Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Research Article

  • 25,432 Articles
  • 0 Posts
  • ← Previous
  • 1
  • 2
  • …
  • 217
  • 218
  • 219
  • …
  • 2543
  • 2544
  • Next →
SUMO-defective c-Maf preferentially transactivates Il21 to exacerbate autoimmune diabetes
Chao-Yuan Hsu, … , Deh-Ming Chang, Huey-Kang Sytwu
Chao-Yuan Hsu, … , Deh-Ming Chang, Huey-Kang Sytwu
Published July 30, 2018
Citation Information: J Clin Invest. 2018. https://doi.org/10.1172/JCI98786.
View: Text | PDF

SUMO-defective c-Maf preferentially transactivates Il21 to exacerbate autoimmune diabetes

  • Text
  • PDF
Abstract

SUMOylation is involved in the development of several inflammatory diseases, but the physiological significance of SUMO-modulated c-Maf in autoimmune diabetes is not completely understood. Here, we report that an age-dependent attenuation of c-Maf SUMOylation in CD4+ T cells is positively correlated with the IL-21–mediated diabetogenesis in NOD mice. Using 2 strains of T cell–specific transgenic NOD mice overexpressing wild-type c-Maf (Tg-WTc) or SUMOylation site–mutated c-Maf (Tg-KRc), we demonstrated that Tg-KRc mice developed diabetes more rapidly than Tg-WTc mice in a CD4+ T cell–autonomous manner. Moreover, SUMO-defective c-Maf preferentially transactivated Il21 to promote the development of CD4+ T cells with an extrafollicular helper T cell phenotype and expand the numbers of granzyme B–producing effector/memory CD8+ T cells. Furthermore, SUMO-defective c-Maf selectively inhibited recruitment of Daxx/HDAC2 to the Il21 promoter and enhanced histone acetylation mediated by CREB-binding protein (CBP) and p300. Using pharmacological interference with CBP/p300, we illustrated that CBP30 treatment ameliorated c-Maf–mediated/IL-21–based diabetogenesis. Taken together, our results show that the SUMOylation status of c-Maf has a stronger regulatory effect on IL-21 than the level of c-Maf expression, through an epigenetic mechanism. These findings provide new insights into how SUMOylation modulates the pathogenesis of autoimmune diabetes in a T cell–restricted manner and on the basis of a single transcription factor.

Authors

Chao-Yuan Hsu, Li-Tzu Yeh, Shin-Huei Fu, Ming-Wei Chien, Yu-Wen Liu, Shi-Chuen Miaw, Deh-Ming Chang, Huey-Kang Sytwu

×

TNF overproduction impairs epithelial staphylococcal response in hyper IgE syndrome
Ian A. Myles, … , Steven M. Holland, Sandip K. Datta
Ian A. Myles, … , Steven M. Holland, Sandip K. Datta
Published July 23, 2018
Citation Information: J Clin Invest. 2018. https://doi.org/10.1172/JCI121486.
View: Text | PDF

TNF overproduction impairs epithelial staphylococcal response in hyper IgE syndrome

  • Text
  • PDF
Abstract

Autosomal dominant hyper IgE syndrome (AD-HIES), or Job’s syndrome, is a primary immune deficiency caused by dominant-negative mutations in STAT3. Recurrent Staphylococcus aureus skin abscesses are a defining feature of this syndrome. A widely held hypothesis that defects in peripheral Th17 differentiation confer this susceptibility has never been directly evaluated. To assess the cutaneous immune response in AD-HIES, we induced suction blisters in healthy volunteers (HVs) and patients with AD-HIES and then challenged the wound with lethally irradiated bacteria. We show that cutaneous production of IL-17A and IL-17F was normal in patients with AD-HIES. Overproduction of TNF-α differentiated the responses in AD-HIES from HVs. This was associated with reduced IL-10 family signaling in blister-infiltrating cells and defective epithelial cell function. Mouse models of AD-HIES recapitulated these aberrant epithelial responses to S. aureus and involved defective epithelial-to-mesenchymal transition (EMT) rather than a failure of bacterial killing. Defective responses in mouse models of AD-HIES and primary keratinocyte cultures from patients with AD-HIES could be reversed by TNF-α blockade and by drugs with reported modulatory effects on EMT. Our results identify these as potential therapeutic approaches in patients with AD-HIES suffering S. aureus infections.

Authors

Ian A. Myles, Erik D. Anderson, Noah J. Earland, Kol A. Zarember, Inka Sastalla, Kelli W. Williams, Portia Gough, Ian N. Moore, Sundar Ganesan, Cedar J. Fowler, Arian Laurence, Mary Garofalo, Douglas B. Kuhns, Mark D. Kieh, Arhum Saleem, Pamela A. Welch, Dirk A. Darnell, John I. Gallin, Alexandra F. Freeman, Steven M. Holland, Sandip K. Datta

×

Mosaic-variegated aneuploidy syndrome mutation or haploinsufficiency in Cep57 impairs tumor suppression
Khaled Aziz, … , David J. Katzmann, Jan M. van Deursen
Khaled Aziz, … , David J. Katzmann, Jan M. van Deursen
Published July 23, 2018
Citation Information: J Clin Invest. 2018. https://doi.org/10.1172/JCI120316.
View: Text | PDF

Mosaic-variegated aneuploidy syndrome mutation or haploinsufficiency in Cep57 impairs tumor suppression

  • Text
  • PDF
Abstract

A homozygous truncating frameshift mutation in CEP57 (CEP57T/T) has been identified in a subset of mosaic-variegated aneuploidy (MVA) patients; however, the physiological roles of the centrosome-associated protein CEP57 that contribute to disease are unknown. To investigate these, we have generated a mouse model mimicking this disease mutation. Cep57T/T mice died within 24 hours after birth with short, curly tails and severely impaired vertebral ossification. Osteoblasts in lumbosacral vertebrae of Cep57T/T mice were deficient for Fgf2, a Cep57 binding partner implicated in diverse biological processes, including bone formation. Furthermore, a broad spectrum of tissues of Cep57T/T mice had severe aneuploidy at birth, consistent with the MVA patient phenotype. Cep57T/T mouse embryonic fibroblasts and patient-derived skin fibroblasts failed to undergo centrosome maturation in G2 phase, causing premature centriole disjunction, centrosome amplification, aberrant spindle formation, and high rates of chromosome missegregation. Mice heterozygous for the truncating frameshift mutation or a Cep57-null allele were overtly indistinguishable from WT mice despite reduced Cep57 protein levels, yet prone to aneuploidization and cancer, with tumors lacking evidence for loss of heterozygosity. This study identifies Cep57 as a haploinsufficient tumor suppressor with biologically diverse roles in centrosome maturation and Fgf2-mediated bone formation.

Authors

Khaled Aziz, Cynthia J. Sieben, Karthik B. Jeganathan, Masakazu Hamada, Brian A. Davies, Raul O. Fierro Velasco, Nazneen Rahman, David J. Katzmann, Jan M. van Deursen

×

HIV-1 proviral landscapes distinguish posttreatment controllers from noncontrollers
Radwa Sharaf, … , Mathias Lichterfeld, Jonathan Z. Li
Radwa Sharaf, … , Mathias Lichterfeld, Jonathan Z. Li
Published July 19, 2018
Citation Information: J Clin Invest. 2018. https://doi.org/10.1172/JCI120549.
View: Text | PDF

HIV-1 proviral landscapes distinguish posttreatment controllers from noncontrollers

  • Text
  • PDF
Abstract

HIV post-treatment controllers (PTCs) represent a natural model of sustained HIV remission, but they are rare and little is known about their viral reservoir. We obtained 1450 proviral sequences after near-full-length amplification for 10 PTCs and 16 post-treatment non-controllers (NCs). Before treatment interruption, the median intact and total reservoir size in PTCs was 7-fold lower than in NCs, but the proportion of intact, defective and total clonally-expanded viral genomes was not significantly different between the two groups. Quantification of total, but not intact, proviral genome copies predicted sustained HIV remission as 81% of NCs, but none of the PTCs, had a total proviral genome >4 copies per million PBMCs. The results highlight the restricted intact and defective HIV reservoir in PTCs and suggest that total proviral genome burden could act as the first biomarker for identifying PTCs. Defective, but not intact, proviral copy numbers correlated with levels of cell-associated HIV RNA, activated NK cell percentages and both HIV-specific CD4+ and CD8+ responses. These results support the concept that defective HIV genomes lead to viral antigen production and interact with both the innate and adaptive immune systems.

Authors

Radwa Sharaf, Guinevere Q. Lee, Xiaoming Sun, Behzad Etemad, Layla M. Aboukhater, Zixin Hu, Zabrina L. Brumme, Evgenia Aga, Ronald J. Bosch, Ying Wen, Golnaz Namazi, Ce Gao, Edward P. Acosta, Rajesh T. Gandhi, Jeffrey M. Jacobson, Daniel Skiest, David M. Margolis, Ronald Mitsuyasu, Paul Volberding, Elizabeth Connick, Daniel R. Kuritzkes, Michael M. Lederman, Xu G. Yu, Mathias Lichterfeld, Jonathan Z. Li

×

GPR37 regulates macrophage phagocytosis and resolution of inflammatory pain
Sangsu Bang, … , Zhen-Zhong Xu, Ru-Rong Ji
Sangsu Bang, … , Zhen-Zhong Xu, Ru-Rong Ji
Published July 16, 2018
Citation Information: J Clin Invest. 2018. https://doi.org/10.1172/JCI99888.
View: Text | PDF

GPR37 regulates macrophage phagocytosis and resolution of inflammatory pain

  • Text
  • PDF
Abstract

The mechanisms of pain induction by inflammation have been extensively studied. However, the mechanisms of pain resolution are not fully understood. Here, we report that GPR37, expressed by macrophages (MΦs) but not microglia, contributes to the resolution of inflammatory pain. Neuroprotectin D1 (NPD1) and prosaptide TX14 increase intracellular Ca2+ (iCa2+) levels in GPR37-transfected HEK293 cells. NPD1 and TX14 also bind to GPR37 and cause GPR37-dependent iCa2+ increases in peritoneal MΦs. Activation of GPR37 by NPD1 and TX14 triggers MΦ phagocytosis of zymosan particles via calcium signaling. Hind paw injection of pH-sensitive zymosan particles not only induces inflammatory pain and infiltration of neutrophils and MΦs, but also causes GPR37 upregulation in MΦs, phagocytosis of zymosan particles and neutrophils by MΦs in inflamed paws, and resolution of inflammatory pain in WT mice. Mice lacking Gpr37 display deficits in MΦ phagocytic activity and delayed resolution of inflammatory pain. Gpr37-deficient MΦs also show dysregulations of proinflammatory and antiinflammatory cytokines. MΦ depletion delays the resolution of inflammatory pain. Adoptive transfer of WT but not Gpr37-deficient MΦs promotes the resolution of inflammatory pain. Our findings reveal a previously unrecognized role of GPR37 in regulating MΦ phagocytosis and inflammatory pain resolution.

Authors

Sangsu Bang, Ya-Kai Xie, Zhi-Jun Zhang, Zilong Wang, Zhen-Zhong Xu, Ru-Rong Ji

×

Antisense oligonucleotides extend survival and reverse decrement in muscle response in ALS models
Alex McCampbell, … , Eric E. Swayze, Timothy M. Miller
Alex McCampbell, … , Eric E. Swayze, Timothy M. Miller
Published July 16, 2018
Citation Information: J Clin Invest. 2018. https://doi.org/10.1172/JCI99081.
View: Text | PDF

Antisense oligonucleotides extend survival and reverse decrement in muscle response in ALS models

  • Text
  • PDF
Abstract

Mutations in superoxide dismutase 1 (SOD1) are responsible for 20% of familial ALS. Given the gain of toxic function in this dominantly inherited disease, lowering SOD1 mRNA and protein is predicted to provide therapeutic benefit. An early generation antisense oligonucleotide (ASO) targeting SOD1 was identified and tested in a phase I human clinical trial, based on modest protection in animal models of SOD1 ALS. Although the clinical trial provided encouraging safety data, the drug was not advanced because there was progress in designing other, more potent ASOs for CNS application. We have developed next-generation SOD1 ASOs that more potently reduce SOD1 mRNA and protein and extend survival by more than 50 days in SOD1G93A rats and by almost 40 days in SOD1G93A mice. We demonstrated that the initial loss of compound muscle action potential in SOD1G93A mice is reversed after a single dose of SOD1 ASO. Furthermore, increases in serum phospho-neurofilament heavy chain levels, a promising biomarker for ALS, are stopped by SOD1 ASO therapy. These results define a highly potent, new SOD1 ASO ready for human clinical trial and suggest that at least some components of muscle response can be reversed by therapy.

Authors

Alex McCampbell, Tracy Cole, Amy J. Wegener, Giulio S. Tomassy, Amy Setnicka, Brandon J. Farley, Kathleen M. Schoch, Mariah L. Hoye, Mark Shabsovich, Linhong Sun, Yi Luo, Mingdi Zhang, Sai Thankamony, David W. Salzman, Merit Cudkowicz, Danielle L. Graham, C. Frank Bennett, Holly B. Kordasiewicz, Eric E. Swayze, Timothy M. Miller

×

P2X7R mutation disrupts the NLRP3-mediated Th program and predicts poor cardiac allograft outcomes
Francesca D’Addio, … , Francesco Grigioni, Paolo Fiorina
Francesca D’Addio, … , Francesco Grigioni, Paolo Fiorina
Published July 16, 2018
Citation Information: J Clin Invest. 2018. https://doi.org/10.1172/JCI94524.
View: Text | PDF

P2X7R mutation disrupts the NLRP3-mediated Th program and predicts poor cardiac allograft outcomes

  • Text
  • PDF
Abstract

Purinergic receptor-7 (P2X7R) signaling controls Th17 and Th1 generation/differentiation, while NOD-like receptor P3 (NLRP3) acts as a Th2 transcriptional factor. Here, we demonstrated the existence of a P2X7R/NLRP3 pathway in T cells that is dysregulated by a P2X7R intracellular region loss-of-function mutation, leading to NLRP3 displacement and to excessive Th17 generation due to abrogation of the NLRP3-mediated Th2 program. This ultimately resulted in poor outcomes in cardiac-transplanted patients carrying the mutant allele, who showed abnormal Th17 generation. Transient NLRP3 silencing in nonmutant T cells or overexpression in mutant T cells normalized the Th profile. Interestingly, IL-17 blockade reduced Th17 skewing of human T cells in vitro and abrogated the severe allograft vasculopathy and abnormal Th17 generation observed in preclinical models in which P2X7R was genetically deleted. This P2X7R intracellular region mutation thus impaired the modulatory effects of P2X7R on NLRP3 expression and function in T cells and led to NLRP3 dysregulation and Th17 skewing, delineating a high-risk group of cardiac-transplanted patients who may benefit from personalized therapy.

Authors

Francesca D’Addio, Andrea Vergani, Luciano Potena, Anna Maestroni, Vera Usuelli, Moufida Ben Nasr, Roberto Bassi, Sara Tezza, Sergio Dellepiane, Basset El Essawy, Maria Iascone, Attilio Iacovoni, Laura Borgese, Kaifeng Liu, Gary Visner, Sirano Dhe-Paganon, Domenico Corradi, Reza Abdi, Randall C. Starling, Franco Folli, Gian Vincenzo Zuccotti, Mohamed H. Sayegh, Peter S. Heeger, Anil Chandraker, Francesco Grigioni, Paolo Fiorina

×

The BRG1/SOX9 axis is critical for acinar cell–derived pancreatic tumorigenesis
Motoyuki Tsuda, … , Tsutomu Chiba, Hiroshi Seno
Motoyuki Tsuda, … , Tsutomu Chiba, Hiroshi Seno
Published July 16, 2018
Citation Information: J Clin Invest. 2018. https://doi.org/10.1172/JCI94287.
View: Text | PDF

The BRG1/SOX9 axis is critical for acinar cell–derived pancreatic tumorigenesis

  • Text
  • PDF
Abstract

Chromatin remodeler Brahma related gene 1 (BRG1) is silenced in approximately 10% of human pancreatic ductal adenocarcinomas (PDAs). We previously showed that BRG1 inhibits the formation of intraductal pancreatic mucinous neoplasm (IPMN) and that IPMN-derived PDA originated from ductal cells. However, the role of BRG1 in pancreatic intraepithelial neoplasia–derived (PanIN-derived) PDA that originated from acinar cells remains elusive. Here, we found that exclusive elimination of Brg1 in acinar cells of Ptf1a-CreER; KrasG12D; Brg1fl/fl mice impaired the formation of acinar-to-ductal metaplasia (ADM) and PanIN independently of p53 mutation, while PDA formation was inhibited in the presence of p53 mutation. BRG1 bound to regions of the Sox9 promoter to regulate its expression and was critical for recruitment of upstream regulators, including PDX1, to the Sox9 promoter and enhancer in acinar cells. SOX9 expression was downregulated in BRG1-depleted ADMs/PanINs. Notably, Sox9 overexpression canceled this PanIN-attenuated phenotype in KBC mice. Furthermore, Brg1 deletion in established PanIN by using a dual recombinase system resulted in regression of the lesions in mice. Finally, BRG1 expression correlated with SOX9 expression in human PDAs. In summary, BRG1 is critical for PanIN initiation and progression through positive regulation of SOX9. Thus, the BRG1/SOX9 axis is a potential target for PanIN-derived PDA.

Authors

Motoyuki Tsuda, Akihisa Fukuda, Nilotpal Roy, Yukiko Hiramatsu, Laura Leonhardt, Nobuyuki Kakiuchi, Kaja Hoyer, Satoshi Ogawa, Norihiro Goto, Kozo Ikuta, Yoshito Kimura, Yoshihide Matsumoto, Yutaka Takada, Takuto Yoshioka, Takahisa Maruno, Yuichi Yamaga, Grace E. Kim, Haruhiko Akiyama, Seishi Ogawa, Christopher V. Wright, Dieter Saur, Kyoichi Takaori, Shinji Uemoto, Matthias Hebrok, Tsutomu Chiba, Hiroshi Seno

×

Optimal bone fracture repair requires 24R,25-dihydroxyvitamin D3 and its effector molecule FAM57B2
Corine Martineau, … , Glenville Jones, René St-Arnaud
Corine Martineau, … , Glenville Jones, René St-Arnaud
Published July 16, 2018
Citation Information: J Clin Invest. 2018. https://doi.org/10.1172/JCI98093.
View: Text | PDF

Optimal bone fracture repair requires 24R,25-dihydroxyvitamin D3 and its effector molecule FAM57B2

  • Text
  • PDF
Abstract

The biological activity of 24R,25-dihydroxyvitamin D3 [24R,25(OH)2D3] remains controversial, but it has been suggested that it contributes to fracture healing. Cyp24a1–/– mice, synthesizing no 24R,25(OH)2D3, show suboptimal endochondral ossification during fracture repair, with smaller callus and reduced stiffness. These defects were corrected by 24R,25(OH)2D3 treatment, but not by 1,25-dihydroxyvitamin D3. Microarrays with Cyp24a1–/– callus mRNA identified FAM57B2 as a mediator of the 24R,25(OH)2D3 effect. FAM57B2 produced lactosylceramide (LacCer) upon specific binding of 24R,25(OH)2D3. Fam57b inactivation in chondrocytes (Col2-Cre Fam57bfl/fl) phenocopied the callus formation defect of Cyp24a1–/– mice. LacCer or 24R,25(OH)2D3 injections restored callus volume, stiffness, and mineralized cartilage area in Cyp24a1-null mice, but only LacCer rescued Col2-Cre Fam57bfl/fl mice. Gene expression in callus tissue suggested that the 24R,25(OH)2D3/FAM57B2 cascade affects cartilage maturation. We describe a previously unrecognized pathway influencing endochondral ossification during bone repair through LacCer production upon binding of 24R,25(OH)2D3 to FAM57B2. Our results identify potential new approaches to ameliorate fracture healing.

Authors

Corine Martineau, Roy Pascal Naja, Abdallah Husseini, Bachar Hamade, Martin Kaufmann, Omar Akhouayri, Alice Arabian, Glenville Jones, René St-Arnaud

×

αv Integrins regulate germinal center B cell responses through noncanonical autophagy
Fiona Raso, … , Adam Lacy-Hulbert, Mridu Acharya
Fiona Raso, … , Adam Lacy-Hulbert, Mridu Acharya
Published July 12, 2018
Citation Information: J Clin Invest. 2018. https://doi.org/10.1172/JCI99597.
View: Text | PDF

αv Integrins regulate germinal center B cell responses through noncanonical autophagy

  • Text
  • PDF
Abstract

Germinal centers (GCs) are major sites of clonal B cell expansion and generation of long-lived, high-affinity antibody responses to pathogens. Signaling through toll-like receptors(TLRs) on B cells promotes many aspects of GC B cell responses, including affinity-maturation, class-switching and differentiation into long-lived memory and plasma cells. A major challenge for effective vaccination is identifying strategies to specifically promote GC B cell responses. Here we have identified a mechanism of regulation of GC B cell TLR signaling, mediated by αv integrins and non-canonical autophagy. Using B cell-specific αv-knockout mice, we show that loss of αv-mediated TLR regulation increased GC B cell expansion, somatic-hypermutation, class-switching, and generation of long-lived plasma cells after immunization with virus-like particles(VLPs) or antigens associated with TLR ligand adjuvants. Furthermore, targeting αv-mediated regulation increased the magnitude and breadth of antibody responses to influenza virus vaccination. These data therefore identify a mechanism of regulation of GC B cells, which can be targeted to enhance antibody responses to vaccination.

Authors

Fiona Raso, Sara Sagadiev, Samuel Du, Emily Gage, Tanvi Arkatkar, Genita Metzler, Lynda M. Stuart, Mark T. Orr, David Rawlings, Shaun Jackson, Adam Lacy-Hulbert, Mridu Acharya

×
  • ← Previous
  • 1
  • 2
  • …
  • 217
  • 218
  • 219
  • …
  • 2543
  • 2544
  • Next →

No posts were found with this tag.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts