in the livers of ketogenesis-insufficient animals. Together, these findings indicate that ketogenesis is a critical regulator of hepatic acyl-CoA metabolism, glucose metabolism, and TCA cycle function in the absorptive state and suggest that ketogenesis may modulate fatty liver disease.

Authors

David G. Cotter, Baris Ercal, Xiaojing Huang, Jamison M. Leid, D. André d’Avignon, Mark J. Graham, Dennis J. Dietzen, Elizabeth M. Brunt, Gary J. Patti, Peter A. Crawford

×

Engrafted human stem cell–derived hepatocytes establish an infectious HCV murine model
Arnaud Carpentier, … , Stephen M. Feinstone, T. Jake Liang
Arnaud Carpentier, … , Stephen M. Feinstone, T. Jake Liang
Published October 8, 2014
Citation Information: J Clin Invest. 2014. https://doi.org/10.1172/JCI75456.
View: Text | PDF

Engrafted human stem cell–derived hepatocytes establish an infectious HCV murine model

  • Text
  • PDF
Abstract

The demonstrated ability to differentiate both human embryonic stem cells (hESCs) and patient-derived induced pluripotent stem cells (hiPSCs) into hepatocyte-like cells (HLCs) holds great promise for both regenerative medicine and liver disease research. Here, we determined that, despite an immature phenotype, differentiated HLCs are permissive to hepatitis C virus (HCV) infection and mount an interferon response to HCV infection in vitro. HLCs differentiated from hESCs and hiPSCs could be engrafted in the liver parenchyma of immune-deficient transgenic mice carrying the urokinase-type plasminogen activator gene driven by the major urinary protein promoter. The HLCs were maintained for more than 3 months in the livers of chimeric mice, in which they underwent further maturation and proliferation. These engrafted and expanded human HLCs were permissive to in vivo infection with HCV-positive sera and supported long-term infection of multiple HCV genotypes. Our study demonstrates efficient engraftment and in vivo HCV infection of human stem cell–derived hepatocytes and provides a model to study chronic HCV infection in patient-derived hepatocytes, action of antiviral therapies, and the biology of HCV infection.

Authors

Arnaud Carpentier, Abeba Tesfaye, Virginia Chu, Ila Nimgaonkar, Fang Zhang, Seung Bum Lee, Snorri S. Thorgeirsson, Stephen M. Feinstone, T. Jake Liang

×

Periostin promotes liver steatosis and hypertriglyceridemia through downregulation of PPARα
Yan Lu, … , Guang Ning, Xiaoying Li
Yan Lu, … , Guang Ning, Xiaoying Li
Published July 8, 2014
Citation Information: J Clin Invest. 2014. https://doi.org/10.1172/JCI74438.
View: Text | PDF

Periostin promotes liver steatosis and hypertriglyceridemia through downregulation of PPARα

  • Text
  • PDF
Abstract

Hepatosteatosis is characterized by an aberrant accumulation of triglycerides in the liver; however, the factors that drive obesity-induced fatty liver remain largely unknown. Here, we demonstrated that the secreted cell adhesion protein periostin is markedly upregulated in livers of obese rodents and humans. Notably, overexpression of periostin in the livers of WT mice promoted hepatic steatosis and hypertriglyceridemia. Conversely, both genetic ablation of periostin and administration of a periostin-neutralizing antibody dramatically improved hepatosteatosis and hypertriglyceridemia in obese mice. Overexpression of periostin resulted in reduced expression of peroxisome proliferator–activated receptor α (PPARα), a master regulator of fatty acid oxidation, and activation of the JNK signaling pathway. In mouse primary hepatocytes, inhibition of α6β4 integrin prevented activation of JNK and suppression of PPARα in response to periostin. Periostin-dependent activation of JNK resulted in activation of c-Jun, which prevented RORα binding and transactional activation at the Ppara promoter. Together, these results identify a periostin-dependent pathway that mediates obesity-induced hepatosteatosis.

Authors

Yan Lu, Xing Liu, Yang Jiao, Xuelian Xiong, E Wang, Xiaolin Wang, Zhijian Zhang, Huijie Zhang, Lingling Pan, Youfei Guan, Dongsheng Cai, Guang Ning, Xiaoying Li

×

TAK1-mediated autophagy and fatty acid oxidation prevent hepatosteatosis and tumorigenesis
Sayaka Inokuchi-Shimizu, … , David A. Brenner, Ekihiro Seki
Sayaka Inokuchi-Shimizu, … , David A. Brenner, Ekihiro Seki
Published July 1, 2014
Citation Information: J Clin Invest. 2014. https://doi.org/10.1172/JCI74068.
View: Text | PDF

TAK1-mediated autophagy and fatty acid oxidation prevent hepatosteatosis and tumorigenesis

  • Text
  • PDF
Abstract

The MAP kinase kinase kinase TGFβ-activated kinase 1 (TAK1) is activated by TLRs, IL-1, TNF, and TGFβ and in turn activates IKK-NF-κB and JNK, which regulate cell survival, growth, tumorigenesis, and metabolism. TAK1 signaling also upregulates AMPK activity and autophagy. Here, we investigated TAK1-dependent regulation of autophagy, lipid metabolism, and tumorigenesis in the liver. Fasted mice with hepatocyte-specific deletion of Tak1 exhibited severe hepatosteatosis with increased mTORC1 activity and suppression of autophagy compared with their WT counterparts. TAK1-deficient hepatocytes exhibited suppressed AMPK activity and autophagy in response to starvation or metformin treatment; however, ectopic activation of AMPK restored autophagy in these cells. Peroxisome proliferator–activated receptor α (PPARα) target genes and β-oxidation, which regulate hepatic lipid degradation, were also suppressed in hepatocytes lacking TAK1. Due to suppression of autophagy and β-oxidation, a high-fat diet challenge aggravated steatohepatitis in mice with hepatocyte-specific deletion of Tak1. Notably, inhibition of mTORC1 restored autophagy and PPARα target gene expression in TAK1-deficient livers, indicating that TAK1 acts upstream of mTORC1. mTORC1 inhibition also suppressed spontaneous liver fibrosis and hepatocarcinogenesis in animals with hepatocyte-specific deletion of Tak1. These data indicate that TAK1 regulates hepatic lipid metabolism and tumorigenesis via the AMPK/mTORC1 axis, affecting both autophagy and PPARα activity.

Authors

Sayaka Inokuchi-Shimizu, Eek Joong Park, Yoon Seok Roh, Ling Yang, Bi Zhang, Jingyi Song, Shuang Liang, Michael Pimienta, Koji Taniguchi, Xuefeng Wu, Kinji Asahina, William Lagakos, Mason R. Mackey, Shizuo Akira, Mark H. Ellisman, Dorothy D. Sears, Jerrold M. Olefsky, Michael Karin, David A. Brenner, Ekihiro Seki

×

Splicing regulator SLU7 is essential for maintaining liver homeostasis
María Elizalde, … , Matías A. Ávila, Carmen Berasain
María Elizalde, … , Matías A. Ávila, Carmen Berasain
Published May 27, 2014
Citation Information: J Clin Invest. 2014. https://doi.org/10.1172/JCI74382.
View: Text | PDF

Splicing regulator SLU7 is essential for maintaining liver homeostasis

  • Text
  • PDF
Abstract

A precise equilibrium between cellular differentiation and proliferation is fundamental for tissue homeostasis. Maintaining this balance is particularly important for the liver, a highly differentiated organ with systemic metabolic functions that is endowed with unparalleled regenerative potential. Carcinogenesis in the liver develops as the result of hepatocellular de-differentiation and uncontrolled proliferation. Here, we identified SLU7, which encodes a pre-mRNA splicing regulator that is inhibited in hepatocarcinoma, as a pivotal gene for hepatocellular homeostasis. SLU7 knockdown in human liver cells and mouse liver resulted in profound changes in pre-mRNA splicing and gene expression, leading to impaired glucose and lipid metabolism, refractoriness to key metabolic hormones, and reversion to a fetal-like gene expression pattern. Additionally, loss of SLU7 also increased hepatocellular proliferation and induced a switch to a tumor-like glycolytic phenotype. Slu7 governed the splicing and/or expression of multiple genes essential for hepatocellular differentiation, including serine/arginine-rich splicing factor 3 (Srsf3) and hepatocyte nuclear factor 4α (Hnf4α), and was critical for cAMP-regulated gene transcription. Together, out data indicate that SLU7 is central regulator of hepatocyte identity and quiescence.

Authors

María Elizalde, Raquel Urtasun, María Azkona, María U. Latasa, Saioa Goñi, Oihane García-Irigoyen, Iker Uriarte, Victor Segura, María Collantes, Mariana Di Scala, Amaia Lujambio, Jesús Prieto, Matías A. Ávila, Carmen Berasain

×

Hepatic nuclear corepressor 1 regulates cholesterol absorption through a TRβ1-governed pathway
Inna Astapova, … , David E. Cohen, Anthony N. Hollenberg
Inna Astapova, … , David E. Cohen, Anthony N. Hollenberg
Published April 8, 2014
Citation Information: J Clin Invest. 2014. https://doi.org/10.1172/JCI73419.
View: Text | PDF

Hepatic nuclear corepressor 1 regulates cholesterol absorption through a TRβ1-governed pathway

  • Text
  • PDF
Abstract

Transcriptional coregulators are important components of nuclear receptor (NR) signaling machinery and provide additional mechanisms for modulation of NR activity. Expression of a mutated nuclear corepressor 1 (NCoR1) that lacks 2 NR interacting domains (NCoRΔID) in the liver leads to elevated expression of genes regulated by thyroid hormone receptor (TR) and liver X receptor (LXR), both of which control hepatic cholesterol metabolism. Here, we demonstrate that expression of NCoRΔID in mouse liver improves dietary cholesterol tolerance in an LXRα-independent manner. NCoRΔID-associated cholesterol tolerance was primarily due to diminished intestinal cholesterol absorption as the result of changes in the composition and hydrophobicity of the bile salt pool. Alterations of the bile salt pool were mediated by increased expression of genes encoding the bile acid metabolism enzymes CYP27A1 and CYP3A11 as well as canalicular bile salt pump ABCB11. We have determined that these genes are regulated by thyroid hormone and that TRβ1 is recruited to their regulatory regions. Together, these data indicate that interactions between NCoR1 and TR control a specific pathway involved in regulation of cholesterol metabolism and clearance.

Authors

Inna Astapova, Preeti Ramadoss, Ricardo H. Costa-e-Sousa, Felix Ye, Kaila A. Holtz, Yingxia Li, Michele W. Niepel, David E. Cohen, Anthony N. Hollenberg

×

JUNB/AP-1 controls IFN-γ during inflammatory liver disease
Martin K. Thomsen, … , Lola Martinez, Erwin F. Wagner
Martin K. Thomsen, … , Lola Martinez, Erwin F. Wagner
Published November 8, 2013
Citation Information: J Clin Invest. 2013. https://doi.org/10.1172/JCI70405.
View: Text | PDF

JUNB/AP-1 controls IFN-γ during inflammatory liver disease

  • Text
  • PDF
Abstract

Understanding the molecular pathogenesis of inflammatory liver disease is essential to design efficient therapeutic approaches. In hepatocytes, the dimeric transcription factor c-JUN/AP-1 is a major mediator of cell survival during hepatitis, although functions for other JUN proteins in liver disease are less defined. Here, we found that JUNB was specifically expressed in human and murine immune cells during acute liver injury. We analyzed the molecular function of JUNB in experimental models of hepatitis, including administration of concanavalin A (ConA) or α-galactosyl-ceramide, which induce liver inflammation and injury. Mice specifically lacking JUNB in hepatocytes displayed a mild increase in ConA-induced liver damage. However, targeted deletion of Junb in immune cells and hepatocytes protected against hepatitis in experimental models that involved NK/NKT cells. The absence of JUNB in immune cells decreased IFN-γ expression and secretion from NK and NKT cells, leading to reduced STAT1 pathway activation. Systemic IFN-γ treatment or adenovirus-based IRF1 delivery to Junb-deficient mice restored hepatotoxicity, and we demonstrate that Ifng is a direct transcriptional target of JUNB. These findings demonstrate that JUNB/AP-1 promotes cell death during acute hepatitis by regulating IFN-γ production in NK and NKT cells and thus functionally antagonizes the hepatoprotective function of c-JUN/AP-1 in hepatocytes.

Authors

Martin K. Thomsen, Latifa Bakiri, Sebastian C. Hasenfuss, Rainer Hamacher, Lola Martinez, Erwin F. Wagner

×

Smoothened is a master regulator of adult liver repair
Gregory A. Michelotti, … , Daniel Metzger, Anna Mae Diehl
Gregory A. Michelotti, … , Daniel Metzger, Anna Mae Diehl
Published April 8, 2013
Citation Information: J Clin Invest. 2013. https://doi.org/10.1172/JCI66904.
View: Text | PDF

Smoothened is a master regulator of adult liver repair

  • Text
  • PDF
Abstract

When regenerative processes cannot keep pace with cell death, functional epithelia are replaced by scar. Scarring is characterized by both excessive accumulation of fibrous matrix and persistent outgrowth of cell types that accumulate transiently during successful wound healing, including myofibroblasts (MFs) and progenitors. This suggests that signaling that normally directs these cells to repair injured epithelia is deregulated. To evaluate this possibility, we examined liver repair during different types of liver injury after Smoothened (SMO), an obligate intermediate in the Hedgehog (Hh) signaling pathway, was conditionally deleted in cells expressing the MF-associated gene, αSMA. Surprisingly, blocking canonical Hh signaling in MFs not only inhibited liver fibrosis but also prevented accumulation of liver progenitors. Hh-sensitive, hepatic stellate cells (HSCs) were identified as the source of both MFs and progenitors by lineage-tracing studies in 3 other strains of mice, coupled with analysis of highly pure HSC preparations using flow cytometry, immunofluorescence confocal microscopy, RT-PCR, and in situ hybridization. The results identify SMO as a master regulator of hepatic epithelial regeneration based on its ability to promote mesenchymal-to-epithelial transitions in a subpopulation of HSC-derived MFs with features of multipotent progenitors.

Authors

Gregory A. Michelotti, Guanhua Xie, Marzena Swiderska, Steve S. Choi, Gamze Karaca, Leandi Krüger, Richard Premont, Liu Yang, Wing-Kin Syn, Daniel Metzger, Anna Mae Diehl

×
  • ← Previous
  • 1
  • 2
  • …
  • 7
  • 8
  • 9
  • …
  • 13
  • 14
  • Next →
Tracing biliary cells in liver repair
Simone Jörs, Petia Jeliazkova, and colleagues demonstrate that the ductal compartment is not the main source of liver progenitor cells in response to hepatic injury…
Published April 27, 2015
Scientific Show StopperHepatology

The regenerating liver
Claus Kordes and colleagues demonstrate that hepatic stellate cells contribute to liver regeneration…
Published November 17, 2014
Scientific Show StopperHepatology
Advertisement

Copyright © 2022 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts