Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Pulmonology

  • 212 Articles
  • 2 Posts
  • ← Previous
  • 1
  • 2
  • 3
  • 4
  • …
  • 21
  • 22
  • Next →
A fibroblast-dependent TGFβ1/sFRP2 noncanonical Wnt signaling axis promotes epithelial metaplasia in idiopathic pulmonary fibrosis
Max L. Cohen, … , Harold A. Chapman, Claude Jourdan Le Saux
Max L. Cohen, … , Harold A. Chapman, Claude Jourdan Le Saux
Published July 9, 2024
Citation Information: J Clin Invest. 2024. https://doi.org/10.1172/JCI174598.
View: Text | PDF

A fibroblast-dependent TGFβ1/sFRP2 noncanonical Wnt signaling axis promotes epithelial metaplasia in idiopathic pulmonary fibrosis

  • Text
  • PDF
Abstract

Reciprocal interactions between alveolar fibroblasts and epithelial cells are crucial for lung homeostasis, injury repair, and fibrogenesis, but underlying mechanisms remain unclear. To investigate, we administered the fibroblast-selective TGFβ1 signaling inhibitor, epigallocatechin gallate (EGCG), to Interstitial Lung Disease (ILD) patients undergoing diagnostic lung biopsy and conducted single-cell RNA sequencing on spare tissue. Biopsies from untreated patients showed higher fibroblast TGFβ1 signaling compared to non-disease donor or end-stage ILD tissues. In vivo, EGCG downregulated TGFβ1 signaling and several pro-inflammatory and stress pathways in biopsy samples. Notably, EGCG reduced fibroblast secreted frizzle-like receptor protein 2 (sFRP2), an unrecognized TGFβ1 fibroblast target gene induced near type II alveolar epithelial cells (AEC2s) in situ. Using AEC2-fibroblast coculture organoids and precision cut lung slices (PCLS) from non-diseased donors, we found TGFβ1 signaling promotes a spread AEC2 KRT17+ basaloid state, whereupon sFRP2 then activates a mature Krt5+ basal cell program. Wnt-receptor Frizzled 5 (Fzd5) expression and downstream calcineurin signaling were required for sFRP2-induced nuclear NFATc3 accumulation and KRT5 expression. These findings highlight stage-specific TGFβ1 signaling in ILD, the therapeutic potential of EGCG in reducing IPF-related transcriptional changes, and identify TGFβ1-non-canonical Wnt pathway crosstalk via sFRP2 as a novel mechanism for dysfunctional epithelial signaling in Idiopathic Pulmonary Fibrosis/ILD.

Authors

Max L. Cohen, Alexis N. Brumwell, Tsung Che Ho, Kiana Garakani, Genevieve Montas, Darren Leong, Vivianne W. Ding, Jeffrey A. Golden, Binh N. Trinh, David M. Jablons, Michael A. Matthay, Kirk D. Jones, Paul J. Wolters, Ying Wei, Harold A. Chapman, Claude Jourdan Le Saux

×

The importance of disrupting complement activation in acute lung injury
Rick Kapur, … , John W. Semple, Alexander P.J. Vlaar
Rick Kapur, … , John W. Semple, Alexander P.J. Vlaar
Published June 17, 2024
Citation Information: J Clin Invest. 2024;134(12):e182251. https://doi.org/10.1172/JCI182251.
View: Text | PDF

The importance of disrupting complement activation in acute lung injury

  • Text
  • PDF
Abstract

Authors

Rick Kapur, John W. Semple, Alexander P.J. Vlaar

×

Reply: The importance of disrupting complement activation in acute lung injury
Simon J. Cleary, Mark R. Looney
Simon J. Cleary, Mark R. Looney
Published June 17, 2024
Citation Information: J Clin Invest. 2024;134(12):e182451. https://doi.org/10.1172/JCI182451.
View: Text | PDF

Reply: The importance of disrupting complement activation in acute lung injury

  • Text
  • PDF
Abstract

Authors

Simon J. Cleary, Mark R. Looney

×

Noncanonical WNT5A controls the activation of latent TGF-β to drive fibroblast activation and tissue fibrosis
Thuong Trinh-Minh, … , Georg Schett, Jörg H.W. Distler
Thuong Trinh-Minh, … , Georg Schett, Jörg H.W. Distler
Published May 15, 2024
Citation Information: J Clin Invest. 2024;134(10):e159884. https://doi.org/10.1172/JCI159884.
View: Text | PDF

Noncanonical WNT5A controls the activation of latent TGF-β to drive fibroblast activation and tissue fibrosis

  • Text
  • PDF
Abstract

Transforming growth factor β (TGF-β) signaling is a core pathway of fibrosis, but the molecular regulation of the activation of latent TGF-β remains incompletely understood. Here, we demonstrate a crucial role of WNT5A/JNK/ROCK signaling that rapidly coordinates the activation of latent TGF-β in fibrotic diseases. WNT5A was identified as a predominant noncanonical WNT ligand in fibrotic diseases such as systemic sclerosis, sclerodermatous chronic graft-versus-host disease, and idiopathic pulmonary fibrosis, stimulating fibroblast-to-myofibroblast transition and tissue fibrosis by activation of latent TGF-β. The activation of latent TGF-β requires rapid JNK- and ROCK-dependent cytoskeletal rearrangements and integrin αV (ITGAV). Conditional ablation of WNT5A or its downstream targets prevented activation of latent TGF-β, rebalanced TGF-β signaling, and ameliorated experimental fibrosis. We thus uncovered what we believe to be a novel mechanism for the aberrant activation of latent TGF-β in fibrotic diseases and provided evidence for targeting WNT5A/JNK/ROCK signaling in fibrotic diseases as a new therapeutic approach.

Authors

Thuong Trinh-Minh, Chih-Wei Chen, Cuong Tran Manh, Yi-Nan Li, Honglin Zhu, Xiang Zhou, Debomita Chakraborty, Yun Zhang, Simon Rauber, Clara Dees, Neng-Yu Lin, Delf Kah, Richard Gerum, Christina Bergmann, Alexander Kreuter, Christiane Reuter, Florian Groeber-Becker, Beate Eckes, Oliver Distler, Ben Fabry, Andreas Ramming, Alexandra Schambony, Georg Schett, Jörg H.W. Distler

×

Inflammatory and tissue injury marker dynamics in pediatric acute respiratory distress syndrome
Nadir Yehya, … , Jason D. Christie, Nilam S. Mangalmurti
Nadir Yehya, … , Jason D. Christie, Nilam S. Mangalmurti
Published April 4, 2024
Citation Information: J Clin Invest. 2024. https://doi.org/10.1172/JCI177896.
View: Text | PDF

Inflammatory and tissue injury marker dynamics in pediatric acute respiratory distress syndrome

  • Text
  • PDF
Abstract

BACKGROUND. The molecular signature of pediatric acute respiratory distress syndrome (ARDS) is poorly described, and the degree to which hyperinflammation or specific tissue injury contributes to outcomes is unknown. Therefore, we profiled inflammation and tissue injury dynamics over the first 7 days of ARDS, and associated specific biomarkers with mortality, persistent ARDS, and persistent multiple organ dysfunction syndrome (MODS). METHODS. In a single-center prospective cohort of intubated pediatric ARDS, we collected plasma on days 0, 3, and 7. Nineteen biomarkers reflecting inflammation, tissue injury, and damage associated molecular patterns were measured. We assessed the relationship between biomarkers and trajectories with mortality, persistent ARDS, or persistent MODS using multivariable mixed effect models. RESULTS. In 279 subjects (64 [23%] non-survivors), hyperinflammatory cytokines, tissue injury markers, and DAMPs were higher in non-survivors. Survivors and non-survivors showed different biomarker trajectories. IL-1α, sTNFR1, ANG2, and SPD increased in non-survivors, while DAMPs remained persistently elevated. ANG2 and P3NP were associated with persistent ARDS, whereas multiple cytokines, tissue injury markers, and DAMPs were associated with persistent MODS. Corticosteroid use did not impact the association of biomarker levels or trajectory with mortality. CONCLUSIONS. Pediatric ARDS survivors and non-survivors had distinct biomarker trajectories, with cytokines, endothelial and alveolar epithelial injury, and DAMPs elevated in non-survivors. Mortality markers overlapped with markers associated with persistent MODS, rather than persistent ARDS.

Authors

Nadir Yehya, Thomas J. Booth, Gnana D. Ardhanari, Jill M. Thompson, L.K. Metthew Lam, Jacob E. Till, Mark V. Mai, Garrett Keim, Daniel J. McKeone, E. Scott Halstead, Patrick Lahni, Brian M. Varisco, Wanding Zhou, Erica L. Carpenter, Jason D. Christie, Nilam S. Mangalmurti

×

IgG hexamers initiate complement-dependent acute lung injury
Simon J. Cleary, … , James C. Zimring, Mark R. Looney
Simon J. Cleary, … , James C. Zimring, Mark R. Looney
Published March 26, 2024
Citation Information: J Clin Invest. 2024. https://doi.org/10.1172/JCI178351.
View: Text | PDF

IgG hexamers initiate complement-dependent acute lung injury

  • Text
  • PDF
Abstract

Antibodies can initiate lung injury in a variety of disease states such as autoimmunity, transfusion reactions, or after organ transplantation, but the key factors determining in vivo pathogenicity of injury-inducing antibodies are unclear. Harmful antibodies often activate the complement cascade. A model for how IgG antibodies trigger complement activation involves interactions between IgG Fc domains driving assembly of IgG hexamer structures that activate C1 complexes. The importance of IgG hexamers in initiating injury responses was unclear, so we tested their relevance in a mouse model of alloantibody and complement-mediated acute lung injury. We used three approaches to block alloantibody hexamerization (antibody carbamylation, the K439E Fc mutation, or treatment with domain B from Staphylococcal protein A), all of which reduced acute lung injury. Conversely, Fc mutations promoting spontaneous hexamerization made a harmful alloantibody into a more potent inducer of acute lung injury and rendered an innocuous alloantibody pathogenic. Treatment with a recombinant Fc hexamer ‘decoy’ therapeutic protected mice from lung injury, including in a model with transgenic human FCGR2A expression that exacerbated pathology. These results indicate an in vivo role of IgG hexamerization in initiating acute lung injury and the potential for therapeutics that inhibit or mimic hexamerization to treat antibody-mediated diseases.

Authors

Simon J. Cleary, Yurim Seo, Jennifer J. Tian, Nicholas Kwaan, David P. Bulkley, Arthur E. H. Bentlage, Gestur Vidarsson, Éric Boilard, Rolf Spirig, James C. Zimring, Mark R. Looney

×

MAP kinase phosphatase-1 inhibition of p38α within lung myofibroblasts is essential for spontaneous fibrosis resolution
Sean M. Fortier, … , Anton M. Bennett, Marc Peters-Golden
Sean M. Fortier, … , Anton M. Bennett, Marc Peters-Golden
Published March 21, 2024
Citation Information: J Clin Invest. 2024. https://doi.org/10.1172/JCI172826.
View: Text | PDF

MAP kinase phosphatase-1 inhibition of p38α within lung myofibroblasts is essential for spontaneous fibrosis resolution

  • Text
  • PDF
Abstract

Fibrosis following tissue injury is distinguished from normal repair by the accumulation of pathogenic and apoptosis-resistant myofibroblasts (MFs), which arise primarily by differentiation from resident fibroblasts. Endogenous molecular brakes that promote MF dedifferentiation and clearance during spontaneous resolution of experimental lung fibrosis may provide insights that could inform and improve treatment of progressive pulmonary fibrosis in patients. Mitogen-activated protein kinase (MAPK) phosphatase-1 (MKP1) influences cellular phenotype and fate through precise and timely regulation of MAPK activity within various cell types and tissues, yet its role in lung fibroblasts and pulmonary fibrosis has not been explored. Utilizing gain- and loss-of-function studies, we found that MKP1 promoted lung MF dedifferentiation and restored their sensitivity to apoptosis — effects determined to be mainly dependent upon its dephosphorylation of p38α MAPK (p38α). Fibroblast-specific deletion of MKP1 following peak bleomycin-induced lung fibrosis largely abrogated its subsequent spontaneous resolution. Such resolution was restored by treating these transgenic mice with the p38α inhibitor VX-702. We conclude that MKP1 is a critical antifibrotic brake whose inhibition of pathogenic p38α in lung fibroblasts is necessary for fibrosis resolution following lung injury.

Authors

Sean M. Fortier, Natalie M. Walker, Loka R. Penke, Jared D. Baas, Qinxue Shen, Jennifer M. Speth, Steven K. Huang, Rachel L. Zemans, Anton M. Bennett, Marc Peters-Golden

×

TGF-β controls alveolar type 1 epithelial cell plasticity and alveolar matrisome gene transcription in mice
Danielle A. Callaway, … , Benjamin A. Garcia, Edward E. Morrisey
Danielle A. Callaway, … , Benjamin A. Garcia, Edward E. Morrisey
Published March 15, 2024
Citation Information: J Clin Invest. 2024;134(6):e172095. https://doi.org/10.1172/JCI172095.
View: Text | PDF

TGF-β controls alveolar type 1 epithelial cell plasticity and alveolar matrisome gene transcription in mice

  • Text
  • PDF
Abstract

Premature birth disrupts normal lung development and places infants at risk for bronchopulmonary dysplasia (BPD), a disease disrupting lung health throughout the life of an individual and that is increasing in incidence. The TGF-β superfamily has been implicated in BPD pathogenesis, however, what cell lineage it impacts remains unclear. We show that TGFbr2 is critical for alveolar epithelial (AT1) cell fate maintenance and function. Loss of TGFbr2 in AT1 cells during late lung development leads to AT1-AT2 cell reprogramming and altered pulmonary architecture, which persists into adulthood. Restriction of fetal lung stretch and associated AT1 cell spreading through a model of oligohydramnios enhances AT1-AT2 reprogramming. Transcriptomic and proteomic analyses reveal the necessity of TGFbr2 expression in AT1 cells for extracellular matrix production. Moreover, TGF-β signaling regulates integrin transcription to alter AT1 cell morphology, which further impacts ECM expression through changes in mechanotransduction. These data reveal the cell intrinsic necessity of TGF-β signaling in maintaining AT1 cell fate and reveal this cell lineage as a major orchestrator of the alveolar matrisome.

Authors

Danielle A. Callaway, Ian J. Penkala, Su Zhou, Jonathan J. Knowlton, Fabian Cardenas-Diaz, Apoorva Babu, Michael P. Morley, Mariana Lopes, Benjamin A. Garcia, Edward E. Morrisey

×

TXA2 attenuates allergic lung inflammation through regulation of Th2, Th9 and Treg differentiation
Hong Li, … , Thomas M. Coffman, Darryl C. Zeldin
Hong Li, … , Thomas M. Coffman, Darryl C. Zeldin
Published March 14, 2024
Citation Information: J Clin Invest. 2024. https://doi.org/10.1172/JCI165689.
View: Text | PDF

TXA2 attenuates allergic lung inflammation through regulation of Th2, Th9 and Treg differentiation

  • Text
  • PDF
Abstract

In lung, thromboxane A2 (TXA2) activates the TP receptor to induce pro-inflammatory and bronchoconstrictor effects. Thus, TP receptor antagonists and TXA2 synthase inhibitors have been tested as potential asthma therapeutics in humans. Th9 cells play key roles in asthma and regulate the lung immune response to allergens. Herein, we found that TXA2 reduces Th9 cell differentiation during allergic lung inflammation. Th9 cells were decreased ~2-fold and airway hyperresponsiveness was attenuated in lungs of allergic mice treated with TXA2. Naïve CD4+ T cell differentiation to Th9 cells and IL-9 production was inhibited dose-dependently by TXA2 in vitro. TP receptor deficient mice had a ~2-fold increase in numbers of Th9 cells in lungs in vivo after OVA exposure compared to wild type (WT) mice. Naïve CD4+ T cells from TP deficient mice exhibited increased Th9 cell differentiation and IL-9 production in vitro compared to CD4+ T cells from WT mice. TXA2 also suppressed Th2 and enhanced Treg differentiation both in vitro and in vivo. Thus, in contrast to its acute, pro-inflammatory effects, TXA2 also has longer-lasting immunosuppressive effects that attenuate the Th9 differentiation that drives asthma progression. These findings may explain the paradoxical failure of anti-thromboxane therapies in the treatment of asthma.

Authors

Hong Li, J. Alyce Bradbury, Matthew L. Edin, Artiom Gruzdev, Huiling Li, Joan P. Graves, Laura M. DeGraff, Fred B. Lih, Chiguang Feng, Erin R. Wolf, Carl D. Bortner, Stephanie J. London, Matthew A. Sparks, Thomas M. Coffman, Darryl C. Zeldin

×

An in vivo screening platform identifies senolytic compounds that target p16INK4a+ fibroblasts in lung fibrosis
Jin Young Lee, … , Michelle R. Arkin, Tien Peng
Jin Young Lee, … , Michelle R. Arkin, Tien Peng
Published March 7, 2024
Citation Information: J Clin Invest. 2024. https://doi.org/10.1172/JCI173371.
View: Text | PDF

An in vivo screening platform identifies senolytic compounds that target p16INK4a+ fibroblasts in lung fibrosis

  • Text
  • PDF
Abstract

The appearance of senescent cells in age-related diseases has spurred the search for compounds that can target senescent cells in tissues (“senolytics”). However, a major caveat with current senolytic screens is the use of cell lines as targets where senescence is induced in vitro, which does not necessarily reflect the identity and function of pathogenic senescent cells in vivo. Here, we developed a new pipeline leveraging a fluorescent murine reporter that allows for isolation and quantification of p16Ink4a+ cells in diseased tissues. By high-throughput screening in vitro, precision cut lung slice (PCLS) screening ex vivo, and phenotypic screening in vivo, we identified a HSP90 inhibitor (XL888) as a potent senolytic in tissue fibrosis. XL888 treatment eliminated pathogenic p16Ink4a+ fibroblasts in a murine model of lung fibrosis and reduced fibrotic burden. Finally, XL888 preferentially targeted p16INK4a-high human lung fibroblasts isolated from patients with idiopathic pulmonary fibrosis (IPF), and reduced p16INK4a+ fibroblasts from IPF PCLS ex vivo. This study provides proof of concept for a platform where p16INK4a+ cells are directly isolated from diseased tissues to identify compounds with in vivo and ex vivo efficacy in mouse and human respectively and provides a senolytic screening platform for other age-related diseases.

Authors

Jin Young Lee, Nabora S. Reyes, Supriya Ravishankar, Minqi Zhou, Maria Krasilnikov, Christian Ringler, Grace Pohan, Chris Wilson, Kenny Kean-Hooi Ang, Paul J. Wolters, Tatsuya Tsukui, Dean Sheppard, Michelle R. Arkin, Tien Peng

×
  • ← Previous
  • 1
  • 2
  • 3
  • 4
  • …
  • 21
  • 22
  • Next →
Mucus tethering in asthma
Luke Bonser and colleagues characterize the composition and transport of pathogenic, asthma-associated mucus…
Published May 16, 2016
Scientific Show StopperPulmonology

Translating mechanical stress to fibrogenesis
Shaik Rahaman and colleagues reveal that TRPV4 channel activity links mechanical stress and pulmonary fibrosis…
Published November 3, 2014
Scientific Show StopperPulmonology
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts