Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Clinical innovation and scientific progress in GLP-1 medicine (Nov 2025)
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

In-Press Preview

  • 2,233 Articles
  • 0 Posts
  • ← Previous
  • 1
  • 2
  • …
  • 191
  • 192
  • 193
  • …
  • 223
  • 224
  • Next →
Sonic Hedgehog repression underlies gigaxonin mutation-induced motor deficits in giant axonal neuropathy
Yoan Arribat, … , Mireille Rossel, Pascale Bomont
Yoan Arribat, … , Mireille Rossel, Pascale Bomont
Published September 10, 2019
Citation Information: J Clin Invest. 2019. https://doi.org/10.1172/JCI129788.
View: Text | PDF

Sonic Hedgehog repression underlies gigaxonin mutation-induced motor deficits in giant axonal neuropathy

  • Text
  • PDF
Abstract

Growing evidence shows that alterations occurring at early developmental stages contribute to symptoms manifested in adulthood in the setting of neurodegenerative diseases. Here, we studied the molecular mechanisms causing giant axonal neuropathy (GAN), a severe neurodegenerative disease due to loss-of-function of the gigaxonin-E3 ligase. We showed that gigaxonin governs Sonic Hedgehog (Shh) induction, the developmental pathway patterning the dorso-ventral axis of the neural tube and muscles, by controlling the degradation of the Shh-bound Patched receptor. Similarly to Shh inhibition, repression of gigaxonin in zebrafish impaired motor neuron specification and somitogenesis and abolished neuromuscular junction formation and locomotion. Shh signaling was impaired in gigaxonin null zebrafish and was corrected by both pharmacological activation of the Shh pathway and human gigaxonin, pointing to an evolutionary-conserved mechanism regulating Shh signaling. Gigaxonin-dependent inhibition of Shh activation was also demonstrated in primary fibroblasts from GAN patients and in a Shh activity reporter line depleted in gigaxonin. Our findings establish gigaxonin as a key E3 ligase that positively controls the initiation of Shh transduction, reveal the causal role of Shh dysfunction in motor deficits, thus highlighting the developmental origin of GAN.

Authors

Yoan Arribat, Karolina S Mysiak, Léa Lescouzères, Alexia Boizot, Maxime Ruiz, Mireille Rossel, Pascale Bomont

×

Expression of mitochondrial membrane-linked SAB determines severity of sex-dependent acute liver injury
Sanda Win, … , Tin A. Than, Neil Kaplowitz
Sanda Win, … , Tin A. Than, Neil Kaplowitz
Published September 5, 2019
Citation Information: J Clin Invest. 2019. https://doi.org/10.1172/JCI128289.
View: Text | PDF

Expression of mitochondrial membrane-linked SAB determines severity of sex-dependent acute liver injury

  • Text
  • PDF
Abstract

SAB is an outer membrane docking protein for JNK mediated impaired mitochondrial function. Deletion of Sab in hepatocytes inhibits sustained JNK activation and cell death. Current work demonstrated that increasing SAB enhanced the severity of APAP liver injury. Female mice were resistant to liver injury and exhibited markedly decreased hepatic SAB protein expression versus males. The mechanism of SAB repression involved a pathway from ERα to p53 expression which induced miR34a-5p. miR34a-5p targeted the Sab mRNA coding region, repressing SAB expression. Fulvestrant or p53 knockdown decreased miR34a-5p and increased SAB in females leading to increased injury from APAP and TNF/galactosamine. In contrast, ERα agonist increased p53 and miR34a-5p which decreased SAB expression and hepatotoxicity in males. Hepatocyte-specific deletion of miR34a also increased severity of liver injury in females, which was prevented by GalNAc-ASO knockdown of Sab. Similar to mice, premenopausal human females also expressed high hepatic p53 and low SAB levels while age-matched males expressed low p53 and high SAB levels, but there was no sex difference of SAB expression in postmenopause. In conclusion, the level of SAB expression determined the severity of JNK dependent liver injury. Females expressed low hepatic SAB protein levels due to an ERα-p53-miR34a pathway which repressed SAB expression, accounting for resistance to liver injury.

Authors

Sanda Win, Robert W.M. Min, Christopher Q. Chen, Jun Zhang, Yibu Chen, Meng Li, Ayako Suzuki, Manal F. Abdelmalek, Ying Wang, Mariam Aghajan, Filbert W.M. Aung, Anna Mae Diehl, Roger J. Davis, Tin A. Than, Neil Kaplowitz

×

Schwann cells expressing nociceptive channel TRPA1 orchestrate ethanol-evoked neuropathic pain in mice
Francesco De Logu, … , Pierangelo Geppetti, Romina Nassini
Francesco De Logu, … , Pierangelo Geppetti, Romina Nassini
Published September 5, 2019
Citation Information: J Clin Invest. 2019. https://doi.org/10.1172/JCI128022.
View: Text | PDF

Schwann cells expressing nociceptive channel TRPA1 orchestrate ethanol-evoked neuropathic pain in mice

  • Text
  • PDF
Abstract

Excessive alcohol consumption is associated with spontaneous burning pain, hyperalgesia and allodynia. Although acetaldehyde has been implicated in the painful alcoholic neuropathy, the mechanism by which the ethanol metabolite causes pain symptoms is unknown. Acute ethanol ingestion caused delayed mechanical allodynia in mice. Inhibition of alcohol dehydrogenase (ADH) or deletion of transient receptor potential ankyrin 1 (TRPA1), a sensor for oxidative and carbonyl stress, prevented allodynia. Acetaldehyde generated by ADH in both liver and Schwann cells surrounding nociceptors was required for TRPA1-induced mechanical allodynia. Plp1-Cre;Trpa1fl/fl mice with a tamoxifen-inducible specific deletion of TRPA1 in Schwann cells revealed that channel activation by acetaldehyde in these cells initiates a NADPH oxidase-1 (NOX-1)-dependent production of hydrogen peroxide (H2O2) and 4-hydroxynonenal (4-HNE), which sustains allodynia by paracrine targeting of nociceptor TRPA1. Chronic ethanol ingestion caused prolonged mechanical allodynia and loss of intraepidermal small nerve fibers in WT mice. While Trpa1-/- or Plp1-Cre;Trpa1fl/fl mice did not develop mechanical allodynia, they did not show any protection from the small fiber neuropathy. Human Schwann cells express ADH/TRPA1/NOX1 and recapitulate the proalgesic functions of mouse Schwann cells. TRPA1 antagonists might attenuate some symptoms of alcohol-related pain.

Authors

Francesco De Logu, Simone Li Puma, Lorenzo Landini, Francesca Portelli, Alessandro Innocenti, Daniel Souza Monteiro de Araújo, Malvin N. Janal, Riccardo Patacchini, Nigel W. Bunnett, Pierangelo Geppetti, Romina Nassini

×

CCL28-induced RARβ expression inhibits oral squamous cell carcinoma bone invasion
Junhee Park, … , Kwang-Kyun Park, Won-Yoon Chung
Junhee Park, … , Kwang-Kyun Park, Won-Yoon Chung
Published September 5, 2019
Citation Information: J Clin Invest. 2019. https://doi.org/10.1172/JCI125336.
View: Text | PDF

CCL28-induced RARβ expression inhibits oral squamous cell carcinoma bone invasion

  • Text
  • PDF
Abstract

Oral squamous cell carcinoma (OSCC) frequently invades the maxillary or mandibular bone, and this bone invasion is closely associated with poor prognosis and survival. Here, we show that CCL28 functions as a negative regulator of OSCC bone invasion. CCL28 inhibited invasion and epithelial-mesenchymal transition (EMT), and its inhibition of EMT was characterized by induced E-cadherin expression and reduced nuclear localization of beta-catenin in OSCC cells with detectable RUNX3 expression levels. CCL28 signaling via CCR10 increased retinoic acid receptor (RAR)β expression by reducing the interaction between RARα and HDAC1. In addition, CCL28 reduced RANKL production in OSCC and osteoblastic cells and blocked RANKL-induced osteoclastogenesis in osteoclast precursors. Intraperitoneally administered CCL28 inhibited tumor growth and osteolysis in mouse calvaria and tibia inoculated with OSCC cells. RARβ expression was also increased in tumor tissues. In OSCC patients, low CCL28, CCR10, and RARβ expression levels were highly correlated with bone invasion. OSCC patients with higher expression of CCL28, CCR10, or RARβ had significantly better overall survival. These findings suggest that CCL28, CCR10, and RARβ are useful markers for the prediction and treatment of OSCC bone invasion. Furthermore, CCL28 upregulation in OSCC cells or CCL28 treatment can be a therapeutic strategy for OSCC bone invasion.

Authors

Junhee Park, Xianglan Zhang, Sun Kyoung Lee, Na-Young Song, Seung Hwa Son, Ki Rim Kim, Jae Hoon Shim, Kwang-Kyun Park, Won-Yoon Chung

×

Splicing factor SRSF1 controls T cell hyperactivity and systemic autoimmunity
Takayuki Katsuyama, … , George C. Tsokos, Vaishali R. Moulton
Takayuki Katsuyama, … , George C. Tsokos, Vaishali R. Moulton
Published September 5, 2019
Citation Information: J Clin Invest. 2019. https://doi.org/10.1172/JCI127949.
View: Text | PDF

Splicing factor SRSF1 controls T cell hyperactivity and systemic autoimmunity

  • Text
  • PDF
Abstract

Systemic lupus erythematosus (SLE) is a devastating autoimmune disease, in which hyperactive T cells play a critical role. Understanding molecular mechanisms underlying the T cell hyperactivity will lead to identification of specific therapeutic targets. Serine/arginine-rich splicing factor (SRSF)1 is an essential RNA-binding protein which controls posttranscriptional gene expression. We have demonstrated that SRSF1 levels are aberrantly decreased in T cells from SLE patients and correlate with severe disease, yet the role of SRSF1 in T cell physiology and autoimmune disease is largely unknown. Here we show that T cell-restricted Srsf1-deficient mice develop systemic autoimmunity and lupus-nephritis. Mice exhibit increased frequencies of activated/effector T cells producing proinflammatory cytokines, and an elevated T cell activation gene signature. Mechanistically, we noted increased activity of the mechanistic target of rapamycin (mTOR) pathway and reduced expression of its repressor PTEN. The mTOR complex (mTORC)1 inhibitor rapamycin suppressed proinflammatory cytokine production by T cells and alleviated autoimmunity in Srsf1-deficient mice. Of direct clinical relevance, PTEN levels correlated with SRSF1 in T cells from SLE patients, and SRSF1 overexpression rescued PTEN, suppressed mTORC1 activation and proinflammatory cytokine production. Our studies reveal the role of a previously unrecognized molecule SRSF1 in restraining T cell activation and averting the development of autoimmune disease and a potential therapeutic target for lupus.

Authors

Takayuki Katsuyama, Hao Li, Denis Comte, George C. Tsokos, Vaishali R. Moulton

×

Soluble epoxide hydrolase promotes astrocyte survival in retinopathy of prematurity
Jiong Hu, … , Rüdiger Popp, Ingrid Fleming
Jiong Hu, … , Rüdiger Popp, Ingrid Fleming
Published September 3, 2019
Citation Information: J Clin Invest. 2019. https://doi.org/10.1172/JCI123835.
View: Text | PDF

Soluble epoxide hydrolase promotes astrocyte survival in retinopathy of prematurity

  • Text
  • PDF
Abstract

Polyunsaturated fatty acids (PUFAs) such as docosahexaenoic acid (DHA) positively affect the outcome of retinopathy of prematurity (ROP). Given that DHA metabolism by cytochrome P450 and soluble epoxide hydrolase (sEH) enzymes affects retinal angiogenesis and vascular stability we investigated the role of sEH in a mouse model of ROP. In wild-type mice, hyperoxia elicited the tyrosine nitration and inhibition of the sEH and decreased generation of the DHA-derived diol 19,20-dihydroxydocosapentaenoic acid (DHDP). Correspondingly in a murine model of ROP, sEH–/– mice developed a larger central avascular zone and peripheral pathological vascular tuft formation than their wild-type littermates. Astrocytes were the cells most affected by sEH deletion and hyperoxia increased astrocyte apoptosis. In rescue experiments 19,20-DHDP prevented astrocyte loss by targeting the mitochondrial membrane to prevent the hyperoxia-induced dissociation of presenilin-1 (PS-1) and PS-1 associated protein (PSAP) to attenuate PARP1 activation and mitochondrial DNA damage. Therapeutic intravitreal administration of 19,20-DHDP not only suppressed astrocyte loss but also reduced pathological vascular tuft formation in sEH–/– mice. Our data indicate that sEH activity is required for mitochondrial integrity and retinal astrocyte survival in ROP. Moreover, 19,20-DHDP may be more effective than DHA as a nutritional supplement at preventing retinopathy in preterm infants.

Authors

Jiong Hu, Sofia Iris Bibli, Janina Wittig, Sven Zukunft, Jihong Lin, Hans-Peter Hammes, Rüdiger Popp, Ingrid Fleming

×

Peptide-conjugated oligonucleotides evoke long-lasting myotonic dystrophy correction in patient-derived cells and mice
Arnaud F. Klein, … , Denis Furling, Matthew J. A. Wood
Arnaud F. Klein, … , Denis Furling, Matthew J. A. Wood
Published September 3, 2019
Citation Information: J Clin Invest. 2019. https://doi.org/10.1172/JCI128205.
View: Text | PDF

Peptide-conjugated oligonucleotides evoke long-lasting myotonic dystrophy correction in patient-derived cells and mice

  • Text
  • PDF
Abstract

Antisense oligonucleotides (ASOs) targeting pathologic RNAs have shown promising therapeutic corrections for many genetic diseases including myotonic dystrophy (DM1). Thus, ASO strategies for DM1 can abolish the toxic RNA gain-of-function mechanism caused by nuclear-retained mutant transcripts containing CUG expansions (CUGexp). However, systemic use of ASOs for this muscular disease remains challenging due to poor drug distribution to skeletal muscle. To overcome this limitation, we test an arginine-rich Pip6a cell–penetrating peptide and show that Pip6a-conjugated morpholino phosphorodiamidate oligomer (PMO) dramatically enhanced ASO delivery into striated muscles of DM1 mice following systemic administration in comparison with unconjugated PMO and other ASO strategies. Thus, low-dose treatment of Pip6a-PMO-CAG targeting pathologic expansions is sufficient to reverse both splicing defects and myotonia in DM1 mice and normalizes the overall disease transcriptome. Moreover, treated DM1 patient–derived muscle cells showed that Pip6a-PMO-CAG specifically targets mutant CUGexp-DMPK transcripts to abrogate the detrimental sequestration of MBNL1 splicing factor by nuclear RNA foci and consequently MBNL1 functional loss, responsible for splicing defects and muscle dysfunction. Our results demonstrate that Pip6a-PMO-CAG induces high efficacy and long-lasting correction of DM1-associated phenotypes at both molecular and functional levels, and strongly support the use of advanced peptide-conjugates for systemic corrective therapy in DM1.

Authors

Arnaud F. Klein, Miguel A. Varela, Ludovic Arandel, Ashling Holland, Naira Naouar, Andrey Arzumanov, David Seoane, Lucile Revillod, Guillaume Bassez, Arnaud Ferry, Dominic Jauvin, Geneviève Gourdon, Jack Puymirat, Michael J. Gait, Denis Furling, Matthew J. A. Wood

×

Chimeric antigen receptor-induced BCL11B suppression propagates NK-like cell development
Marcel Maluski, … , Marcel R.M. van den Brink, Martin G. Sauer
Marcel Maluski, … , Marcel R.M. van den Brink, Martin G. Sauer
Published September 3, 2019
Citation Information: J Clin Invest. 2019. https://doi.org/10.1172/JCI126350.
View: Text | PDF

Chimeric antigen receptor-induced BCL11B suppression propagates NK-like cell development

  • Text
  • PDF
Abstract

The transcription factor B Cell CLL/Lymphoma 11B (BCL11B) is indispensable for T lineage development of lymphoid progenitors. Here we show that chimeric antigen receptor (CAR) expression early in ex vivo generated lymphoid progenitors suppressed BCL11B, leading to suppression of T cell-associated gene expression and acquisition of natural killer (NK) cell-like properties. Upon adoptive transfer into hematopoietic stem cell transplant recipients they differentiated into CAR-induced killer cells (CARiK) that mediated potent antigen-directed antileukemic activity even across MHC barriers. A CD28 and active immune-receptor-tyrosine-based-activation-motifs were critical for a functional CARiK phenotype. These results give important insights into differentiation of murine and human lymphoid progenitors driven by synthetic CAR transgene-expression and encourage further evaluation of ex vivo generated CARiK cells for targeted immunotherapy.

Authors

Marcel Maluski, Arnab Ghosh, Jessica Herbst, Vanessa Scholl, Rolf Baumann, Jochen Huehn, Robert Geffers, Johann Meyer, Holger Maul, Britta Eiz-Vesper, Andreas Krueger, Axel Schambach, Marcel R.M. van den Brink, Martin G. Sauer

×

Mechanisms of reactivation of latent tuberculosis infection due to SIV co-infection
Allison N. Bucşan, … , Shabaana A. Khader, Deepak Kaushal
Allison N. Bucşan, … , Shabaana A. Khader, Deepak Kaushal
Published September 3, 2019
Citation Information: J Clin Invest. 2019. https://doi.org/10.1172/JCI125810.
View: Text | PDF

Mechanisms of reactivation of latent tuberculosis infection due to SIV co-infection

  • Text
  • PDF
Abstract

HIV is a major driver of Tuberculosis (TB) reactivation. Depletion of CD4+ T cells is assumed to be the basis behind TB reactivation in individuals with latent tuberculosis Infection (LTBI) co-infected with human immunodeficiency virus (HIV). Non-human primates (NHPs) coinfected with a mutant simian immunodeficiency virus (SIVΔGY), that does not cause depletion of tissue CD4+ T cells during infection, failed to reactivate TB. To investigate the contribution of CD4+ T cell depletion relative to other mechanisms of SIV-induced reactivation of LTBI, we used CD4R1 antibody to deplete CD4+ T cells in animals with LTBI without lentiviral infection. We showed that the mere depletion of CD4+ T cells during LTBI was insufficient in generating reactivation of LTBI. Instead, direct cytopathic effects of SIV resulting in chronic immune activation, along with the altered effector T cell phenotypes and dysregulated T cell homeostasis, were likely mediators of reactivation of LTBI. These results revealed important implications for controlling TB in the HIV co-infected individuals.

Authors

Allison N. Bucşan, Ayan Chatterjee, Dhiraj K. Singh, Taylor W. Foreman, Tae-Hyung Lee, Breanna Threeton, Melanie G. Kirkpatrick, Mushtaq Ahmed, Nadia Golden, Xavier Alvarez, James A. Hoxie, Smriti Mehra, Jyothi Rengarajan, Shabaana A. Khader, Deepak Kaushal

×

Caspase-8 modulates physiological and pathological angiogenesis during retina development
Nathalie Tisch, … , Hellmut G. Augustin, Carmen Ruiz de Almodovar
Nathalie Tisch, … , Hellmut G. Augustin, Carmen Ruiz de Almodovar
Published August 27, 2019
Citation Information: J Clin Invest. 2019. https://doi.org/10.1172/JCI122767.
View: Text | PDF

Caspase-8 modulates physiological and pathological angiogenesis during retina development

  • Text
  • PDF
Abstract

During developmental angiogenesis blood vessels grow and remodel to ultimately build a hierarchical vascular network. Whether and how cell death signaling molecules contribute to blood vessel formation is still not well understood. Caspase-8 (Casp-8), a key protease in the extrinsic cell death-signaling pathway, regulates both cell death via apoptosis and necroptosis. Here we show that expression of Casp-8 in endothelial cells (ECs) was required for proper postnatal retina angiogenesis. EC specific Casp-8 knockout pups (Casp-8ECko) showed reduced retina angiogenesis, as the loss of Casp-8 reduced EC proliferation, sprouting and migration independent of its cell death function. Instead, the loss of Casp-8 caused hyperactivation of p38 mitogen-activated protein kinase (MAPK) downstream of receptor-interacting serine/threonine- protein kinase 3 (RIPK3) and destabilization of VE-cadherin at EC junctions. In a mouse model of oxygen-induced retinopathy (OIR), resembling retinopathy of prematurity (ROP), loss of Casp-8 in ECs was beneficial, as pathological neovascularization was reduced in Casp-8ECko pups. Taken together, we describe that Casp-8 acts in a cell-death independent manner in ECs to regulate the formation of the retina vasculature and that Casp-8 in ECs is mechanistically involved in the pathophysiology of ROP.

Authors

Nathalie Tisch, Aida Freire-Valls, Rosario Yerbes, Isidora Paredes, Silvia La Porta, Xiaohong Wang, Rosa Martín-Pérez, Laura Castro, Wendy Wei-Lynn Wong, Leigh Coultas, Boris Strilic, Hermann-Josef Gröne, Thomas Hielscher, Carolin Mogler, Ralf Adams, Peter Heiduschka, Lena Claesson-Welsh, Massimiliano Mazzone, Abelardo López-Rivas, Thomas Schmidt, Hellmut G. Augustin, Carmen Ruiz de Almodovar

×
  • ← Previous
  • 1
  • 2
  • …
  • 191
  • 192
  • 193
  • …
  • 223
  • 224
  • Next →

No posts were found with this tag.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts