Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Autoimmunity

  • 251 Articles
  • 0 Posts
  • ← Previous
  • 1
  • 2
  • …
  • 6
  • 7
  • 8
  • …
  • 25
  • 26
  • Next →
Cytoplasmic RNA quality control failure engages mTORC1-mediated autoinflammatory disease
Kun Yang, … , Luis A. Garza, Nan Yan
Kun Yang, … , Luis A. Garza, Nan Yan
Published January 18, 2022
Citation Information: J Clin Invest. 2022;132(2):e146176. https://doi.org/10.1172/JCI146176.
View: Text | PDF

Cytoplasmic RNA quality control failure engages mTORC1-mediated autoinflammatory disease

  • Text
  • PDF
Abstract

Inborn errors of nucleic acid metabolism often cause aberrant activation of nucleic acid sensing pathways, leading to autoimmune or autoinflammatory diseases. The SKIV2L RNA exosome is cytoplasmic RNA degradation machinery that was thought to be essential for preventing the self-RNA–mediated interferon (IFN) response. Here, we demonstrate the physiological function of SKIV2L in mammals. We found that Skiv2l deficiency in mice disrupted epidermal and T cell homeostasis in a cell-intrinsic manner independently of IFN. Skiv2l-deficient mice developed skin inflammation and hair abnormality, which were also observed in a SKIV2L-deficient patient. Epidermis-specific deletion of Skiv2l caused hyperproliferation of keratinocytes and disrupted epidermal stratification, leading to impaired skin barrier with no appreciable IFN activation. Moreover, Skiv2l-deficient T cells were chronically hyperactivated and these T cells attacked lesional skin as well as hair follicles. Mechanistically, SKIV2L loss activated the mTORC1 pathway in both keratinocytes and T cells. Both systemic and topical rapamycin treatment of Skiv2l-deficient mice ameliorated epidermal hyperplasia and skin inflammation. Together, we demonstrate that mTORC1, a classical nutrient sensor, also senses cytoplasmic RNA quality control failure and drives autoinflammatory disease. We also propose SKIV2L-associated trichohepatoenteric syndrome (THES) as a new mTORopathy for which sirolimus may be a promising therapy.

Authors

Kun Yang, Jie Han, Mayumi Asada, Jennifer G. Gill, Jason Y. Park, Meghana N. Sathe, Jyothsna Gattineni, Tracey Wright, Christian A. Wysocki, M. Teresa de la Morena, Luis A. Garza, Nan Yan

×

Immune responses to CCAR1 and other dermatomyositis autoantigens are associated with attenuated cancer emergence
David F. Fiorentino, … , Antony Rosen, Livia Casciola-Rosen
David F. Fiorentino, … , Antony Rosen, Livia Casciola-Rosen
Published January 18, 2022
Citation Information: J Clin Invest. 2022;132(2):e150201. https://doi.org/10.1172/JCI150201.
View: Text | PDF

Immune responses to CCAR1 and other dermatomyositis autoantigens are associated with attenuated cancer emergence

  • Text
  • PDF
Abstract

BACKGROUND The temporal clustering of a cancer diagnosis with dermatomyositis (DM) onset is strikingly associated with autoantibodies against transcriptional intermediary factor 1-γ (TIF1-γ). Nevertheless, many patients with anti–TIF1-γ antibodies never develop cancer. We investigated whether additional autoantibodies are found in anti–TIF1-γ–positive patients without cancer.METHODS Using a proteomic approach, we defined 10 previously undescribed autoantibody specificities in 5 index anti–TIF1-γ–positive DM patients without cancer. These were subsequently examined in discovery (n = 110) and validation (n = 142) cohorts of DM patients with anti–TIF1-γ autoantibodies.RESULTS We identified 10 potentially novel autoantibodies in anti–TIF1-γ–positive DM patients, 6 with frequencies ranging from 3% to 32% in 2 independent DM cohorts. Autoantibodies recognizing cell division cycle and apoptosis regulator protein 1 (CCAR1) were the most frequent, and were significantly negatively associated with contemporaneous cancer (discovery cohort OR 0.27 [95% CI 0.7–1.00], P = 0.050; validation cohort OR 0.13 [95% CI 0.03–0.59], P = 0.008). When cancer did emerge, it occurred significantly later in anti-CCAR1–positive compared with anti-CCAR1–negative patients (median time from DM onset 4.3 vs. 0.85 years, respectively; P = 0.006). Cancers that emerged were more likely to be localized (89% of anti-CCAR1–positive cancers presenting at stage 0 or 1 compared with 42% of patients without anti-CCAR1 antibodies, P = 0.02). As the number of additional autoantibody specificities increased in anti–TIF1-γ–positive DM patients, the frequency of cancer decreased (P < 0.001).CONCLUSION As the diversity of immune responses in anti–TIF1-γ DM patients increases, the likelihood of cancer emerging decreases. Our findings have important relevance for cancer risk stratification in DM patients and for understanding natural immune regulation of cancer in humans.TRIAL REGISTRATION Not applicable.FUNDING SOURCES The NIH, the Donald B. and Dorothy L. Stabler Foundation, and the Huayi and Siuling Zhang Discovery Fund.

Authors

David F. Fiorentino, Christopher A. Mecoli, Matthew C. Rosen, Lorinda S. Chung, Lisa Christopher-Stine, Antony Rosen, Livia Casciola-Rosen

×

The CD6/ALCAM pathway promotes lupus nephritis via T cell–mediated responses
Samantha A. Chalmers, … , Chandra Mohan, Chaim Putterman
Samantha A. Chalmers, … , Chandra Mohan, Chaim Putterman
Published January 4, 2022
Citation Information: J Clin Invest. 2022;132(1):e147334. https://doi.org/10.1172/JCI147334.
View: Text | PDF

The CD6/ALCAM pathway promotes lupus nephritis via T cell–mediated responses

  • Text
  • PDF
Abstract

T cells are central to the pathogenesis of lupus nephritis (LN), a common complication of systemic lupus erythematosus (SLE). CD6 and its ligand, activated leukocyte cell adhesion molecule (ALCAM), are involved in T cell activation and trafficking. Previously, we showed that soluble ALCAM is increased in urine (uALCAM) of patients with LN, suggesting that this pathway contributes to disease. To investigate, uALCAM was examined in 1038 patients with SLE and LN from 5 ethnically diverse cohorts; CD6 and ALCAM expression was assessed in LN kidney cells; and disease contribution was tested via antibody blockade of CD6 in murine models of SLE and acute glomerulonephritis. Extended cohort analysis offered resounding validation of uALCAM as a biomarker that distinguishes active renal involvement in SLE, irrespective of ethnicity. ALCAM was expressed by renal structural cells whereas CD6 expression was exclusive to T cells, with elevated numbers of CD6+ and ALCAM+ cells in patients with LN. CD6 blockade in models of spontaneous lupus and immune-complex glomerulonephritis revealed significant decreases in immune cells, inflammatory markers, and disease measures. Our data demonstrate the contribution of the CD6/ALCAM pathway to LN and SLE, supporting its use as a disease biomarker and therapeutic target.

Authors

Samantha A. Chalmers, Rajalakshmy Ayilam Ramachandran, Sayra J. Garcia, Evan Der, Leal Herlitz, Jeanette Ampudia, Dalena Chu, Nicole Jordan, Ting Zhang, Ioannis Parodis, Iva Gunnarsson, Huihua Ding, Nan Shen, Michelle Petri, Chi Chiu Mok, Ramesh Saxena, Krishna R. Polu, Stephen Connelly, Cherie T. Ng, Chandra Mohan, Chaim Putterman

×

Congenital deficiency reveals critical role of ISG15 in skin homeostasis
Muhammad Nasir Hayat Malik, … , Thomas Werfel, Frank Pessler
Muhammad Nasir Hayat Malik, … , Thomas Werfel, Frank Pessler
Published November 30, 2021
Citation Information: J Clin Invest. 2021. https://doi.org/10.1172/JCI141573.
View: Text | PDF

Congenital deficiency reveals critical role of ISG15 in skin homeostasis

  • Text
  • PDF
Abstract

Ulcerating skin lesions are manifestations of human ISG15 deficiency, a type I interferonopathy. However, chronic inflammation may not be their exclusive cause. We describe two siblings with recurrent skin ulcers that healed with scar formation upon corticosteroid treatment. Both had a homozygous nonsense mutation in the ISG15 gene, leading to unstable ISG15 protein lacking the functional domain. We characterized ISG15-/- dermal fibroblasts, HaCaT keratinocytes, and human induced pluripotent stem cell-derived vascular endothelial cells. ISG15-deficient cells exhibited the expected hyperinflammatory phenotype, but also dysregulated expression of molecules critical for connective tissue and epidermis integrity, including reduced collagens and adhesion molecules, but increased matrix metalloproteases. ISG15-/- fibroblasts exhibited elevated ROS levels and reduced ROS scavenger expression. As opposed to hyperinflammation, defective collagen and integrin synthesis was not rescued by conjugation-deficient ISG15. Cell migration was retarded in ISG15-/- fibroblasts and HaCaT keratinocytes, but normalized under ruxolitinib treatment. Desmosome density was reduced in an ISG15-/- 3D epidermis model. Additionally, there were loose architecture and reduced collagen and desmoglein expression, which could be reversed by treatment with ruxolitinib/doxycycline/TGF-β1. These results reveal critical roles of ISG15 in maintaining cell migration and epidermis and connective tissue homeostasis, whereby the latter likely requires its conjugation to yet unidentified targets.

Authors

Muhammad Nasir Hayat Malik, Syed F. Hassnain Waqas, Jana Zeitvogel, Jingyuan Cheng, Robert Geffers, Zeinab Abu-Elbaha Gouda, Ahmed Mahrous Elsaman, Ahmed R. Radwan, Matthias Schefzyk, Peter Braubach, Bernd Auber, Ruth Olmer, Mathias Müsken, Lennart M. Roesner, Gisa Gerold, Sven Schuchardt, Sylvia Merkert, Ulrich Martin, Felix Meissner, Thomas Werfel, Frank Pessler

×

Positive and negative selection shape the human naïve B cell repertoire
Jeff W. Chen, … , Laurence Menard, Eric Meffre
Jeff W. Chen, … , Laurence Menard, Eric Meffre
Published November 23, 2021
Citation Information: J Clin Invest. 2021. https://doi.org/10.1172/JCI150985.
View: Text | PDF

Positive and negative selection shape the human naïve B cell repertoire

  • Text
  • PDF
Abstract

While negative selection of developing B cells in the periphery is well described, yet poorly understood, evidence of naïve B cell positive selection remains elusive. Using two humanized mouse models, we demonstrate that there is strong skewing of expressed immunoglobulin repertoire upon transit into the peripheral naïve B cell pool. This positive selection of expanded naïve B cells in humanized mice resembled that in healthy donors and was independent of autologous thymic tissue. In contrast, negative selection of autoreactive B cells required thymic-derived regulatory T cells (Tregs) and MHC class II-restricted self-antigen presentation by B cells. Indeed, both defective MHC class II expression on their B cells in rare bare lymphocyte syndrome patients or prevention of self-antigen presentation via HLA-DM inhibition in humanized mice result in the production of autoreactive naïve B cells. These latter observations suggest that Tregs repress autoreactive naïve B cells continuously produced by the bone marrow. Thus, a model emerges in which both positive and negative selection shape the human naïve B cell repertoire and that each process is mediated by fundamentally different molecular and cellular mechanisms.

Authors

Jeff W. Chen, Jean-Nicolas Schickel, Nikolaos Tsakiris, Joel Sng, Florent Arbogast, Delphine Bouis, Daniele Parisi, Ruchi Gera, Joshua M. Boeckers, Fabien R. Delmotte, Margaret Veselits, Catharina Schuetz, Eva-Maria Jacobsen, Carsten Posovszky, Ansgar S. Schulz, Klaus Schwarz, Marcus R. Clark, Laurence Menard, Eric Meffre

×

Stromal cell-derived DEL-1 inhibits Tfh cell activation and inflammatory arthritis
Hui Wang, … , Triantafyllos Chavakis, George Hajishengallis
Hui Wang, … , Triantafyllos Chavakis, George Hajishengallis
Published August 17, 2021
Citation Information: J Clin Invest. 2021. https://doi.org/10.1172/JCI150578.
View: Text | PDF

Stromal cell-derived DEL-1 inhibits Tfh cell activation and inflammatory arthritis

  • Text
  • PDF
Abstract

The secreted protein DEL-1 regulates inflammatory cell recruitment and protects against inflammatory pathologies in animal models. Here, we investigated DEL-1 in inflammatory arthritis using collagen-induced arthritis (CIA) and collagen Ab-induced arthritis (CAIA). In both models, mice with endothelial-specific overexpression of DEL-1 were protected from arthritis relative to WT controls, while arthritis was exacerbated in DEL-1-deficient mice. Compared to WT controls, mice with collagen VI promoter-driven overexpression of DEL-1 in mesenchymal cells were protected against CIA but not CAIA, suggesting a role for DEL-1 in the induction of the arthritogenic Ab response. Indeed, DEL-1 was expressed in perivascular stromal cells of the lymph nodes and inhibited T follicular helper (Tfh) and germinal center B cell responses. Mechanistically, DEL-1 inhibited dendritic cell-dependent induction of Tfh cells by targeting the LFA-1 integrin on T cells. Overall, DEL-1 restrained arthritis through a dual mechanism, one acting locally in the joints and associated with the anti-recruitment function of endothelial cell-derived DEL-1; the other mechanism acting systemically in the lymph nodes and associated with the ability of stromal cell-derived DEL-1 to restrain Tfh responses. DEL-1 may thus be a promising novel therapeutic for the treatment of inflammatory arthritis.

Authors

Hui Wang, Xiaofei Li, Tetsuhiro Kajikawa, Jieun Shin, Jong-Hyung Lim, Ioannis Kourtzelis, Kosuke Nagai, Jonathan Korostoff, Sylvia Grossklaus, Ronald Naumann, Triantafyllos Chavakis, George Hajishengallis

×

IL-1β-driven osteoclastogenic T regulatory cells accelerate bone erosion in arthritis
Anaïs Levescot, … , Julia F. Charles, Peter A. Nigrovic
Anaïs Levescot, … , Julia F. Charles, Peter A. Nigrovic
Published August 3, 2021
Citation Information: J Clin Invest. 2021. https://doi.org/10.1172/JCI141008.
View: Text | PDF

IL-1β-driven osteoclastogenic T regulatory cells accelerate bone erosion in arthritis

  • Text
  • PDF
Abstract

IL-1β is a pro-inflammatory mediator with roles in innate and adaptive immunity. Here we show that IL-1β contributes to autoimmune arthritis by inducing osteoclastogenic capacity in T regulatory cells (Tregs). Using mice with joint inflammation arising through deficiency of the IL-1 receptor antagonist (Il1rn-/-), we observed that IL-1β blockade attenuated disease more effectively in early arthritis than in established arthritis, especially with respect to bone erosion. Protection was accompanied by a reduction in synovial CD4+Foxp3+ Tregs that displayed preserved suppressive capacity and aerobic metabolism but aberrant expression of RANKL and a striking capacity to drive RANKL-dependent osteoclast differentiation. Both Il1rn-/- Tregs and wild-type Tregs differentiated with IL-1β accelerated bone erosion upon adoptive transfer. Human Tregs exhibited analogous differentiation, and corresponding RANKLhiFoxp3+ T cells could be identified in rheumatoid arthritis synovial tissue. Together, these findings identify IL-1β-induced osteoclastogenic Tregs (O-Tregs) as a contributor to bone erosion in arthritis.

Authors

Anaïs Levescot, Margaret H. Chang, Julia Schnell, Nathan Nelson-Maney, Jing Yan, Marta Martínez-Bonet, Ricardo Grieshaber-Bouyer, Pui Y. Lee, Kevin Wei, Rachel B. Blaustein, Allyn Morris, Alexandra Wactor, Yoichiro Iwakura, James A. Lederer, Deepak A. Rao, Julia F. Charles, Peter A. Nigrovic

×

TNFR2/14-3-3ε signaling complex instructs macrophage plasticity in inflammation and autoimmunity
Wenyu Fu, … , Png Loke, Chuan-ju Liu
Wenyu Fu, … , Png Loke, Chuan-ju Liu
Published June 29, 2021
Citation Information: J Clin Invest. 2021. https://doi.org/10.1172/JCI144016.
View: Text | PDF

TNFR2/14-3-3ε signaling complex instructs macrophage plasticity in inflammation and autoimmunity

  • Text
  • PDF
Abstract

TNFR1 and TNFR2 have received prominent attention because of their dominance in the pathogenesis of inflammation and autoimmunity. TNFR1 has been extensively studied and primarily mediates inflammation. TNFR2 remains far less studied, although emerging evidences demonstrate that TNFR2 plays an anti-inflammatory and immunoregulatory role in various conditions and diseases. Herein, we report that TNFR2 regulates macrophage polarization, a highly dynamic process controlled by largely unidentified intracellular regulators. Using biochemical co-purification and mass spectrometry approaches, we isolated the signaling molecule 14-3-3ε as a component of TNFR2 complexes in response to progranulin stimulation in macrophages. In addition, 14-3-3ε was essential for TNFR2 signaling-mediated regulation of macrophage polarization and switch. Both global and myeloid-specific deletion of 14-3-3ε resulted in exacerbated inflammatory arthritis and counteracted the protective effects of progranulin-mediated TNFR2 activation against inflammation and autoimmunity. TNFR2/14-3-3ε signaled through PI3K/Akt/mTOR to restrict NF-κB activation while simultaneously stimulating C/EBPβ activation, thereby instructing macrophage plasticity. Collectively, this study identifies 14-3-3ε as a previously-unrecognized vital component of the TNFR2 receptor complex and provides new insights into the TNFR2 signaling, particularly its role in macrophage polarization with therapeutic implications for various inflammatory and autoimmune diseases with activation of the TNFR2/14-3-3ε anti-inflammatory pathway.

Authors

Wenyu Fu, Wenhuo Hu, Young-Su Yi, Aubryanna Hettinghouse, Guodong Sun, Yufei Bi, Wenjun He, Lei Zhang, Guanmin Gao, Jody Liu, Kazuhito Toyo-oka, Guozhi Xiao, David B. Solit, Png Loke, Chuan-ju Liu

×

BMI1 maintains the Treg epigenomic landscape to prevent inflammatory bowel disease
Michelle M. Gonzalez, … , Raul Urrutia, William A. Faubion Jr.
Michelle M. Gonzalez, … , Raul Urrutia, William A. Faubion Jr.
Published June 15, 2021
Citation Information: J Clin Invest. 2021;131(12):e140755. https://doi.org/10.1172/JCI140755.
View: Text | PDF

BMI1 maintains the Treg epigenomic landscape to prevent inflammatory bowel disease

  • Text
  • PDF
Abstract

FOXP3+ Tregs are expanded within the inflamed intestine of human Crohn’s disease, yet FOXP3-mediated gene repression within these cells is lost. The polycomb repressive complexes play a role in FOXP3 target gene regulation, but deeper mechanistic insight is incomplete. We have now specifically identified the polycomb-repressive complex 1 (PRC1) family member, BMI1 in the regulation of a proinflammatory enhancer network in both human and murine Tregs. Using human Tregs and lamina propria T cells, we inferred PRC1 to regulate Crohn’s associated gene networks through assays of chromatin accessibility. Conditional deletion of BMI1 in murine FOXP3+ cells led to systemic inflammation. BMI1-deficient Tregs beared a TH1/TH17-like phenotype as assessed by assays of genome wide transcription, chromatin accessibility and proteomic techniques. Finally, BMI1 mutant FOXP3+ cells did not suppress colitis in the adoptive transfer model of human inflammatory bowel disease. We propose that BMI1 plays an important role in enforcing Treg identity in vitro and in vivo. Loss of Treg identity via genetic or transient BMI1 depletion perturbs the epigenome and converts Tregs into Th1/Th17-like proinflammatory cells, a transition relevant to human Crohn’s disease associated CD4+ T cells.

Authors

Michelle M. Gonzalez, Adebowale O. Bamidele, Phyllis A. Svingen, Mary R. Sagstetter, Thomas C. Smyrk, Joseph M. Gaballa, Feda H. Hamdan, Robyn Laura Kosinsky, Hunter R. Gibbons, Zhifu Sun, Zhenqing Ye, Asha Nair, Guilherme P. Ramos, Manuel B. Braga Neto, Alexander Q. Wixom, Angela J. Mathison, Steven A. Johnsen, Raul Urrutia, William A. Faubion Jr.

×

CCL17-producing cDC2s are essential in end-stage lupus nephritis and averted by a parasitic infection
Laura Amo, … , Juan Wu, Silvia Bolland
Laura Amo, … , Juan Wu, Silvia Bolland
Published June 1, 2021
Citation Information: J Clin Invest. 2021;131(11):e148000. https://doi.org/10.1172/JCI148000.
View: Text | PDF

CCL17-producing cDC2s are essential in end-stage lupus nephritis and averted by a parasitic infection

  • Text
  • PDF
Abstract

Lupus nephritis is a severe organ manifestation in systemic lupus erythematosus leading to kidney failure in a subset of patients. In lupus-prone mice, controlled infection with Plasmodium parasites protects against the progression of autoimmune pathology including lethal glomerulonephritis. Here, we demonstrate that parasite-induced protection was not due to a systemic effect of infection on autoimmunity as previously assumed, but rather to specific alterations in immune cell infiltrates into kidneys and renal draining lymph nodes. Infection of lupus-prone mice with a Plasmodium parasite did not reduce the levels or specificities of autoreactive antibodies, vasculitis, immune complex–induced innate activation, or hypoxia. Instead, infection uniquely reduced kidney-infiltrating CCL17-producing bone marrow–derived type 2 inflammatory dendritic cells (iDC2s). Bone marrow reconstitution experiments revealed that infection with Plasmodium caused alterations in bone marrow cells that hindered the ability of DC2s to infiltrate the kidneys. The essential role for CCL17 in lupus nephritis was confirmed by in vivo depletion with a blocking antibody, which reduced kidney pathology and immune infiltrates, while bypassing the need for parasitic infection. Therefore, infiltration into the kidneys of iDC2s, with the potential to prime local adaptive responses, is an essential regulated event in the transition from manageable glomerulonephritis to lethal tubular injury.

Authors

Laura Amo, Hemanta K. Kole, Bethany Scott, Chen-Feng Qi, Juan Wu, Silvia Bolland

×
  • ← Previous
  • 1
  • 2
  • …
  • 6
  • 7
  • 8
  • …
  • 25
  • 26
  • Next →

No posts were found with this tag.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts