Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

In-Press Preview

  • 2,072 Articles
  • 0 Posts
  • ← Previous
  • 1
  • 2
  • …
  • 179
  • 180
  • 181
  • …
  • 207
  • 208
  • Next →
Tumor suppressor TET2 promotes cancer immunity and immunotherapy efficacy
Yan-ping Xu, … , Jeffrey Aubé, Yue Xiong
Yan-ping Xu, … , Jeffrey Aubé, Yue Xiong
Published July 16, 2019
Citation Information: J Clin Invest. 2019. https://doi.org/10.1172/JCI129317.
View: Text | PDF

Tumor suppressor TET2 promotes cancer immunity and immunotherapy efficacy

  • Text
  • PDF
Abstract

Loss-of-function mutations in genes encoding TET DNA dioxygenase occur frequently in hematopoietic malignancy, but rarely in solid tumors which instead commonly have reduced activity. The impact of decreased TET activity in solid tumors is not known. Here we show that TET2 mediates interferon γ (IFNγ)-JAK-STAT signaling pathway to control chemokine and PD-L1 expression, lymphocyte infiltration and cancer immunity. IFNγ stimulated STAT1 to bind TET2 and recruit TET2 to hydroxymethylate chemokine and PD-L1 genes. Reduced TET activity was associated with decreased TH1-type chemokines and tumor-infiltrating lymphocytes (TILs) and the progression of human colon cancer. Deletion of Tet2 in murine melanoma and colon tumor cells reduced chemokine expression and TILs, enabling tumors to evade anti-tumor immunity and to resist anti-PD-L1 therapy. Conversely, stimulating TET activity by systematic injection of its co-factor, ascorbate/vitamin C, increased chemokine and TILs, leading to enhanced anti-tumor immunity and anti-PD-L1 efficacy and extended lifespan of tumor-bearing mice. These results suggest an IFNγ-JAK-STAT-TET signaling pathway that mediates tumor response to anti-PD-L1/PD-1 therapy and is frequently disrupted in solid tumors. Our findings also suggest TET activity as a biomarker for predicting the efficacy and patient response to anti-PD-1/PD-L1 therapy, and stimulating TET activity as an adjuvant immunotherapy of solid tumors.

Authors

Yan-ping Xu, Lei Lv, Ying Liu, Matthew D. Smith, Wen-Cai Li, Xian-ming Tan, Meng Cheng, Zhijun Li, Michael Bovino, Jeffrey Aubé, Yue Xiong

×

Supraphysiological androgens suppress prostate cancer growth through androgen receptor-mediated DNA damage
Payel Chatterjee, … , Samuel R. Denmeade, Peter S. Nelson
Payel Chatterjee, … , Samuel R. Denmeade, Peter S. Nelson
Published July 16, 2019
Citation Information: J Clin Invest. 2019. https://doi.org/10.1172/JCI127613.
View: Text | PDF

Supraphysiological androgens suppress prostate cancer growth through androgen receptor-mediated DNA damage

  • Text
  • PDF
Abstract

Prostate cancer (PC) is initially dependent on androgen receptor (AR) signaling for survival and growth. Therapeutics designed to suppress AR activity serve as the primary intervention for advanced disease. However, supraphysiological androgen (SPA) concentrations can produce paradoxical responses leading to PC growth inhibition. We sought to discern the mechanisms by which SPA inhibits PC and to determine if molecular context associates with anti-tumor activity. SPA produced an AR-mediated, dose-dependent induction of DNA double-strand breaks (DSBs), G0/G1 cell cycle arrest and cellular senescence. SPA repressed genes involved in DNA repair and delayed the restoration of damaged DNA which was augmented by PARP1 inhibition. SPA-induced DSBs were accentuated in BRCA2-deficient PCs, and combining SPA with PARP or DNA-PKcs inhibition further repressed growth. Next-generation sequencing was performed on biospecimens from PC patients receiving SPA as part of ongoing Phase II clinical trials. Patients with mutations in genes mediating homology-directed DNA repair were more likely to exhibit clinical responses to SPA. These results provide a mechanistic rationale for directing SPA therapy to PCs with AR amplification or DNA repair deficiency, and for combining SPA therapy with PARP inhibition.

Authors

Payel Chatterjee, Michael T. Schweizer, Jared M. Lucas, Ilsa Coleman, Michael D. Nyquist, Sander B. Frank, Robin Tharakan, Elahe Mostaghel, Jun Luo, Colin C. Pritchard, Hung-Ming Lam, Eva Corey, Emmanuel S. Antonarakis, Samuel R. Denmeade, Peter S. Nelson

×

Increased apolipoprotein C3 drives cardiovascular risk in type 1 diabetes
Jenny E. Kanter, … , Jay W. Heinecke, Karin E. Bornfeldt
Jenny E. Kanter, … , Jay W. Heinecke, Karin E. Bornfeldt
Published July 11, 2019
Citation Information: J Clin Invest. 2019. https://doi.org/10.1172/JCI127308.
View: Text | PDF

Increased apolipoprotein C3 drives cardiovascular risk in type 1 diabetes

  • Text
  • PDF
Abstract

Type 1 diabetes mellitus (T1DM) increases the risk of atherosclerotic cardiovascular disease (CVD) in humans by poorly understood mechanisms. Using mouse models of T1DM-accelerated atherosclerosis, we found that relative insulin deficiency rather than hyperglycemia elevated levels of apolipoprotein C3 (APOC3), an apolipoprotein that prevents clearance of triglyceride-rich lipoproteins (TRLs) and their remnants. We then showed that serum APOC3 levels predict incident CVD events in subjects with T1DM in the Coronary Artery Calcification in Type 1 Diabetes (CACTI) study. To explore underlying mechanisms, we investigated the impact of Apoc3 antisense oligonucleotides (ASOs) on lipoprotein metabolism and atherosclerosis in a mouse model of T1DM. Apoc3 ASO treatment abolished the increased hepatic Apoc3 expression in diabetic mice - resulting in lower levels of TRLs - without improving glycemic control. APOC3 suppression also prevented arterial accumulation of APOC3-containing lipoprotein particles, macrophage foam cell formation, and the accelerated atherosclerosis in diabetic mice. Our observations demonstrate that relative insulin deficiency increases APOC3 and that this results in elevated levels of TRLs and accelerated atherosclerosis in a mouse model of T1DM. Because serum levels of APOC3 predicted incident CVD events in the CACTI study, inhibiting APOC3 might reduce CVD risk in T1DM patients.

Authors

Jenny E. Kanter, Baohai Shao, Farah Kramer, Shelley Barnhart, Masami Shimizu-Albergine, Tomas Vaisar, Mark J. Graham, Rosanne M. Crooke, Clarence R. Manuel, Rebecca A. Haeusler, Daniel Mar, Karol Bomsztyk, John E. Hokanson, Gregory L. Kinney, Janet K. Snell-Bergeon, Jay W. Heinecke, Karin E. Bornfeldt

×

Neutrophils contribute to spontaneous resolution of liver inflammation and fibrosis via microRNA-223
Carolina Jimenez Calvente, … , Josh Boyer, Ariel E. Feldstein
Carolina Jimenez Calvente, … , Josh Boyer, Ariel E. Feldstein
Published July 11, 2019
Citation Information: J Clin Invest. 2019. https://doi.org/10.1172/JCI122258.
View: Text | PDF

Neutrophils contribute to spontaneous resolution of liver inflammation and fibrosis via microRNA-223

  • Text
  • PDF
Abstract

Persistent, unresolved inflammation in the liver represents a key trigger for hepatic injury and fibrosis in various liver diseases and is controlled by classically activated pro-inflammatory macrophages, while restorative macrophages of the liver are capable of reversing inflammation once the injury trigger ceases. Here we have identified a novel role for neutrophils as key contributors to resolving the inflammatory response in the liver. Using two models of liver inflammatory resolution, we found that mice undergoing neutrophil depletion during the resolution phase exhibited unresolved hepatic inflammation, activation of the fibrogenic machinery and early fibrosis. These findings were associated with an impairment of the phenotypic switch of pro-inflammatory macrophages into a restorative stage after removal of the cause of injury and an increased NLRP3 / miR-223 ratio. Mice with a deletion of the granulocyte specific miR-223 gene showed a similarly impaired resolution profile that could be reversed by restoring miR-223 levels using a miR-223 3p mimic or infusing neutrophils from wildtype animals. Collectively, our findings reveal a novel role for neutrophils in the liver as resolving effector cells that induce pro-inflammatory macrophages into a restorative phenotype, potentially via miR-223.

Authors

Carolina Jimenez Calvente, Masahiko Tameda, Casey D. Johnson, Hana del Pilar, Yun Chin Lin, Nektaria Andronikou, Xavier De Mollerat Du Jeu, Cristina Llorente, Josh Boyer, Ariel E. Feldstein

×

Stromal integrin α11 regulates PDGFR-β signaling and promotes breast cancer progression
Irina Primac, … , Donald Gullberg, Agnès Noel
Irina Primac, … , Donald Gullberg, Agnès Noel
Published July 9, 2019
Citation Information: J Clin Invest. 2019. https://doi.org/10.1172/JCI125890.
View: Text | PDF

Stromal integrin α11 regulates PDGFR-β signaling and promotes breast cancer progression

  • Text
  • PDF
Abstract

Cancer-associated fibroblasts (CAFs) are key actors in modulating the progression of many solid tumors such as breast cancer (BC). Herein, we identify an integrin α11/PDGFRβ+ CAF subset displaying tumor-promoting features in BC. In the preclinical MMTV-PyMT mouse model, integrin α11-deficiency led to a drastic reduction of tumor progression and metastasis. A clear association between integrin α11 and PDGFRβ was found at both transcriptional and histological levels in BC specimens. High stromal integrin α11/PDGFRβ expression was associated with high grades and poorer clinical outcome in human BC patients. Functional assays using five CAF subpopulations (one murine, four human) revealed that integrin α11 promotes CAF invasion and CAF-induced tumor cell invasion upon PDGF-BB stimulation. Mechanistically, integrin α11 pro-invasive activity relies on its ability to interact with PDGFRβ in a ligand-dependent manner and to promote its downstream JNK activation, leading to the production of tenascin C, a pro-invasive matricellular protein. Pharmacological inhibition of PDGFRβ and JNK impaired tumor cell invasion induced by integrin α11-positive CAFs. Collectively, our study uncovers an integrin α11-positive subset of pro-tumoral CAFs that exploits PDGFRβ/JNK signalling axis to promote tumor invasiveness in BC.

Authors

Irina Primac, Erik Maquoi, Silvia Blacher, Ritva Heljasvaara, Jan Van Deun, Hilde Y. H. Smeland, Annalisa Canale, Thomas Louis, Linda Stuhr, Nor Eddine Sounni, Didier Cataldo, Taina Pihlajaniemi, Christel Pequeux, Olivier De Wever, Donald Gullberg, Agnès Noel

×

mTORC1 to AMPK switching underlies β-cell metabolic plasticity during maturation and diabetes
Rami Jaafar, … , Suneil K. Koliwad, Anil Bhushan
Rami Jaafar, … , Suneil K. Koliwad, Anil Bhushan
Published July 2, 2019
Citation Information: J Clin Invest. 2019. https://doi.org/10.1172/JCI127021.
View: Text | PDF

mTORC1 to AMPK switching underlies β-cell metabolic plasticity during maturation and diabetes

  • Text
  • PDF
Abstract

Pancreatic beta cells (β-cells) differentiate during fetal life, but only postnatally acquire the capacity for glucose-stimulated insulin secretion (GSIS). How this happens is not clear. In exploring what molecular mechanisms drive the maturation of β-cell function, we found that the control of cellular signaling in β-cells fundamentally switched from the nutrient sensor target of rapamycin (mTORC1) to the energy sensor 5'-adenosine monophosphate-activated protein kinase (AMPK), and that this was critical for functional maturation. Moreover, AMPK was activated by the dietary transition taking place during weaning, and this in turn inhibited mTORC1 activity to drive the adult β-cell phenotype. While forcing constitutive mTORC1 signaling in adult β-cells relegated them to a functionally immature phenotype with characteristic transcriptional and metabolic profiles, engineering the switch from mTORC1 to AMPK signaling was sufficient to promote β-cell mitochondrial biogenesis, a shift to oxidative metabolism, and functional maturation. We also found that type 2 diabetes, a condition marked by both mitochondrial degeneration and dysregulated GSIS, was associated with a remarkable reversion of the normal AMPK-dependent adult β-cell signature to a more neonatal one characterized by mTORC1 activation. Manipulating the way in which cellular nutrient signaling pathways regulate β-cell metabolism may thus offer new targets to improve β-cell function in diabetes.

Authors

Rami Jaafar, Stella Tran, Ajit Shah, Gao Sun, Martin Valdearcos, Piero Marchetti, Matilde Masini, Avital Swisa, Simone Giacometti, Ernesto Bernal-Mizrachi, Aleksey Matveyenko, Matthias Hebrok, Yuval Dor, Guy A. Rutter, Suneil K. Koliwad, Anil Bhushan

×

Dengue virus-elicited tryptase induces endothelial permeability and shock
Abhay P.S. Rathore, … , Duane J. Gubler, Ashley L. St. John
Abhay P.S. Rathore, … , Duane J. Gubler, Ashley L. St. John
Published July 2, 2019
Citation Information: J Clin Invest. 2019. https://doi.org/10.1172/JCI128426.
View: Text | PDF

Dengue virus-elicited tryptase induces endothelial permeability and shock

  • Text
  • PDF
Abstract

Dengue virus (DENV) infection causes a characteristic pathology in humans involving dysregulation of the vascular system. In some patients with dengue hemorrhagic fever (DHF), vascular pathology can become severe, resulting in extensive microvascular permeability and plasma leakage into tissues and organs. Mast cells (MCs), which line blood vessels and regulate vascular function, are able to detect DENV in vivo and promote vascular leakage. Here, we identified that a MC-derived protease, tryptase, is consequential for promoting vascular permeability during DENV infection, through inducing breakdown of endothelial cell tight junctions. Injected tryptase alone was sufficient to induce plasma loss from the circulation and hypovolemic shock in animals. A potent tryptase inhibitor, nafamostat mesylate, blocked DENV-induced vascular leakage in vivo. Importantly, in two independent human dengue cohorts, tryptase levels correlated with the grade of DHF severity. This study defines an immune mechanism by which DENV can induce vascular pathology and shock.

Authors

Abhay P.S. Rathore, Chinmay Kumar Mantri, Siti A.B. Aman, Ayesa Syenina, Justin Ooi, Cyril J. Jagaraj, Chi Ching Goh, Hasitha Tissera, Annelies Wilder-Smith, Lai Guan Ng, Duane J. Gubler, Ashley L. St. John

×

N-Myc-mediated epigenetic reprogramming drives lineage plasticity in advanced prostate cancer
Adeline Berger, … , Himisha Beltran, David S. Rickman
Adeline Berger, … , Himisha Beltran, David S. Rickman
Published July 1, 2019
Citation Information: J Clin Invest. 2019. https://doi.org/10.1172/JCI127961.
View: Text | PDF

N-Myc-mediated epigenetic reprogramming drives lineage plasticity in advanced prostate cancer

  • Text
  • PDF
Abstract

Despite recent therapeutic advances, prostate cancer remains a leading cause of cancer-related death. A subset of castration resistant prostate cancers become androgen receptor (AR) signaling-independent and develop neuroendocrine prostate cancer (NEPC) features through lineage plasticity. These NEPC tumors, associated with aggressive disease and poor prognosis, are driven, in part, by aberrant expression of N-Myc, through mechanisms that remain unclear. Integrative analysis of the N-Myc transcriptome, cistrome and interactome using in vivo, in vitro and ex vivo models (including patient-derived organoids) identified a lineage switch towards a neural identity associated with epigenetic reprogramming. N-Myc and known AR-co-factors (e.g., FOXA1 and HOXB13) overlapped, independently of AR, at genomic loci implicated in neural lineage specification. Moreover, histone marks specifically associated with lineage-defining genes were reprogrammed by N-Myc. We also demonstrated that the N-Myc-induced molecular program accurately classifies our cohort of patients with advanced prostate cancer. Finally, we revealed the potential for EZH2 inhibition to reverse the N-Myc-induced suppression of epithelial lineage genes. Altogether, our data provide insights on how N-Myc regulates lineage plasticity and epigenetic reprogramming associated with lineage-specification. The N-Myc signature we defined could also help predict the evolution of prostate cancer and thus better guide the choice of future therapeutic strategies.

Authors

Adeline Berger, Nicholas J. Brady, Rohan Bareja, Brian D. Robinson, Vincenza Conteduca, Michael A. Augello, Loredana Puca, Adnan Ahmed, Etienne Dardenne, Xiaodong Lu, Inah Hwang, Alyssa M. Bagadion, Andrea Sboner, Olivier Elemento, Jihye Paik, Jindan Yu, Christopher E. Barbieri, Noah Dephoure, Himisha Beltran, David S. Rickman

×

Fbxw7 increases CCL2/7 in CX3CR1hi macrophages to promote intestinal inflammation
Jia He, … , Lihua Lai, Qingqing Wang
Jia He, … , Lihua Lai, Qingqing Wang
Published June 27, 2019
Citation Information: J Clin Invest. 2019. https://doi.org/10.1172/JCI123374.
View: Text | PDF

Fbxw7 increases CCL2/7 in CX3CR1hi macrophages to promote intestinal inflammation

  • Text
  • PDF
Abstract

Resident and inflammatory mononuclear phagocytes (MPh) with functional plasticity in the intestine are critically involved in the pathology of Inflammatory Bowel Diseases (IBD), in which the mechanism remains incompletely understood. In the present study, we found that increased expression of E3 ligase FBXW7 in the inflamed intestine was significantly correlated to IBD severity in both human diseases and mice model. Myeloid-Fbxw7 deficiency protected mice from dextran sodium sulfate (DSS) and 2,6,4-trinitrobenzene sulfonic acid (TNBS) induced colitis. Fbxw7 deficiency resulted in decreased production of chemokines CCL2 and CCL7 by colonic CX3CR1hi resident macrophages and reduced accumulation of CX3CR1int pro-inflammatory MPh in colitis colon tissue. Mice received AAV-shFbxw7 administration showed significantly improved survival rate and alleviated colitis. Mechanisms screening demonstrated that FBXW7 suppresses H3K27me3 modification and promotes Ccl2 and Ccl7 expression via degradation of histone-lysine N-methyltransferase EZH2 in macrophages. Taken together, our results indicate that FBXW7 degrades EZH2 and increases Ccl2/Ccl7 in CX3CR1hi macrophages, which promotes the recruiting CX3CR1int pro-inflammatory MPh into local colon tissues with colitis. Targeting FBXW7 might represent a potential therapeutic approach for intestine inflammation intervention.

Authors

Jia He, Yinjing Song, Gaopeng Li, Peng Xiao, Yang Liu, Yue Xue, Qian Cao, Xintao Tu, Ting Pan, Zhinong Jiang, Xuetao Cao, Lihua Lai, Qingqing Wang

×

Bystander responses impact accurate detection of murine and human antigen-specific CD8 T cells
Matthew D. Martin, … , Robert A. Seder, Vladimir P. Badovinac
Matthew D. Martin, … , Robert A. Seder, Vladimir P. Badovinac
Published June 20, 2019
Citation Information: J Clin Invest. 2019. https://doi.org/10.1172/JCI124443.
View: Text | PDF

Bystander responses impact accurate detection of murine and human antigen-specific CD8 T cells

  • Text
  • PDF
Abstract

Induction of memory CD8 T cells is important for controlling infections such as malaria HIV/AIDS, and for cancer immunotherapy. Accurate assessment of antigen (Ag)-specific CD8 T-cells is critical for vaccine optimization and defining correlates of protection. However, conditions for determining Ag-specific CD8 T-cell responses ex-vivo using ICS may be variable, especially in humans with complex antigens. Here, we used an attenuated whole parasite malaria vaccine model in humans and various experimental infections in mice to show that the duration of antigenic stimulation and timing of brefeldin A (BFA) addition influences the magnitude of Ag-specific and bystander T cell responses. Indeed, following immunization with an attenuated whole sporozoite malaria vaccine in humans, significantly higher numbers of IFN-γ producing memory CD8 T-cells comprised of antigen specific and bystander responses were detected by increasing the duration of Ag-stimulation prior to addition of BFA. Mechanistic analyses of virus-specific CD8 T-cells in mice revealed that the increase in IFNg producing CD8 T-cells was due to bystander activation of Ag-experienced memory CD8 T-cells, and correlated with the proportion of Ag-experienced CD8 T-cells in the stimulated populations. Incubation with anti-cytokine antibodies (ex. IL-12) improved accuracy in detecting bona-fide memory CD8 T-cell responses suggesting this as the mechanism for the bystander activation. These data have important implications for accurate assessment of immune responses generated by vaccines intended to elicit protective memory CD8 T-cells.

Authors

Matthew D. Martin, Isaac J. Jensen, Andrew S. Ishizuka, Mitchell Lefebvre, Qiang Shan, Hai-Hui Xue, John T. Harty, Robert A. Seder, Vladimir P. Badovinac

×
  • ← Previous
  • 1
  • 2
  • …
  • 179
  • 180
  • 181
  • …
  • 207
  • 208
  • Next →

No posts were found with this tag.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts