Antibody-drug conjugates(ADCs) are promising targeted cancer therapy; however, patient selection based solely on target antigen expression without consideration for cytotoxic payload vulnerabilities has plateaued clinical benefits. Biomarkers to capture patients who might benefit from specific ADCs have not been systematically determined for any cancer. We present a comprehensive therapeutic and biomarker analysis of a B7H3-ADC with pyrrolobenzodiazepine(PBD) payload in 26 treatment-resistant, metastatic prostate cancer(mPC) models. B7H3 is a tumor-specific surface protein widely expressed in mPC, and PBD is a DNA cross-linking agent. B7H3 expression was necessary but not sufficient for B7H3-PBD-ADC responsiveness. RB1 deficiency and/or replication stress, characteristics of poor prognosis, conferred sensitivity and were associated with complete tumor regression in both neuroendocrine (NEPC) and androgen receptor positive(ARPC) prostate cancer models, even with low B7H3 levels. Non-ARPC models, which are currently lacking efficacious treatment, demonstrated the highest replication stress and were most sensitive to treatment. In RB1 wild-type ARPC tumors, SLFN11 expression or select DNA repair mutations in SLFN11 non-expressors governed response. Importantly, wild-type TP53 predicted non-responsiveness (7/8 models). Overall, biomarker-focused selection of models led to high efficacy of in vivo treatment. These data enable a paradigm shift to biomarker-driven trial designs for maximizing clinical benefit of ADC therapies.
Supreet Agarwal, Lei Fang, Kerry McGowen, JuanJuan Yin, Joel Bowman, Anson T. Ku, Aian Neil Alilin, Eva Corey, Martine P. Roudier, Lawrence D. True, Ruth F. Dumpit, Ilsa Coleman, John K. Lee, Peter S. Nelson, Brian J. Capaldo, Aida Mariani, Clare E. Hoover, Ilya S. Senatorov, Michael Beshiri, Adam G. Sowalsky, Elaine M. Hurt, Kathleen Kelly
The facilitative GLUT1 and GLUT3 hexose transporters are expressed abundantly in macrophages, but whether they have distinct functions remains unclear. We confirmed that GLUT1 expression increased after M1 polarization stimuli and found that GLUT3 expression increased after M2 stimulation in macrophages. Conditional deletion of Glut3 (LysM-Cre Glut3fl/fl) impaired M2 polarization of bone marrow derived macrophages. Alternatively activated macrophages from the skin of atopic dermatitis patients showed increased GLUT3 expression, and a calcipotriol-induced model of atopic dermatitis was rescued LysM-Cre Glut3fl/fl mice. M2-like macrophages expressed GLUT3 in human wound tissues as assessed by transcriptomics and co-staining, and GLUT3 expression was significantly decreased in non-healing, compared with healing, diabetic foot ulcers. In an excisional wound healing model, LysM-Cre Glut3fl/fl mice showed significantly impaired M2 macrophage polarization and delayed wound healing. GLUT3 promoted IL-4/STAT6 signaling, independent from its glucose transport activity. Unlike plasma membrane-localized GLUT1, GLUT3 was localized primarily to endosomes and was required for the efficient endocytosis of IL4Ra subunits. GLUT3 interacted directly with GTP-bound RAS in vitro and in vivo through its intracytoplasmic loop domain (ICH), and this interaction was required for efficient STAT6 activation and M2 polarization. PAK activation and macropinocytosis were also impaired without GLUT3, suggesting broader roles for GLUT3 in the regulation of endocytosis. Thus, GLUT3 is required for efficient alternative macrophage polarization and function, through a glucose transport-independent, RAS-mediated role in the regulation of endocytosis and IL-4/STAT6 activation.
Dong-Min Yu, Jiawei Zhao, Eunice E. Lee, Dohun Kim, Ruchika Mahapatra, Elysha K. Rose, Zhiwei Zhou, Calvin R. Hosler, Abdullah El-Kurdi, Jun-yong Choe, E. Dale Abel, Gerta Hoxhaj, Kenneth D. Westover, Raymond J. Cho, Jeffrey B. Cheng, Richard C. Wang
The metastasis of cancer cells is the main cause of death for patients with gastric cancer (GC). Mounting evidence has demonstrated the vital importance of tumor-associated macrophages in promoting tumor invasion and metastasis; however, the interaction between tumor cells and macrophages in GC is largely unknown. In this study, we demonstrated that cyclase-associated protein 2 (CAP2) was upregulated in GC, especially in cases with lymph node metastasis, and was correlated with a poorer prognosis. The transcription factor JUN directly bound to the promoter region of CAP2 and activated CAP2 transcription. The N-terminal domain of CAP2 bound to the WD5-7 domain of receptor for activated C kinase 1 (RACK1) and induced M2 macrophage polarization by activating the SRC/focal adhesion kinase (FAK)/ ERK signaling pathway, which resulted in interleukin-4 (IL4) and IL10 secretion. Polarized M2 macrophages induced premetastatic niche formation and promoted GC metastasis by secreting transforming growth factor beta (TGFB1), which created a TGFB1/JUN/CAP2-positive feedback loop to activate CAP2 expression continuously. Furthermore, we identified Salvianolic acid B as an inhibitor of CAP2, which effectively inhibited GC cell invasion capabilities by suppressing the SRC/FAK/ERK signaling pathway. Our data suggest that CAP2, a key molecule mediating the interaction between GC cells and tumor-associated macrophages, may be a promising therapeutic target for suppressing tumor metastasis in GC.
Guohao Zhang, Zhaoxin Gao, Xiangyu Guo, Ranran Ma, Xiaojie Wang, Pan Zhou, Chunlan Li, Zhiyuan Tang, Ruinan Zhao, Peng Gao
Expansion of CAG and CTG (CWG) triplet repeats causes several inherited neurological diseases. The CWG repeat diseases are thought to involve complex pathogenic mechanisms through expanded CWG repeat-derived RNAs in a non-coding and polypeptides in a coding region, respectively. However, an effective therapeutic approach has not been established for the CWG repeat diseases. Here, we show that a CWG repeat DNA-targeting compound, cyclic pyrrole¬–imidazole polyamide (CWG-cPIP), suppresses the pathogenesis of coding and non-coding CWG repeat diseases. CWG-cPIP binds to the hairpin form of mismatched CWG DNA, interfering with transcription elongation by RNA polymerase through a preferential activity towards repeat-expanded DNA. We found that CWG-cPIP selectively inhibits pathogenic mRNA transcripts from expanded CWG repeats, reducing CUG RNA foci and polyglutamine accumulation in cells from patients with myotonic dystrophy type-1 (DM1) and Huntington’s disease (HD). Treatment with CWG-cPIP ameliorated behavioral deficits in adeno-associated virus-mediated CWG repeat-expressing mice and a genetic mouse model of HD, without cytotoxicity or off-target effects. Together, we present a novel candidate compound that targets expanded CWG repeat DNA independent of its genomic location and reduces both pathogenic RNA and protein levels. CWG-cPIP may be used for the treatment of CWG repeat diseases and for improving clinical outcomes.
Susumu Ikenoshita, Kazuya Matsuo, Yasushi Yabuki, Kosuke Kawakubo, Sefan Asamitsu, Karin Hori, Shingo Usuki, Yuki Hirose, Toshikazu Bando, Kimi Araki, Mitsuharu Ueda, Hiroshi Sugiyama, Norifumi Shioda
Unabated activation of NLRP3 inflammasome activation is linked with the pathogenesis of various inflammatory disorders. PLK1 has been widely studied for its role in mitosis. Here, employing both pharmacological and genetic approaches, we demonstrated that PLK1 promoted NLRP3 inflammasome activation at cell interphase. Using an unbiased Bio-ID screen for PLK1 interactome in macrophages, we showed an enhanced proximal association of NLRP3 with PLK1 upon NLRP3 inflammasome activation. We further confirmed the interaction between PLK1 and NLRP3, and identified the interacting domains. Mechanistically, we showed that PLK1 orchestrated microtubule organizing center (MTOC) structure and NLRP3 subcellular positioning upon inflammasome activation. Treatment with a selective PLK1 kinase inhibitor suppressed IL1B production in in-vivo inflammatory models, including lipopolysaccharide-induced endotoxemia and monosodium urate-induced peritonitis in mice. Our results uncover an unprecedented role of PLK1 in regulating NLRP3 inflammasome activation during interphase, and identify pharmacological inhibition of PLK1 as a potential therapeutic strategy for inflammatory diseases with excessive NLRP3 inflammasome activation.
Marta Baldrighi, Christian Doreth, Yang Li, Xiaohui Zhao, Emily F. Warner, Hannah Chenoweth, Kamal Kishore, Yagnesh Umrania, David-Paul Minde, Sarah Winkler, Xian Yu, Yuning Lu, Alice Knapton, James Harrison, Murray C.H. Clarke, Eicke Latz, Guillermo de Cárcer, Marcos Malumbres, Bernhard Ryffel, Clare E. Bryant, Jinping Liu, Kathryn S. Lilley, Ziad Mallat, Xuan Li
CD8+ T cells outnumber CD4+ cells in multiple sclerosis lesions associated with disease progression, but the pathogenic role and antigenic targets of these clonally expanded effectors are unknown. Based on evidence that demyelination is necessary but not sufficient for disease progression in multiple sclerosis (MS), we previously hypothesized that CNS-infiltrating CD8+ T cells specific for neuronal antigens directly drive the axon and neuron injury that leads to cumulative neurologic disability in MS patients. We now show that demyelination induced expression of MHC class I on neurons and axons and resulted in presentation of a neuron-specific neoantigen (synapsin promoter-driven chicken ovalbumin) to antigen-specific CD8+ T cells (anti-ovalbumin OT-I transgenic T cells). These neuroantigen-specific effectors surveilled the CNS in the absence of demyelination but were not retained. However, upon induction of demyelination via cuprizone intoxication, neuroantigen-specific CD8+ T cells proliferated, accumulated in the CNS, and damaged neoantigen-expressing neurons and axons. We further report elevated neuronal expression of MHC class I and β2-microglobulin transcripts and protein in gray matter and white matter tracts in tissue from patients with MS. These findings support a pathogenic role for autoreactive anti-axonal and anti-neuronal CD8+ T cells in MS progression.
Benjamin D.S. Clarkson, Ethan M. Grund, Miranda M. Standiford, Kanish Mirchia, Maria S. Westphal, Elizabeth S. Muschler, Charles L. Howe
Even when successfully induced, immunological tolerance to solid organ remains vulnerable to inflammatory insults, which can trigger rejection. In a mouse model of cardiac allograft tolerance in which infection with Listeria monocytogenes (Lm) precipitates rejection of previously accepted grafts, we showed that recipient CD4+ TCR75 cells reactive to a donor MHC Class I-derived peptide become hypofunctional if the allograft is accepted for > 3 weeks. Paradoxically, infection-induced transplant rejection was not associated with transcriptional or functional reinvigoration of TCR75 cells. We hypothesized that there is heterogeneity in the level of dysfunction of different allospecific T cells, depending on duration of their cognate antigen expression. Unlike CD4+ TCR75 cells, CD4+ TEa cells specific for a peptide derived from donor MHC Class II, an alloantigen whose expression declines post-transplantation but remains inducible in settings of inflammation, retained function in tolerant mice and expanded during Lm-induced rejection. Repeated injections of alloantigens drove hypofunction in TEa cells and rendered grafts resistant to Lm-dependent rejection. Our results uncover a functional heterogeneity in allospecific T cells of distinct specificities post-tolerance induction and reveal a strategy to defunctionalize a greater repertoire of allospecific T cells, thereby mitigating a critical vulnerability of tolerance.
Christine M. McIntosh, Jennifer B. Allocco, Peter Wang, Michelle L. McKeague, Alexandra Cassano, Ying Wang, Stephen Z. Xie, Grace E. Hynes, Ricardo Mora-Cartín, Domenic Abbondanza, Luqiu Chen, Husain Sattar, Dengping Yin, Zheng J. Zhang, Anita S. Chong, Maria-Luisa Alegre
Donor-recipient (D-R) mismatches outside of human leukocyte antigens (HLA) contribute to kidney allograft loss, but mechanisms remain unclear, specifically for intronic mismatches. We quantified non-HLA mismatches at variant-, gene-, and genome-wide scales from SNP data of D- Rs from two well-phenotyped transplant cohorts: Genomics of Chronic Allograft Rejection (GoCAR; n=385) and Clinical Trials in Organ Transplantation-01/17 (CTOT-01/17; n=146). Unbiased gene-level screening in GoCAR uncovered the LIMS1 locus as the top-ranked gene where D-R mismatches associated with death-censored graft loss (DCGL). A previously unreported, intronic, LIMS1 haplotype of 30 SNPs independently associated with DCGL in both cohorts. Haplotype mismatches showed a dosage effect, and minor-allele introduction to major- allele-carrying recipients showed greater hazard of DCGL. The LIMS1 haplotype and the previously reported LIMS1 SNP rs893403 are expression quantitative trait loci (eQTL) in immune cells for GCC2 (not LIMS1), which encodes a protein involved in mannose-6-phosphase receptor (M6PR) recycling. Peripheral blood and T-cell transcriptome analyses associated GCC2 gene and LIMS1 SNPs with the TGFB1-SMAD pathway, suggesting a regulatory effect. In vitro GCC2 modulation impacted M6PR-dependent regulation of active TGFB1 and downstream signaling in T-cells. Together, our data link LIMS1 locus D-R mismatches to DCGL via GCC2 eQTLs that modulate TGFB1-dependent effects on T-cells.
Zeguo Sun, Zhongyang Zhang, Khadija Banu, Ian W. Gibson, Robert B. Colvin, Zhengzi Yi, Weijia Zhang, Bony De Kumar, Anand Reghuvaran, John Pell, Thomas D. Manes, Arjang Djamali, Lorenzo Gallon, Philip J. O'Connell, John He, Jordan S. Pober, Peter S. Heeger, Madhav C. Menon
Consumption of low dietary potassium, common with ultra-processed foods, activates the thiazide-sensitive sodium chloride cotransporter (NCC) via the WNK-SPAK kinase pathway to induce salt retention and elevate blood pressure (BP). However, it remains unclear how high potassium “DASH-like” diets inactivate the cotransporter and whether this decreases BP. A transcriptomic screen identified Ppp1C⍺, encoding PP1A, as a potassium up-regulated gene, and its negative regulator, Ppp1r1a, as a potassium-suppressed gene in the kidney. PP1A directly binds to and dephosphorylates NCC when extracellular potassium is elevated. Using mice genetically engineered to constitutively activate the NCC-regulatory kinase SPAK and thereby eliminate the effects of the WNK-SPAK kinase cascade, we confirmed that PP1A dephosphorylates NCC directly in a potassium-regulated manner. Prior adaptation to a high potassium diet was required to maximally dephosphorylate NCC and lower BP in the constitutively active SPAK mice, and this was associated with potassium-dependent suppression of Ppp1r1a, and dephosphorylation of its cognate protein, Inhibitory Subunit 1 (I1). In conclusion, potassium-dependent activation of PP1A and inhibition of I1 drives NCC dephosphorylation, providing a mechanism to explain how high dietary K+ lowers BP. Shifting signaling of PP1A in favor of activation of WNK-SPAK may provide an improved therapeutic approach for treating salt-sensitive hypertension.
Paul Richard Grimm, Anamaria Tatomir, Lena L. Rosenbaek, Bo Young Kim, Dimin Li, Eric J. Delpire, Robert A. Fenton, Paul A. Welling
Identifying branched-chain amino acid (BCAA) oxidation enzymes in the nucleus led us to predict that they are a source of propionyl-CoA that are utilized for histone propionylation and, thereby, regulate gene expression. To investigate the effects of BCAA on the development of cardiac hypertrophy and failure, we applied pressure overload on the heart in mice maintained on a diet with standard levels of BCAA (BCAA-control) versus a BCAA-free diet. The former was associated with an increase in histone H3K23-propionyl (H3K23Pr) at the promoters of upregulated genes [e.g., cell signaling and extracellular matrix genes] and a decrease at the promoters of downregulated genes [e.g., electron transfer complex (ETC I-V) and metabolic genes]. Intriguingly, the BCAA-free diet tempered the increases in promoter-H3K23Pr, thus, reducing collagen gene expression and fibrosis during cardiac hypertrophy. Conversely, the BCAA-free diet inhibited the reductions in promoter-H3K23Pr and abolished the downregulation of ETC I-V subunits, enhanced mitochondrial respiration, and curbed progression of cardiac hypertrophy. Thus, lowering the intake of BCAA reduces pressure overload-induced changes in histone propionylation-dependent gene expression in the heart, which retards the development of cardiomyopathy.
Zhi Yang, Minzhen He, Julianne Austin, Danish Sayed, Maha Abdellatif
No posts were found with this tag.