Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Aging (Upcoming)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • Circadian Rhythm (Oct 2021)
    • Gut-Brain Axis (Jul 2021)
    • Tumor Microenvironment (Mar 2021)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact

Therapeutics

  • 125 Articles
  • 0 Posts
  • ← Previous
  • 1
  • 2
  • …
  • 11
  • 12
  • 13
  • Next →
Immunosurveillance and therapy of multiple myeloma are CD226 dependent
Camille Guillerey, … , Mark J. S­myth, Ludovic Martinet
Camille Guillerey, … , Mark J. S­myth, Ludovic Martinet
Published April 20, 2015
Citation Information: J Clin Invest. 2015. https://doi.org/10.1172/JCI77181.
View: Text | PDF | Corrigendum

Immunosurveillance and therapy of multiple myeloma are CD226 dependent

  • Text
  • PDF
Abstract

Multiple myeloma (MM) is an age-dependent hematological malignancy. Evaluation of immune interactions that drive MM relies on in vitro experiments that do not reflect the complex cellular stroma involved in MM pathogenesis. Here we used Vk*MYC transgenic mice, which spontaneously develop MM, and demonstrated that the immune system plays a critical role in the control of MM progression and the response to treatment. We monitored Vk*MYC mice that had been crossed with Cd226 mutant mice over a period of 3 years and found that CD226 limits spontaneous MM development. The CD226-dependent anti-myeloma immune response against transplanted Vk*MYC MM cells was mediated both by NK and CD8+ T cells through perforin and IFN-γ pathways. Moreover, CD226 expression was required for optimal antimyeloma efficacy of cyclophosphamide (CTX) and bortezomib (Btz), which are both standardly used to manage MM in patients. Activation of costimulatory receptor CD137 with mAb (4-1BB) exerted strong antimyeloma activity, while inhibition of coinhibitory receptors PD-1 and CTLA-4 had no effect. Taken together, the results of this study provide in vivo evidence that CD226 is important for MM immunosurveillance and indicate that specific immune components should be targeted for optimal MM treatment efficacy. As progressive immunosuppression associates with MM development, strategies aimed to increase immune functions may have important therapeutic implications in MM.

Authors

Camille Guillerey, Lucas Ferrari de Andrade, Slavica Vuckovic, Kim Miles, Shin Foong Ngiow, Michelle C.R. Yong, Michele W.L. Teng, Marco Colonna, David S. Ritchie, Martha Chesi, P. Leif Bergsagel, Geoffrey R. Hill, Mark J. S­myth, Ludovic Martinet

×

NRF2 promotes neuronal survival in neurodegeneration and acute nerve damage
Wenjun Xiong, … , Larry I. Benowitz, Constance L. Cepko
Wenjun Xiong, … , Larry I. Benowitz, Constance L. Cepko
Published March 23, 2015
Citation Information: J Clin Invest. 2015. https://doi.org/10.1172/JCI79735.
View: Text | PDF

NRF2 promotes neuronal survival in neurodegeneration and acute nerve damage

  • Text
  • PDF
Abstract

Oxidative stress contributes to the loss of neurons in many disease conditions as well as during normal aging; however, small-molecule agents that reduce oxidation have not been successful in preventing neurodegeneration. Moreover, even if an efficacious systemic reduction of reactive oxygen and/or nitrogen species (ROS/NOS) could be achieved, detrimental side effects are likely, as these molecules regulate normal physiological processes. A more effective and targeted approach might be to augment the endogenous antioxidant defense mechanism only in the cells that suffer from oxidation. Here, we created several adeno-associated virus (AAV) vectors to deliver genes that combat oxidation. These vectors encode the transcription factors NRF2 and/or PGC1a, which regulate hundreds of genes that combat oxidation and other forms of stress, or enzymes such as superoxide dismutase 2 (SOD2) and catalase, which directly detoxify ROS. We tested the effectiveness of this approach in 3 models of photoreceptor degeneration and in a nerve crush model. AAV-mediated delivery of NRF2 was more effective than SOD2 and catalase, while expression of PGC1a accelerated photoreceptor death. Since the NRF2-mediated neuroprotective effects extended to photoreceptors and retinal ganglion cells, which are 2 very different types of neurons, these results suggest that this targeted approach may be broadly applicable to many diseases in which cells suffer from oxidative damage.

Authors

Wenjun Xiong, Alexandra E. MacColl Garfinkel, Yiqing Li, Larry I. Benowitz, Constance L. Cepko

×

Vector design influences hepatic genotoxicity after adeno-associated virus gene therapy
Randy J. Chandler, … , Shawn M. Burgess, Charles P. Venditti
Randy J. Chandler, … , Shawn M. Burgess, Charles P. Venditti
Published January 20, 2015
Citation Information: J Clin Invest. 2015. https://doi.org/10.1172/JCI79213.
View: Text | PDF

Vector design influences hepatic genotoxicity after adeno-associated virus gene therapy

  • Text
  • PDF
Abstract

The use of adeno-associated virus (AAV) as a gene therapy vector has been approved recently for clinical use and has demonstrated efficacy in a growing number of clinical trials. However, the safety of AAV as a vector has been challenged by a single study that documented hepatocellular carcinoma (HCC) after AAV gene delivery in mice. Most studies have not noted genotoxicity following AAV-mediated gene delivery; therefore, the possibility that there is an association between AAV and HCC is controversial. Here, we performed a comprehensive study of HCC in a large number of mice following therapeutic AAV gene delivery. Using a sensitive high-throughput integration site-capture technique and global expressional analysis, we found that AAV integration into the RNA imprinted and accumulated in nucleus (Rian) locus, and the resulting overexpression of proximal microRNAs and retrotransposon-like 1 (Rtl1) were associated with HCC. In addition, we demonstrated that the AAV vector dose, enhancer/promoter selection, and the timing of gene delivery are all critical factors for determining HCC incidence after AAV gene delivery. Together, our results define aspects of AAV-mediated gene therapy that influence genotoxicity and suggest that these features should be considered for design of both safer AAV vectors and gene therapy studies.

Authors

Randy J. Chandler, Matthew C. LaFave, Gaurav K. Varshney, Niraj S. Trivedi, Nuria Carrillo-Carrasco, Julien S. Senac, Weiwei Wu, Victoria Hoffmann, Abdel G. Elkahloun, Shawn M. Burgess, Charles P. Venditti

×

Antisense oligonucleotide treatment ameliorates alpha-1 antitrypsin–related liver disease in mice
Shuling Guo, … , Michael L. McCaleb, Brett P. Monia
Shuling Guo, … , Michael L. McCaleb, Brett P. Monia
Published December 20, 2013
Citation Information: J Clin Invest. 2013. https://doi.org/10.1172/JCI67968.
View: Text | PDF

Antisense oligonucleotide treatment ameliorates alpha-1 antitrypsin–related liver disease in mice

  • Text
  • PDF
Abstract

Alpha-1 antitrypsin deficiency (AATD) is a rare genetic disease that results from mutations in the alpha-1 antitrypsin (AAT) gene. The mutant AAT protein aggregates and accumulates in the liver leading to AATD liver disease, which is only treatable by liver transplant. The PiZ transgenic mouse strain expresses a human AAT (hAAT) transgene that contains the AATD-associated Glu342Lys mutation. PiZ mice exhibit many AATD symptoms, including AAT protein aggregates, increased hepatocyte death, and liver fibrosis. In the present study, we systemically treated PiZ mice with an antisense oligonucleotide targeted against hAAT (AAT-ASO) and found reductions in circulating levels of AAT and both soluble and aggregated AAT protein in the liver. Furthermore, AAT-ASO administration in these animals stopped liver disease progression after short-term treatment, reversed liver disease after long-term treatment, and prevented liver disease in young animals. Additionally, antisense oligonucleotide treatment markedly decreased liver fibrosis in this mouse model. Administration of AAT-ASO in nonhuman primates led to an approximately 80% reduction in levels of circulating normal AAT, demonstrating potential for this approach in higher species. Antisense oligonucleotides thus represent a promising therapy for AATD liver disease.

Authors

Shuling Guo, Sheri L. Booten, Mariam Aghajan, Gene Hung, Chenguang Zhao, Keith Blomenkamp, Danielle Gattis, Andrew Watt, Susan M. Freier, Jeffery H. Teckman, Michael L. McCaleb, Brett P. Monia

×

Vaccine-induced monoclonal antibodies targeting circumsporozoite protein prevent Plasmodium falciparum infection
Lander Foquet, … , Philip Meuleman, Geert Leroux-Roels
Lander Foquet, … , Philip Meuleman, Geert Leroux-Roels
Published December 2, 2013
Citation Information: J Clin Invest. 2013. https://doi.org/10.1172/JCI70349.
View: Text | PDF

Vaccine-induced monoclonal antibodies targeting circumsporozoite protein prevent Plasmodium falciparum infection

  • Text
  • PDF
Abstract

Malaria, which is the result of Plasmodium falciparum infection, is a global health threat that resulted in 655,000 deaths and 216 million clinical cases in 2010 alone. Recent phase 3 trials with malaria vaccine candidate RTS,S/AS01 (RTS,S) in children has demonstrated modest efficacy against clinical and severe malaria. RTS,S targets the pre-erythrocytic phase of the disease and induces high antibody titers against the P. falciparum circumsporozoite protein (CSP) and a moderate CD4+ T cell response. The individual contribution of these adaptive immune responses to protection from infection remains unknown. Here, we found that prophylactic administration of anti-CSP mAbs derived from an RTS,S-vaccinated recipient fully protected mice with humanized livers from i.v.- and mosquito bite–delivered P. falciparum sporozoite challenge. Titers of anti-CSP that conveyed full protection were within the range observed in human RTS,S vaccine recipients. Increasing anti-CSP titers resulted in a dose-dependent reduction of the liver parasite burden. These data indicate that RTS,S-induced antibodies are protective and provide sterilizing immunity against P. falciparum infection when reaching or exceeding a critical plasma concentration.

Authors

Lander Foquet, Cornelus C. Hermsen, Geert-Jan van Gemert, Eva Van Braeckel, Karin E. Weening, Robert Sauerwein, Philip Meuleman, Geert Leroux-Roels

×
  • ← Previous
  • 1
  • 2
  • …
  • 11
  • 12
  • 13
  • Next →

No posts were found with this tag.

Advertisement

Copyright © 2022 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts