Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Research Article

  • 25,558 Articles
  • 0 Posts
  • ← Previous
  • 1
  • 2
  • …
  • 220
  • 221
  • 222
  • …
  • 2555
  • 2556
  • Next →
βIV-Spectrin regulates STAT3 targeting to tune cardiac response to pressure overload
Sathya D. Unudurthi, … , Peter J. Mohler, Thomas J. Hund
Sathya D. Unudurthi, … , Peter J. Mohler, Thomas J. Hund
Published September 18, 2018
Citation Information: J Clin Invest. 2018. https://doi.org/10.1172/JCI99245.
View: Text | PDF

βIV-Spectrin regulates STAT3 targeting to tune cardiac response to pressure overload

  • Text
  • PDF
Abstract

Heart failure (HF) remains a major source of morbidity and mortality in the US. The multifunctional Ca2+/calmodulin-dependent kinase II (CaMKII) has emerged as a critical regulator of cardiac hypertrophy and failure, although the mechanisms remain unclear. Previous studies have established that the cytoskeletal protein βIV-spectrin coordinates local CaMKII signaling. Here, we sought to determine the role of a spectrin-CaMKII complex in maladaptive remodeling in HF. Chronic pressure overload (6 weeks of transaortic constriction [TAC]) induced a decrease in cardiac function in WT mice but not in animals expressing truncated βIV-spectrin lacking spectrin-CaMKII interaction (qv3J mice). Underlying the observed differences in function was an unexpected differential regulation of STAT3-related genes in qv3J TAC hearts. In vitro experiments demonstrated that βIV-spectrin serves as a target for CaMKII phosphorylation, which regulates its stability. Cardiac-specific βIV-spectrin–KO (βIV-cKO) mice showed STAT3 dysregulation, fibrosis, and decreased cardiac function at baseline, similar to what was observed with TAC in WT mice. STAT3 inhibition restored normal cardiac structure and function in βIV-cKO and WT TAC hearts. Our studies identify a spectrin-based complex essential for regulation of the cardiac response to chronic pressure overload. We anticipate that strategies targeting the new spectrin-based “statosome” will be effective at suppressing maladaptive remodeling in response to chronic stress.

Authors

Sathya D. Unudurthi, Drew Nassal, Amara Greer-Short, Nehal Patel, Taylor Howard, Xianyao Xu, Birce Onal, Tony Satroplus, Deborah Hong, Cemantha Lane, Alyssa Dalic, Sara N. Koenig, Adam C. Lehnig, Lisa A. Baer, Hassan Musa, Kristin I. Stanford, Sakima Smith, Peter J. Mohler, Thomas J. Hund

×

Temporal dynamics of Wnt-dependent transcriptome reveal an oncogenic Wnt/MYC/ribosome axis
Babita Madan, … , Enrico Petretto, David M. Virshup
Babita Madan, … , Enrico Petretto, David M. Virshup
Published October 9, 2018
Citation Information: J Clin Invest. 2018. https://doi.org/10.1172/JCI122383.
View: Text | PDF

Temporal dynamics of Wnt-dependent transcriptome reveal an oncogenic Wnt/MYC/ribosome axis

  • Text
  • PDF
Abstract

Activating mutations in the Wnt pathway drive a variety of cancers, but the specific targets and pathways activated by Wnt ligands are not fully understood. To bridge this knowledge gap, we performed a comprehensive time-course analysis of Wnt-dependent signaling pathways in an orthotopic model of Wnt-addicted pancreatic cancer, using a porcupine (PORCN) inhibitor currently in clinical trials, and validated key results in additional Wnt-addicted models. The temporal analysis of the drug-perturbed transcriptome demonstrated direct and indirect regulation of more than 3,500 Wnt-activated genes (23% of the transcriptome). Regulation was both via Wnt/β-catenin and through the modulation of protein abundance of important transcription factors, including MYC, via Wnt-dependent stabilization of proteins (Wnt/STOP). Our study identifies a central role of Wnt/β-catenin and Wnt/STOP signaling in controlling ribosome biogenesis, a key driver of cancer proliferation.

Authors

Babita Madan, Nathan Harmston, Gahyathiri Nallan, Alex Montoya, Peter Faull, Enrico Petretto, David M. Virshup

×

MicroRNA-668 represses MTP18 to preserve mitochondrial dynamics in ischemic acute kidney injury
Qingqing Wei, … , Changlin Mei, Zheng Dong
Qingqing Wei, … , Changlin Mei, Zheng Dong
Published October 16, 2018
Citation Information: J Clin Invest. 2018. https://doi.org/10.1172/JCI121859.
View: Text | PDF

MicroRNA-668 represses MTP18 to preserve mitochondrial dynamics in ischemic acute kidney injury

  • Text
  • PDF
Abstract

The pathogenesis of ischemic diseases remains unclear. Here we demonstrate the induction of microRNA-668 (miR-668) in ischemic acute kidney injury (AKI) in human patients, mice, and renal tubular cells. The induction was HIF-1 dependent, as HIF-1 deficiency in cells and kidney proximal tubules attenuated miR-668 expression. We further identified a functional HIF-1 binding site in the miR-668 gene promoter. Anti–miR-668 increased apoptosis in renal tubular cells and enhanced ischemic AKI in mice, whereas miR-668 mimic was protective. Mechanistically, anti–miR-668 induced mitochondrial fragmentation, whereas miR-668 blocked mitochondrial fragmentation during hypoxia. We analyzed miR-668 target genes through immunoprecipitation of microRNA-induced silencing complexes followed by RNA deep sequencing and identified 124 protein-coding genes as likely targets of miR-668. Among these genes, only mitochondrial protein 18 kDa (MTP18) has been implicated in mitochondrial dynamics. In renal cells and mouse kidneys, miR-668 mimic suppressed MTP18, whereas anti–miR-668 increased MTP18 expression. Luciferase microRNA target reporter assay further verified MTP18 as a direct target of miR-668. In renal tubular cells, knockdown of MTP18 suppressed mitochondrial fragmentation and apoptosis. Together, the results suggest that miR-668 is induced via HIF-1 in ischemic AKI and that, upon induction, miR-668 represses MTP18 to preserve mitochondrial dynamics for renal tubular cell survival and kidney protection.

Authors

Qingqing Wei, Haipeng Sun, Shuwei Song, Yong Liu, Pengyuan Liu, Man Jiang Livingston, Jianwen Wang, Mingyu Liang, Qing-Sheng Mi, Yuqing Huo, Norris Stanley Nahman, Changlin Mei, Zheng Dong

×

Gα12 ablation exacerbates liver steatosis and obesity by suppressing USP22/SIRT1-regulated mitochondrial respiration
Tae Hyun Kim, … , Cheol Soo Choi, Sang Geon Kim
Tae Hyun Kim, … , Cheol Soo Choi, Sang Geon Kim
Published October 9, 2018
Citation Information: J Clin Invest. 2018. https://doi.org/10.1172/JCI97831.
View: Text | PDF

Gα12 ablation exacerbates liver steatosis and obesity by suppressing USP22/SIRT1-regulated mitochondrial respiration

  • Text
  • PDF
Abstract

Nonalcoholic fatty liver disease (NAFLD) arises from mitochondrial dysfunction under sustained imbalance between energy intake and expenditure, but the underlying mechanisms controlling mitochondrial respiration have not been entirely understood. Heterotrimeric G proteins converge with activated GPCRs to modulate cell-signaling pathways to maintain metabolic homeostasis. Here, we investigated the regulatory role of G protein α12 (Gα12) on hepatic lipid metabolism and whole-body energy expenditure in mice. Fasting increased Gα12 levels in mouse liver. Gα12 ablation markedly augmented fasting-induced hepatic fat accumulation. cDNA microarray analysis from Gna12-KO liver revealed that the Gα12-signaling pathway regulated sirtuin 1 (SIRT1) and PPARα, which are responsible for mitochondrial respiration. Defective induction of SIRT1 upon fasting was observed in the liver of Gna12-KO mice, which was reversed by lentivirus-mediated Gα12 overexpression in hepatocytes. Mechanistically, Gα12 stabilized SIRT1 protein through transcriptional induction of ubiquitin-specific peptidase 22 (USP22) via HIF-1α increase. Gα12 levels were markedly diminished in liver biopsies from NAFLD patients. Consistently, Gna12-KO mice fed a high-fat diet displayed greater susceptibility to diet-induced liver steatosis and obesity due to decrease in energy expenditure. Our results demonstrate that Gα12 regulates SIRT1-dependent mitochondrial respiration through HIF-1α–dependent USP22 induction, identifying Gα12 as an upstream molecule that contributes to the regulation of mitochondrial energy expenditure.

Authors

Tae Hyun Kim, Yoon Mee Yang, Chang Yeob Han, Ja Hyun Koo, Hyunhee Oh, Su Sung Kim, Byoung Hoon You, Young Hee Choi, Tae-Sik Park, Chang Ho Lee, Hitoshi Kurose, Mazen Noureddin, Ekihiro Seki, Yu-Jui Yvonne Wan, Cheol Soo Choi, Sang Geon Kim

×

Notch signaling suppresses glucose metabolism in mesenchymal progenitors to restrict osteoblast differentiation
Seung-Yon Lee, Fanxin Long
Seung-Yon Lee, Fanxin Long
Published October 4, 2018
Citation Information: J Clin Invest. 2018. https://doi.org/10.1172/JCI96221.
View: Text | PDF

Notch signaling suppresses glucose metabolism in mesenchymal progenitors to restrict osteoblast differentiation

  • Text
  • PDF
Abstract

Notch signaling critically controls cell fate decisions in mammals, both during embryogenesis and in adults. In the skeleton, Notch suppresses osteoblast differentiation and sustains bone marrow mesenchymal progenitors during postnatal life. Stabilizing mutations of Notch2 cause Hajdu-Cheney syndrome, which is characterized by early-onset osteoporosis in humans, but the mechanism whereby Notch inhibits bone accretion is not fully understood. Here, we report that activation of Notch signaling by either Jagged1 or the Notch2 intracellular domain suppresses glucose metabolism and osteoblast differentiation in primary cultures of bone marrow mesenchymal progenitors. Importantly, deletion of Notch2 in the limb mesenchyme increases both glycolysis and bone formation in the long bones of postnatal mice, whereas pharmacological reduction of glycolysis abrogates excessive bone formation. Mechanistically, Notch reduces the expression of glycolytic and mitochondrial complex I genes, resulting in a decrease in mitochondrial respiration, superoxide production, and AMPK activity. Forced activation of AMPK restores glycolysis in the face of Notch signaling. Thus, suppression of glucose metabolism contributes to the mechanism, whereby Notch restricts osteoblastogenesis from bone marrow mesenchymal progenitors.

Authors

Seung-Yon Lee, Fanxin Long

×

Accessory heterozygous mutations in cone photoreceptor CNGA3 exacerbate CNG channel–associated retinopathy
Markus Burkard, … , Bernd Wissinger, Peter Ruth
Markus Burkard, … , Bernd Wissinger, Peter Ruth
Published November 12, 2018
Citation Information: J Clin Invest. 2018. https://doi.org/10.1172/JCI96098.
View: Text | PDF

Accessory heterozygous mutations in cone photoreceptor CNGA3 exacerbate CNG channel–associated retinopathy

  • Text
  • PDF
Abstract

Mutations in CNGA3 and CNGB3, the genes encoding the subunits of the tetrameric cone photoreceptor cyclic nucleotide–gated ion channel, cause achromatopsia, a congenital retinal disorder characterized by loss of cone function. However, a small number of patients carrying the CNGB3/c.1208G>A;p.R403Q mutation present with a variable retinal phenotype ranging from complete and incomplete achromatopsia to moderate cone dysfunction or progressive cone dystrophy. By exploring a large patient cohort and published cases, we identified 16 unrelated individuals who were homozygous or (compound-)heterozygous for the CNGB3/c.1208G>A;p.R403Q mutation. In-depth genetic and clinical analysis revealed a co-occurrence of a mutant CNGA3 allele in a high proportion of these patients (10 of 16), likely contributing to the disease phenotype. To verify these findings, we generated a Cngb3R403Q/R403Q mouse model, which was crossbred with Cnga3-deficient (Cnga3–/–) mice to obtain triallelic Cnga3+/– Cngb3R403Q/R403Q mutants. As in human subjects, there was a striking genotype-phenotype correlation, since the presence of 1 Cnga3-null allele exacerbated the cone dystrophy phenotype in Cngb3R403Q/R403Q mice. These findings strongly suggest a digenic and triallelic inheritance pattern in a subset of patients with achromatopsia/severe cone dystrophy linked to the CNGB3/p.R403Q mutation, with important implications for diagnosis, prognosis, and genetic counseling.

Authors

Markus Burkard, Susanne Kohl, Timm Krätzig, Naoyuki Tanimoto, Christina Brennenstuhl, Anne E. Bausch, Katrin Junger, Peggy Reuter, Vithiyanjali Sothilingam, Susanne C. Beck, Gesine Huber, Xi-Qin Ding, Anja K. Mayer, Britta Baumann, Nicole Weisschuh, Ditta Zobor, Gesa-Astrid Hahn, Ulrich Kellner, Sascha Venturelli, Elvir Becirovic, Peter Charbel Issa, Robert K. Koenekoop, Günther Rudolph, John Heckenlively, Paul Sieving, Richard G. Weleber, Christian Hamel, Xiangang Zong, Martin Biel, Robert Lukowski, Matthias W. Seeliger, Stylianos Michalakis, Bernd Wissinger, Peter Ruth

×

Fbxo22-mediated KDM4B degradation determines selective estrogen receptor modulator activity in breast cancer
Yoshikazu Johmura, … , Tomohiko Ohta, Makoto Nakanishi
Yoshikazu Johmura, … , Tomohiko Ohta, Makoto Nakanishi
Published November 12, 2018
Citation Information: J Clin Invest. 2018. https://doi.org/10.1172/JCI121679.
View: Text | PDF

Fbxo22-mediated KDM4B degradation determines selective estrogen receptor modulator activity in breast cancer

  • Text
  • PDF
Abstract

The agonistic/antagonistic biocharacter of selective estrogen receptor modulators (SERMs) can have therapeutic advantages, particularly in the case of premenopausal breast cancers. Although the contradictory effects of these modulators have been studied in terms of crosstalk between the estrogen receptor α (ER) and coactivator dynamics and growth factor signaling, the molecular basis of these mechanisms is still obscure. We identify a series of regulatory mechanisms controlling cofactor dynamics on ER and SERM function, whose activities require F-box protein 22 (Fbxo22). Skp1, Cullin1, F-box–containing complex (SCFFbxo22) ubiquitylated lysine demethylase 4B (KDM4B) complexed with tamoxifen-bound (TAM-bound) ER, whose degradation released steroid receptor coactivator (SRC) from ER. Depletion of Fbxo22 resulted in ER-dependent transcriptional activation via transactivation function 1 (AF1) function, even in the presence of SERMs. In living cells, TAM released SRC and KDM4B from ER in a Fbxo22-dependent manner. SRC release by TAM required Fbxo22 on almost all ER-SRC–bound enhancers and promoters. TAM failed to prevent the growth of Fbxo22-depleted, ER-positive breast cancers both in vitro and in vivo. Clinically, a low level of Fbxo22 in tumor tissues predicted a poorer outcome in ER-positive/human epidermal growth factor receptor type 2–negative (HER2-negative) breast cancers with high hazard ratios, independently of other markers such as Ki-67 and node status. We propose that the level of Fbxo22 in tumor tissues defines a new subclass of ER-positive breast cancers for which SCFFbxo22-mediated KDM4B degradation in patients can be a therapeutic target for the next generation of SERMs.

Authors

Yoshikazu Johmura, Ichiro Maeda, Narumi Suzuki, Wenwen Wu, Atsushi Goda, Mariko Morita, Kiyoshi Yamaguchi, Mizuki Yamamoto, Satoi Nagasawa, Yasuyuki Kojima, Koichiro Tsugawa, Natsuko Inoue, Yasuo Miyoshi, Tomo Osako, Futoshi Akiyama, Reo Maruyama, Jun-ichiro Inoue, Yoichi Furukawa, Tomohiko Ohta, Makoto Nakanishi

×

Insulin receptor signaling regulates renal collecting duct and intercalated cell antibacterial defenses
Matthew J. Murtha, … , Brian Becknell, John David Spencer
Matthew J. Murtha, … , Brian Becknell, John David Spencer
Published November 12, 2018
Citation Information: J Clin Invest. 2018. https://doi.org/10.1172/JCI98595.
View: Text | PDF

Insulin receptor signaling regulates renal collecting duct and intercalated cell antibacterial defenses

  • Text
  • PDF
Abstract

People with diabetes mellitus have increased infection risk. With diabetes, urinary tract infection (UTI) is more common and has worse outcomes. Here, we investigate how diabetes and insulin resistance impact the kidney’s innate defenses and urine sterility. We report that type 2 diabetic mice have increased UTI risk. Moreover, insulin-resistant prediabetic mice have increased UTI susceptibility, independent of hyperglycemia or glucosuria. To identify how insulin resistance affects renal antimicrobial defenses, we genetically deleted the insulin receptor in the kidney’s collecting tubules and intercalated cells. Intercalated cells, located within collecting tubules, contribute to epithelial defenses by acidifying the urine and secreting antimicrobial peptides (AMPs) into the urinary stream. Collecting duct and intercalated cell–specific insulin receptor deletion did not impact urine acidification, suppressed downstream insulin-mediated targets and AMP expression, and increased UTI susceptibility. Specifically, insulin receptor–mediated signaling regulates AMPs, including lipocalin 2 and ribonuclease 4, via phosphatidylinositol-3-kinase signaling. These data suggest that insulin signaling plays a critical role in renal antibacterial defenses.

Authors

Matthew J. Murtha, Tad Eichler, Kristin Bender, Jackie Metheny, Birong Li, Andrew L. Schwaderer, Claudia Mosquera, Cindy James, Laura Schwartz, Brian Becknell, John David Spencer

×

CD84 regulates PD-1/PD-L1 expression and function in chronic lymphocytic leukemia
Hadas Lewinsky, … , Shirly Becker-Herman, Idit Shachar
Hadas Lewinsky, … , Shirly Becker-Herman, Idit Shachar
Published October 2, 2018
Citation Information: J Clin Invest. 2018. https://doi.org/10.1172/JCI96610.
View: Text | PDF

CD84 regulates PD-1/PD-L1 expression and function in chronic lymphocytic leukemia

  • Text
  • PDF
Abstract

Chronic lymphocytic leukemia (CLL) is characterized by clonal proliferation and progressive accumulation of mature B lymphocytes in the peripheral blood, lymphoid tissues, and bone marrow. CLL is characterized by profound immune defects leading to severe infectious complications. T cells are numerically, phenotypically, and functionally highly abnormal in CLL, with only limited ability to exert antitumor immune responses. Exhaustion of T cells has also been suggested to play an important role in antitumor responses. CLL-mediated T cell exhaustion is achieved by the aberrant expression of several inhibitory molecules on CLL cells and their microenvironment, prominently the programmed cell death ligand 1/programmed cell death 1 (PD-L1/PD-1) receptors. Previously, we showed that CD84, a member of the SLAM family of receptors, bridges between CLL cells and their microenvironment. In the current study, we followed CD84 regulation of T cell function. We showed that cell-cell interaction mediated through human and mouse CD84 upregulates PD-L1 expression on CLL cells and in their microenvironment and PD-1 expression on T cells. This resulted in suppression of T cell responses and activity in vitro and in vivo. Thus, our results demonstrate a role for CD84 in the regulation of immune checkpoints by leukemia cells and identify CD84 blockade as a therapeutic strategy to reverse tumor-induced immune suppression.

Authors

Hadas Lewinsky, Avital F. Barak, Victoria Huber, Matthias P. Kramer, Lihi Radomir, Lital Sever, Irit Orr, Vita Mirkin, Nili Dezorella, Mika Shapiro, Yosef Cohen, Lev Shvidel, Martina Seiffert, Yair Herishanu, Shirly Becker-Herman, Idit Shachar

×

PLK1 stabilizes a MYC-dependent kinase network in aggressive B cell lymphomas
Yuan Ren, … , Kai Fu, Jianguo Tao
Yuan Ren, … , Kai Fu, Jianguo Tao
Published September 27, 2018
Citation Information: J Clin Invest. 2018. https://doi.org/10.1172/JCI122533.
View: Text | PDF

PLK1 stabilizes a MYC-dependent kinase network in aggressive B cell lymphomas

  • Text
  • PDF
Abstract

Concordant activation of MYC and BCL-2 oncoproteins in double-hit lymphoma (DHL) results in aggressive disease that is refractory to treatment. By integrating activity-based proteomic profiling and drug screens, polo-like kinase-1 (PLK1) was identified as an essential regulator of the MYC-dependent kinome in DHL. Notably, PLK1 was expressed at high levels in DHL, correlated with MYC expression, and connoted poor outcome. Further, PLK1 signaling augmented MYC protein stability, and in turn, MYC directly induced PLK1 transcription, establishing a feed-forward MYC-PLK1 circuit in DHL. Finally, inhibition of PLK1 triggered degradation of MYC and of the antiapoptotic protein MCL-1, and PLK1 inhibitors showed synergy with BCL-2 antagonists in blocking DHL cell growth, survival, and tumorigenicity, supporting clinical targeting of PLK1 in DHL.

Authors

Yuan Ren, Chengfeng Bi, Xiaohong Zhao, Tint Lwin, Cheng Wang, Ji Yuan, Ariosto S. Silva, Bijal D. Shah, Bin Fang, Tao Li, John M. Koomen, Huijuan Jiang, Julio C. Chavez, Lan V. Pham, Praneeth R. Sudalagunta, Lixin Wan, Xuefeng Wang, William S. Dalton, Lynn C. Moscinski, Kenneth H. Shain, Julie Vose, John L. Cleveland, Eduardo M. Sotomayor, Kai Fu, Jianguo Tao

×
  • ← Previous
  • 1
  • 2
  • …
  • 220
  • 221
  • 222
  • …
  • 2555
  • 2556
  • Next →

No posts were found with this tag.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts