Nonalcoholic fatty liver disease (NAFLD) is a major worldwide health problem. Recent studies suggest that the gut microbiota influences NAFLD pathogenesis. Here, a murine model of high-fat diet–induced (HFD-induced) NAFLD was used, and the effects of alterations in the gut microbiota on NAFLD were determined. Mice treated with antibiotics or tempol exhibited altered bile acid composition, with a notable increase in conjugated bile acid metabolites that inhibited intestinal farnesoid X receptor (FXR) signaling. Compared with control mice, animals with intestine-specific
Changtao Jiang, Cen Xie, Fei Li, Limin Zhang, Robert G. Nichols, Kristopher W. Krausz, Jingwei Cai, Yunpeng Qi, Zhong-Ze Fang, Shogo Takahashi, Naoki Tanaka, Dhimant Desai, Shantu G. Amin, Istvan Albert, Andrew D. Patterson, Frank J. Gonzalez
Inflammation in response to excess low-density lipoproteins in the blood is an important driver of atherosclerosis development. Due to its ability to enhance ATP–binding cassette A1–dependent (ABCA1-dependent) reverse cholesterol transport (RCT), liver X receptor (LXR) is an attractive target for the treatment of atherosclerosis. However, LXR also upregulates the expression of sterol regulatory element–binding protein 1c (SREBP-1c), leading to increased hepatic triglyceride synthesis, an independent risk factor for atherosclerosis. Here, we developed a strategy to separate the favorable and unfavorable effects of LXR by exploiting the specificity of the coactivator thyroid hormone receptor–associated protein 80 (TRAP80). Using human hepatic cell lines, we determined that TRAP80 selectively promotes the transcription of
Geun Hyang Kim, Gyun-Sik Oh, Jin Yoon, Gang Gu Lee, Ki-Up Lee, Seung-Whan Kim
Nonalcoholic fatty liver disease (NAFLD) spectrum disorders affect approximately 1 billion individuals worldwide. However, the drivers of progressive steatohepatitis remain incompletely defined. Ketogenesis can dispose of much of the fat that enters the liver, and dysfunction in this pathway could promote the development of NAFLD. Here, we evaluated mice lacking mitochondrial 3-hydroxymethylglutaryl CoA synthase (HMGCS2) to determine the role of ketogenesis in preventing diet-induced steatohepatitis. Antisense oligonucleotide–induced loss of HMGCS2 in chow-fed adult mice caused mild hyperglycemia, increased hepatic gluconeogenesis from pyruvate, and augmented production of hundreds of hepatic metabolites, a suite of which indicated activation of the de novo lipogenesis pathway. High-fat diet feeding of mice with insufficient ketogenesis resulted in extensive hepatocyte injury and inflammation, decreased glycemia, deranged hepatic TCA cycle intermediate concentrations, and impaired hepatic gluconeogenesis due to sequestration of free coenzyme A (CoASH). Supplementation of the CoASH precursors pantothenic acid and cysteine normalized TCA intermediates and gluconeogenesis in the livers of ketogenesis-insufficient animals. Together, these findings indicate that ketogenesis is a critical regulator of hepatic acyl-CoA metabolism, glucose metabolism, and TCA cycle function in the absorptive state and suggest that ketogenesis may modulate fatty liver disease.
David G. Cotter, Baris Ercal, Xiaojing Huang, Jamison M. Leid, D. André d’Avignon, Mark J. Graham, Dennis J. Dietzen, Elizabeth M. Brunt, Gary J. Patti, Peter A. Crawford
The demonstrated ability to differentiate both human embryonic stem cells (hESCs) and patient-derived induced pluripotent stem cells (hiPSCs) into hepatocyte-like cells (HLCs) holds great promise for both regenerative medicine and liver disease research. Here, we determined that, despite an immature phenotype, differentiated HLCs are permissive to hepatitis C virus (HCV) infection and mount an interferon response to HCV infection in vitro. HLCs differentiated from hESCs and hiPSCs could be engrafted in the liver parenchyma of immune-deficient transgenic mice carrying the urokinase-type plasminogen activator gene driven by the major urinary protein promoter. The HLCs were maintained for more than 3 months in the livers of chimeric mice, in which they underwent further maturation and proliferation. These engrafted and expanded human HLCs were permissive to in vivo infection with HCV-positive sera and supported long-term infection of multiple HCV genotypes. Our study demonstrates efficient engraftment and in vivo HCV infection of human stem cell–derived hepatocytes and provides a model to study chronic HCV infection in patient-derived hepatocytes, action of antiviral therapies, and the biology of HCV infection.
Arnaud Carpentier, Abeba Tesfaye, Virginia Chu, Ila Nimgaonkar, Fang Zhang, Seung Bum Lee, Snorri S. Thorgeirsson, Stephen M. Feinstone, T. Jake Liang
Hepatosteatosis is characterized by an aberrant accumulation of triglycerides in the liver; however, the factors that drive obesity-induced fatty liver remain largely unknown. Here, we demonstrated that the secreted cell adhesion protein periostin is markedly upregulated in livers of obese rodents and humans. Notably, overexpression of periostin in the livers of WT mice promoted hepatic steatosis and hypertriglyceridemia. Conversely, both genetic ablation of periostin and administration of a periostin-neutralizing antibody dramatically improved hepatosteatosis and hypertriglyceridemia in obese mice. Overexpression of periostin resulted in reduced expression of peroxisome proliferator–activated receptor α (PPARα), a master regulator of fatty acid oxidation, and activation of the JNK signaling pathway. In mouse primary hepatocytes, inhibition of α6β4 integrin prevented activation of JNK and suppression of PPARα in response to periostin. Periostin-dependent activation of JNK resulted in activation of c-Jun, which prevented RORα binding and transactional activation at the
Yan Lu, Xing Liu, Yang Jiao, Xuelian Xiong, E Wang, Xiaolin Wang, Zhijian Zhang, Huijie Zhang, Lingling Pan, Youfei Guan, Dongsheng Cai, Guang Ning, Xiaoying Li
The MAP kinase kinase kinase TGFβ-activated kinase 1 (TAK1) is activated by TLRs, IL-1, TNF, and TGFβ and in turn activates IKK-NF-κB and JNK, which regulate cell survival, growth, tumorigenesis, and metabolism. TAK1 signaling also upregulates AMPK activity and autophagy. Here, we investigated TAK1-dependent regulation of autophagy, lipid metabolism, and tumorigenesis in the liver. Fasted mice with hepatocyte-specific deletion of
Sayaka Inokuchi-Shimizu, Eek Joong Park, Yoon Seok Roh, Ling Yang, Bi Zhang, Jingyi Song, Shuang Liang, Michael Pimienta, Koji Taniguchi, Xuefeng Wu, Kinji Asahina, William Lagakos, Mason R. Mackey, Shizuo Akira, Mark H. Ellisman, Dorothy D. Sears, Jerrold M. Olefsky, Michael Karin, David A. Brenner, Ekihiro Seki
A precise equilibrium between cellular differentiation and proliferation is fundamental for tissue homeostasis. Maintaining this balance is particularly important for the liver, a highly differentiated organ with systemic metabolic functions that is endowed with unparalleled regenerative potential. Carcinogenesis in the liver develops as the result of hepatocellular de-differentiation and uncontrolled proliferation. Here, we identified
María Elizalde, Raquel Urtasun, María Azkona, María U. Latasa, Saioa Goñi, Oihane García-Irigoyen, Iker Uriarte, Victor Segura, María Collantes, Mariana Di Scala, Amaia Lujambio, Jesús Prieto, Matías A. Ávila, Carmen Berasain
Transcriptional coregulators are important components of nuclear receptor (NR) signaling machinery and provide additional mechanisms for modulation of NR activity. Expression of a mutated nuclear corepressor 1 (NCoR1) that lacks 2 NR interacting domains (NCoRΔID) in the liver leads to elevated expression of genes regulated by thyroid hormone receptor (TR) and liver X receptor (LXR), both of which control hepatic cholesterol metabolism. Here, we demonstrate that expression of NCoRΔID in mouse liver improves dietary cholesterol tolerance in an LXRα-independent manner. NCoRΔID-associated cholesterol tolerance was primarily due to diminished intestinal cholesterol absorption as the result of changes in the composition and hydrophobicity of the bile salt pool. Alterations of the bile salt pool were mediated by increased expression of genes encoding the bile acid metabolism enzymes CYP27A1 and CYP3A11 as well as canalicular bile salt pump ABCB11. We have determined that these genes are regulated by thyroid hormone and that TRβ1 is recruited to their regulatory regions. Together, these data indicate that interactions between NCoR1 and TR control a specific pathway involved in regulation of cholesterol metabolism and clearance.
Inna Astapova, Preeti Ramadoss, Ricardo H. Costa-e-Sousa, Felix Ye, Kaila A. Holtz, Yingxia Li, Michele W. Niepel, David E. Cohen, Anthony N. Hollenberg
Understanding the molecular pathogenesis of inflammatory liver disease is essential to design efficient therapeutic approaches. In hepatocytes, the dimeric transcription factor c-JUN/AP-1 is a major mediator of cell survival during hepatitis, although functions for other JUN proteins in liver disease are less defined. Here, we found that JUNB was specifically expressed in human and murine immune cells during acute liver injury. We analyzed the molecular function of JUNB in experimental models of hepatitis, including administration of concanavalin A (ConA) or α-galactosyl-ceramide, which induce liver inflammation and injury. Mice specifically lacking JUNB in hepatocytes displayed a mild increase in ConA-induced liver damage. However, targeted deletion of
Martin K. Thomsen, Latifa Bakiri, Sebastian C. Hasenfuss, Rainer Hamacher, Lola Martinez, Erwin F. Wagner
When regenerative processes cannot keep pace with cell death, functional epithelia are replaced by scar. Scarring is characterized by both excessive accumulation of fibrous matrix and persistent outgrowth of cell types that accumulate transiently during successful wound healing, including myofibroblasts (MFs) and progenitors. This suggests that signaling that normally directs these cells to repair injured epithelia is deregulated. To evaluate this possibility, we examined liver repair during different types of liver injury after Smoothened (SMO), an obligate intermediate in the Hedgehog (Hh) signaling pathway, was conditionally deleted in cells expressing the MF-associated gene, α
Gregory A. Michelotti, Guanhua Xie, Marzena Swiderska, Steve S. Choi, Gamze Karaca, Leandi Krüger, Richard Premont, Liu Yang, Wing-Kin Syn, Daniel Metzger, Anna Mae Diehl