Harnessing the stimulator of IFN genes (STING) signaling pathway to trigger innate immune responses has shown remarkable promise in cancer immunotherapy; however, overwhelming resistance to intratumoral STING monotherapy has been witnessed in clinical trials, and the underlying mechanisms remain to be fully explored. Herein, we show that pharmacological STING activation following the intratumoral injection of a nonnucleotide STING agonist (i.e., MSA-2) resulted in apoptosis of the cytolytic T cells, IFN-mediated overexpression of indoleamine 2,3-dioxygenase 1 (IDO1), and evasion from immune surveillance. We leveraged a noncovalent chemical strategy for developing immunomodulatory binary nanoparticles (iBINP) that include both the STING agonist and an IDO1 inhibitor for treating immune-evasive tumors. This iBINP platform, developed by dual prodrug engineering and subsequent nanoparticle assembly, enabled tumor-restricted STING activation and IDO1 inhibition, achieving immune activation while mitigating immune tolerance. A systemic treatment of preclinical models of colorectal cancer with iBINP resulted in robust antitumor immune responses, reduced infiltration of Tregs, and enhanced activity of CD8+ T cells. Importantly, this platform exhibits great therapeutic efficacy by overcoming STING-induced immune evasion and controlling the progression of multiple tumor models. This study unveils the mechanisms by which STING monotherapy induces immunosuppression in the tumor microenvironment and provides a combinatorial strategy for advancing cancer immunotherapies.
Fanchao Meng, Hengyan Zhu, Shuo Wu, Bohan Li, Xiaona Chen, Hangxiang Wang
The immunosuppressive tumor microenvironment (TME) drives radioresistance, but the role of γδ T cells in regulating radiosensitivity remains incompletely understood. In this study, we found that γδ T cell infiltration in the TME substantially increased after radiotherapy and contributed to radioresistance. Depletion of γδ T cells enhanced radiosensitivity. Single-cell RNA-seq revealed that γδ T cells in the postradiotherapy TME were characterized by the expression of Zbtb16, Il23r, and Il17a, and served as the primary source of IL-17A. These γδ T cells promoted radioresistance by recruiting myeloid-derived suppressor cells and suppressing T cell activation. Mechanistically, radiotherapy-induced tumor cell–derived microparticles containing dsDNA activated the cGAS-STING/NF-κB signaling pathway in macrophages, upregulating the expression of the chemokine CCL20, which was critical for γδ T cell recruitment. Targeting γδ T cells and IL-17A enhanced radiosensitivity and improved the efficacy of radiotherapy combined with anti-PD-1 immunotherapy, providing potential therapeutic strategies to overcome radioresistance.
Yue Deng, Xixi Liu, Xiao Yang, Wenwen Wei, Jiacheng Wang, Zheng Yang, Yajie Sun, Yan Hu, Haibo Zhang, Yijun Wang, Zhanjie Zhang, Lu Wen, Fang Huang, Kunyu Yang, Chao Wan
Chronic pain is a complex clinical problem comprising multiple conditions that may share a common genetic profile. GWAS have identified many risk loci whose cell-type context remains unclear. Here, we integrated GWAS data on chronic pain with single-cell RNA-Seq (scRNA-Seq) data from human brain and dorsal root ganglia (hDRG) and single-cell chromatin accessibility data from human brain and mouse dorsal horn. Pain-associated variants were enriched in glutamatergic neurons, mainly in the prefrontal cortex, hippocampal CA1-3, and amygdala. In hDRG, the hPEP.TRPV1/A1.2 neuronal subtype showed robust enrichment. Chromatin accessibility analyses revealed variant enrichment in excitatory and inhibitory neocortical neurons in the brain and in midventral neurons and oligodendrocyte precursor cells in the mouse dorsal horn. Gene-level heritability in the brain highlighted roles for kinase activity, GABAergic synapses, axon guidance, and neuron projection development. In hDRG, implicated genes were related to glutamatergic signaling and neuronal projection. In cervical DRG of patients with acute versus chronic pain, scRNA-Seq data from neuronal or non-neuronal cells were enriched for chronic pain–associated genes (e.g., EFNB2, GABBR1, NCAM1, SCN11A). This cell-type–specific genetic architecture of chronic pain across central and PNS circuits provides a foundation for targeted translational research.
Sylvanus Toikumo, Marc Parisien, Michael J. Leone, Chaitanya Srinivasan, Huasheng Yu, Asta Arendt-Tranholm, Úrzula Franco-Enzástiga, Christoph Hofstetter, Michele Curatolo, Wenqin Luo, Andreas R. Pfenning, Rebecca P. Seal, Rachel L. Kember, Theodore J. Price, Luda Diatchenko, Stephen G. Waxman, Henry R. Kranzler
The interaction between cells and extracellular matrix (ECM) has been recognized in the mechanism of fibrotic diseases. Collagen type VII (collagen VII) is an ECM component that plays an important role in cell-ECM interaction, particularly in cell anchoring and maintenance of ECM integrity. Pleural mesothelial cells (PMCs) drive inflammatory reactions and ECM production in pleura. However, the role of collagen VII and PMCs in pleural fibrosis was poorly understood. In this study, collagen VII protein was found to be increased in pleura of patients with tuberculous pleural fibrosis. Investigation of cellular and animal models revealed that collagen VII began to increase at an early stage in the pleural fibrotic process. Increase of collagen VII occurred ahead of collagen I and α-SMA in PMCs and pleura of animal models. Inhibition of collagen VII by mesothelial cell–specific deletion of collagen VII gene (Wt1-Cre+ Col7a1fl/fl) attenuated mouse experimental pleural fibrosis. Finally, it was found that excessive collagen VII changed collagen conformation, which resulted in elevation of ECM stiffness. Elevation of ECM stiffness activated integrin/PI3K-AKT/JUN signaling and promoted more ECM deposition, as well as mediated pleural fibrosis. In conclusion, excessive collagen VII mediated pleural fibrosis via increasing ECM stiffness.
Qian Li, Xin-Liang He, Shuai-Jun Chen, Qian Niu, Tan-Ze Cao, Xiao-Lin Cui, Zi-Heng Jia, He-De Zhang, Xiao Feng, Ye-Han Jiang, Li-Mei Liang, Pei-Pei Cheng, Shi-He Hu, Liang Xiong, Meng Wang, Hong Ye, Wan-Li Ma
Liver metastases are relatively resistant to checkpoint blockade immunotherapy. The hepatic tissue has distinctive features including high numbers of NK cells. It was therefore important to conduct in-depth single-cell analysis of NK cells in colorectal cancer liver metastases (CRLMs) with an effort to dissect their diversity and to identify candidate therapeutic targets. By combining unbiased single-cell transcriptomic with multiparametric flow cytometry analysis, we identified an abundant family of intrahepatic CD56bright NK cells in CRLMs endowed with antitumor functions resulting from specific transcriptional liver programs. Intrahepatic CD56bright and CD56dim NK lymphocytes expressed unique transcription factors (IRF8, TOX2), a high level of chemokines, and targetable immune checkpoints, including CXCR4 and the IL-1 receptor family member IL-1R8. CXCR4 pharmacological blocking and an anti–IL-1R8 mAb enhanced the effector function of CRLM NK cells. Targeting the diversity of liver NK cells and their distinct immune checkpoint repertoires is key to optimize the current immune therapy protocols in CRLM.
Joanna Mikulak, Domenico Supino, Paolo Marzano, Sara Terzoli, Roberta Carriero, Valentina Cazzetta, Rocco Piazza, Elena Bruni, Paolo Kunderfranco, Alessia Donato, Sarah Natalia Mapelli, Roberto Garuti, Silvia Carnevale, Francesco Scavello, Elena Magrini, Jelena Zeleznjak, Clelia Peano, Matteo Donadon, Guido Costa, Guido Torzilli, Alberto Mantovani, Cecilia Garlanda, Domenico Mavilio
It is now recognized that patient and animal models expressing genetically encoded misfolded mutant thyroglobulin (TG, the protein precursor for thyroid hormone synthesis) exhibit dramatic swelling of the endoplasmic reticulum (ER), with ER stress and cell death in thyrocytes — seen both in homozygotes (with severe hypothyroidism) and heterozygotes (with subclinical hypothyroidism). The thyrocyte death phenotype is exacerbated upon thyroidal stimulation (by thyrotropin [TSH]), as cell death is inhibited upon treatment with exogenous thyroxine. TSH stimulation might contribute to cytotoxicity by promoting ER stress or by an independent mechanism. Here we’ve engineered KO mice completely lacking Tg expression. Like other animals/patients with mutant TG, these animals rapidly developed severe goitrous hypothyroidism; however, thyroidal ER stress was exceedingly low — lower even than that seen in WT mice. Nevertheless, mice lacking TG exhibited abundant thyroid cell death, which depended upon renegade thyroidal iodination; cell death was completely suppressed in a genetic model lacking effective iodination or in Tg-KO mice treated with propylthiouracil (iodination inhibitor) or iodide deficiency. Thyrocytes in culture were killed not in the presence of H2O2 alone, but rather upon peroxidase-mediated iodination, with cell death blocked by propylthiouracil. Thus, in the thyroid gland bearing Tg mutation(s), TSH-stimulated iodination activity triggers thyroid cell death.
Crystal Young, Xiaohan Zhang, Xiaofan Wang, Aaron P. Kellogg, Kevin Pena, August Z. Cumming, Xiao-Hui Liao, Dennis Larkin, Hao Zhang, Emma Mastroianni, Helmut Grasberger, Samuel Refetoff, Peter Arvan
Orthosteric beta blockers represent the leading pharmacological intervention for managing heart diseases owing to their ability to competitively antagonize β-adrenergic receptors (βARs). However, their use is often limited by adverse effects such as fatigue, hypotension, and reduced exercise capacity, due in part to nonselective inhibition of multiple βAR subtypes. These challenges are particularly problematic in treating catecholaminergic polymorphic ventricular tachycardia (CPVT), a disease characterized by lethal tachyarrhythmias directly triggered by cardiac β1AR activation. To identify small-molecule allosteric modulators of the β1AR with enhanced subtype specificity and robust functional antagonism of β1AR-mediated signaling, we conducted a DNA-encoded small-molecule library screen and discovered Compound 11 (C11). C11 selectively potentiates the binding affinity of orthosteric agonists to the β1AR while potently inhibiting downstream signaling after β1AR activation. C11 prevents agonist-induced spontaneous contractile activity, Ca2+ release events, and exercise-induced ventricular tachycardia in the CSQ2–/– murine model of CPVT. Our studies demonstrate that C11 belongs to an emerging class of allosteric modulators termed positive allosteric modulator antagonists that positively modulate agonist binding but block downstream function. Its pharmacological properties and selective functional antagonism of β1AR-mediated signaling make C11 a promising therapeutic candidate for the treatment of CPVT and other forms of cardiac disease associated with excessive β1AR activation.
Alyssa Grogan, Robin M. Perelli, Seungkirl Ahn, Haoran Jiang, Arun Jyothidasan, Damini Sood, Chongzhao You, David I. Israel, Alex Shaginian, Qiuxia Chen, Jian Liu, Jialu Wang, Jan Steyaert, Alem W. Kahsai, Andrew P. Landstrom, Robert J. Lefkowitz, Howard A. Rockman
Clonal expansion of HIV-infected CD4+ T cells is a barrier to HIV eradication. We previously described a marked reduction in the frequency of the most clonally expanded, infected CD4+ T cells in an individual with elite control (ES24) after initiating chemoradiation for metastatic lung cancer with a regimen that included paclitaxel and carboplatin. We tested the hypothesis that this phenomenon was due to a higher susceptibility to the chemotherapeutic drugs of CD4+ T cell clones that were sustained by proliferation. We studied a CD4+ T cell clone with replication-competent provirus integrated into the ZNF721 gene, termed ZNF721i. We stimulated the clone with its cognate peptide and then exposed the cells to paclitaxel and/or carboplatin or the antiproliferative drug mycophenolate mofetil. While treatment of cells with the cognate peptide alone led to a marked expansion of the ZNF721i clone, treatment with the cognate peptide followed by culture with either paclitaxel or mycophenolate mofetil abrogated this process. The drugs did not affect the proliferation of other CD4+ T cell clones that were not specific for the cognate peptide. This strategy of antigen-specific stimulation followed by treatment with an antiproliferative agent may lead to the selective elimination of clonally expanded HIV-infected cells.
Filippo Dragoni, Joel Sop, Isha Gurumurthy, Tyler P. Beckey, Kellie N. Smith, Francesco R. Simonetti, Joel N. Blankson
Lactylation, a posttranslational modification derived from glycolysis, plays a pivotal role in ischemic heart disease. Neutrophils are predominantly glycolytic cells that trigger intensive inflammation of myocardial ischemia/reperfusion (MI/R). However, whether lactylation regulates neutrophil function during MI/R remains unknown. We applied lactyl proteomics analysis and found that S100a9 was lactylated at lysine 26 (S100a9K26la) in neutrophils, with elevated levels observed in both patients with acute myocardial infarction (AMI) and MI/R model mice. We demonstrated that S100a9K26la drove the development of MI/R using mutant knockin mice. Mechanistically, lactylated S100a9 translocated to the nucleus of neutrophils, where it bound to the promoters of migration-related genes, thereby enhancing their transcription as a coactivator and promoting neutrophil migration and cardiac recruitment. Additionally, lactylated S100a9 was released during neutrophil extracellular trap (NET) formation, leading to cardiomyocyte death by disrupting mitochondrial function. The enzyme dihydrolipoyllysine-residue acetyltransferase (DLAT) was identified as the lactyltransferase facilitating neutrophil S100a9K26la following MI/R, a process that could be restrained by α-lipoic acid. Consistently, we found that targeting the DLAT/S100a9K26la axis suppressed neutrophil burden and improved cardiac function following MI/R. In patients with AMI, elevated S100a9K26la levels in plasma were positively correlated with cardiac death. These findings highlight S100a9 lactylation as a potential therapeutic target for MI/R and as a promising biomarker for evaluating poor MI/R outcomes.
Xiaoqi Wang, Xiangyu Yan, Ge Mang, Yujia Chen, Shuang Liu, Jiayu Sui, Zhonghua Tong, Penghe Wang, Jingxuan Cui, Qiannan Yang, Yafei Zhang, Dongni Wang, Ping Sun, Weijun Song, Zexi Jin, Ming Shi, Peng Zhao, Jia Yang, Mingyang Liu, Naixin Wang, Tao Chen, Yong Ji, Bo Yu, Maomao Zhang
Whether amyloid-β (Aβ) peptides are synaptogenic or synaptotoxic remains a pivotal open question in Alzheimer’s disease research. Here, we chronically treated human neurons with precisely controlled concentrations of chemically defined synthetic Aβ40, Aβ42, and Aβ42arctic peptides that exhibit distinct aggregation propensities. Remarkably, chronic exposure of human neurons to free Aβ40 at higher concentrations or to free Aβ42 at lower concentrations potently promoted synapse formation. In contrast, aggregated Aβ42 or Aβ42arctic at higher concentrations were neurotoxic and synaptotoxic. The synaptotoxic effects of Aβ peptides manifested as an initial contraction of the synaptic vesicle cluster followed by synapse loss. Aβ40 and Aβ42 peptides with scrambled or inverted sequences were inactive. Thus, our experiments reveal that Aβ peptides exhibit an aggregation-dependent functional dichotomy that renders them either synaptogenic or synaptotoxic, thereby providing insight into how Aβ peptides straddle a thin line between physiological synapse organization and pathological synapse disruption. Among others, our data suggest that Alzheimer’s disease therapies might aim to shift the balance of Aβ peptides from the aggregated to the free state instead of suppressing all Aβ peptides.
Alberto Siddu, Silvia Natale, Connie H. Wong, Hamidreza Shaye, Thomas C. Südhof
No posts were found with this tag.