Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Neuroscience

  • 651 Articles
  • 7 Posts
  • ← Previous
  • 1
  • 2
  • …
  • 5
  • 6
  • 7
  • …
  • 65
  • 66
  • Next →
Convergent generation of atypical prions in knockin mouse models of genetic prion disease
Surabhi Mehra, … , Walker S. Jackson, Joel C. Watts
Surabhi Mehra, … , Walker S. Jackson, Joel C. Watts
Published August 1, 2024
Citation Information: J Clin Invest. 2024;134(15):e176344. https://doi.org/10.1172/JCI176344.
View: Text | PDF

Convergent generation of atypical prions in knockin mouse models of genetic prion disease

  • Text
  • PDF
Abstract

Most cases of human prion disease arise due to spontaneous misfolding of WT or mutant prion protein, yet recapitulating this event in animal models has proven challenging. It remains unclear whether spontaneous prion generation can occur within the mouse lifespan in the absence of protein overexpression and how disease-causing mutations affect prion strain properties. To address these issues, we generated knockin mice that express the misfolding-prone bank vole prion protein (BVPrP). While mice expressing WT BVPrP (I109 variant) remained free from neurological disease, a subset of mice expressing BVPrP with mutations (D178N or E200K) causing genetic prion disease developed progressive neurological illness. Brains from spontaneously ill knockin mice contained prion disease–specific neuropathological changes as well as atypical protease-resistant BVPrP. Moreover, brain extracts from spontaneously ill D178N- or E200K-mutant BVPrP–knockin mice exhibited prion seeding activity and transmitted disease to mice expressing WT BVPrP. Surprisingly, the properties of the D178N- and E200K-mutant prions appeared identical before and after transmission, suggesting that both mutations guide the formation of a similar atypical prion strain. These findings imply that knockin mice expressing mutant BVPrP spontaneously develop a bona fide prion disease and that mutations causing prion diseases may share a uniform initial mechanism of action.

Authors

Surabhi Mehra, Matthew E.C. Bourkas, Lech Kaczmarczyk, Erica Stuart, Hamza Arshad, Jennifer K. Griffin, Kathy L. Frost, Daniel J. Walsh, Surachai Supattapone, Stephanie A. Booth, Walker S. Jackson, Joel C. Watts

×

Exosomal TNF-α mediates voltage-gated Na+ channels 1.6 overexpression and contributes to brain-tumor induced neuronal hyperexcitability
Cesar Adolfo Sanchez Trivino, … , Fabrizia Cesca, Vincent Torre
Cesar Adolfo Sanchez Trivino, … , Fabrizia Cesca, Vincent Torre
Published August 1, 2024
Citation Information: J Clin Invest. 2024. https://doi.org/10.1172/JCI166271.
View: Text | PDF

Exosomal TNF-α mediates voltage-gated Na+ channels 1.6 overexpression and contributes to brain-tumor induced neuronal hyperexcitability

  • Text
  • PDF
Abstract

Patients affected by glioma frequently suffer of epileptic discharges, however the causes of brain tumor-related epilepsy (BTRE) are still not completely understood. We investigated the mechanisms underlying BTRE by analyzing the effects of exosomes released by U87 glioma cells and by patient-derived glioma cells. Rat hippocampal neurons incubated for 24 h with these exosomes exhibited increased spontaneous firing, while their resting membrane potential shifted positively by 10-15 mV. Voltage clamp recordings demonstrated that the activation of the Na+ current shifted towards more hyperpolarized voltages by 10-15 mV. To understand the factors inducing hyperexcitability we focused on exosomal cytokines. Western Blot and ELISA assays show that TNF-α is present inside glioma-derived exosomes. Remarkably, incubation with TNF-α fully mimicked the phenotype induced by exosomes, with neurons firing continuously, while their resting membrane potential shifted positively. RT-PCR revealed that both exosomes and TNF-α induced over-expression of the voltage-gated Na channel Nav1.6, a low-threshold Na+ channel responsible for hyperexcitability. When neurons were preincubated with Infliximab, a specific TNF-α inhibitor, the hyperexcitability induced by exosomes and TNF-α were drastically reduced. We propose that Infliximab, an FDA approved drug to treat rheumatoid arthritis, could ameliorate the conditions of glioma patients suffering of BTRE.

Authors

Cesar Adolfo Sanchez Trivino, Renza Spelat, Federica Spada, Camilla D'Angelo, Ivana Manini, Irene Giulia Rolle, Tamara Ius, Pietro Parisse, Anna Menini, Daniela Cesselli, Miran Skrap, Fabrizia Cesca, Vincent Torre

×

Autism-associated neuroligin-3 deficiency in medial septum causes social deficits and sleep loss in mice
Haiyan Sun, … , Wei Xie, Shuming An
Haiyan Sun, … , Wei Xie, Shuming An
Published July 26, 2024
Citation Information: J Clin Invest. 2024. https://doi.org/10.1172/JCI176770.
View: Text | PDF

Autism-associated neuroligin-3 deficiency in medial septum causes social deficits and sleep loss in mice

  • Text
  • PDF
Abstract

Patients with autism spectrum disorder (ASD) frequently experience sleep disturbance. Genetic mutations in Neuroligin-3 (NLG3) genes are highly correlative with ASD and sleep disturbance. However, the cellular and neural circuit bases of this correlation remain elusive. Here, we find the conditional knockout of NLG3 (NLG3-CKO) in the medial septum (MS) impairs social memory and reduces sleep. NLG3 knockout in MS causes hyperactivity of MS-GABA neurons during social avoidance and wakefulness. Activation of MSGABA neurons induces social memory deficits and sleep loss in C57BL/6 mice. In contrast, inactivation of these neurons ameliorates social memory deficits and sleep loss in NLG3-CKO mice. Sleep deprivation leads to social memory deficits, while social isolation causes sleep loss, both resulting in a reduction of NLG3 expression and an increase in activity of GABAergic neurons in MS from C57BL/6 mice. Furthermore, MS-GABA-innervated CA2 neurons specifically regulate social memory without impacting sleep, whereas MSGABA-innervating neurons in the preoptic area selectively control sleep without affecting social behavior. Together, these findings demonstrate that the hyperactive MS-GABA neurons impair social memory and disrupt sleep resulting from NLG3 knockout in MS, and achieve the modality specificity through their divergent downstream targets.

Authors

Haiyan Sun, Yu Shen, Pengtao Ni, Xin Liu, Yan Li, Zhentong Qiu, Jiawen Su, Yihan Wang, Miao Wu, Xiangxi Kong, Jun-Li Cao, Wei Xie, Shuming An

×

DRD2 activation inhibits choroidal neovascularization in patients with Parkinson’s disease and age-related macular degeneration
Thibaud Mathis, … , Stéphane Hunot, Florian Sennlaub
Thibaud Mathis, … , Stéphane Hunot, Florian Sennlaub
Published July 16, 2024
Citation Information: J Clin Invest. 2024. https://doi.org/10.1172/JCI174199.
View: Text | PDF

DRD2 activation inhibits choroidal neovascularization in patients with Parkinson’s disease and age-related macular degeneration

  • Text
  • PDF
Abstract

Neovascular age-related macular degeneration (nAMD) remains a major cause of visual impairment and puts considerable burden on patients and health care systems. L-DOPA-treated Parkinson Disease (PD) patients have been shown to be partially protected from nAMD, but the mechanism remains unknown. Using murine models, combining 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD and laser-induced nAMD, standard PD treatment of L-DOPA/DOPA-decarboxylase inhibitor, or specific dopamine receptor inhibitors, we here demonstrate that L-DOPA treatment-induced increase of dopamine mediated dopamine receptor D2 (DRD2) signaling inhibits choroidal neovascularization independently of MPTP-associated nigrostriatal pathway lesion. Analyzing a retrospective cohort of more than two hundred thousand nAMD patients receiving anti-VEGF treatment from the French nationwide insurance database, we show that DRD2-agonist treated (PD) patients have a significantly delayed age of onset for nAMD (81.4 (±7.0) vs 79.4 (±8.1) years old, respectively, p<0.0001) and reduced need for anti-VEGF therapies (-0.6 injections per 100 mg/day daily dose of DRD2 agonists the second year of treatment), similar to the L-DOPA treatment. While providing a mechanistic explanation for an intriguing epidemiological observation, our findings suggest that systemic DRD2 agonists might constitute an adjuvant therapy to delay and reduce the need for anti-VEGF therapy in nAMD patients.

Authors

Thibaud Mathis, Florian Baudin, Anne-Sophie Mariet, Sébastien Augustin, Marion Bricout, Lauriane Przegralek, Christophe Roubeix, Éric Benzenine, Guillaume Blot, Caroline Nous, Laurent Kodjikian, Martine Mauget-Faÿsse, José-Alain Sahel, Robin Plevin, Christina Zeitz, Cécile Delarasse, Xavier Guillonneau, Catherine Creuzot-Garcher, Catherine Quantin, Stéphane Hunot, Florian Sennlaub

×

Multiscale modeling uncovers 7q11.23 copy number variation–dependent changes in ribosomal biogenesis and neuronal maturation and excitability
Marija Mihailovich, … , Michela Matteoli, Giuseppe Testa
Marija Mihailovich, … , Michela Matteoli, Giuseppe Testa
Published July 15, 2024
Citation Information: J Clin Invest. 2024;134(14):e168982. https://doi.org/10.1172/JCI168982.
View: Text | PDF

Multiscale modeling uncovers 7q11.23 copy number variation–dependent changes in ribosomal biogenesis and neuronal maturation and excitability

  • Text
  • PDF
Abstract

Copy number variation (CNV) at 7q11.23 causes Williams-Beuren syndrome (WBS) and 7q microduplication syndrome (7Dup), neurodevelopmental disorders (NDDs) featuring intellectual disability accompanied by symmetrically opposite neurocognitive features. Although significant progress has been made in understanding the molecular mechanisms underlying 7q11.23-related pathophysiology, the propagation of CNV dosage across gene expression layers and their interplay remains elusive. Here we uncovered 7q11.23 dosage–dependent symmetrically opposite dynamics in neuronal differentiation and intrinsic excitability. By integrating transcriptomics, translatomics, and proteomics of patient-derived and isogenic induced neurons, we found that genes related to neuronal transmission follow 7q11.23 dosage and are transcriptionally controlled, while translational factors and ribosomal genes are posttranscriptionally buffered. Consistently, we found phosphorylated RPS6 (p-RPS6) downregulated in WBS and upregulated in 7Dup. Surprisingly, p-4EBP was changed in the opposite direction, reflecting dosage-specific changes in total 4EBP levels. This highlights different dosage-sensitive dyregulations of the mTOR pathway as well as distinct roles of p-RPS6 and p-4EBP during neurogenesis. Our work demonstrates the importance of multiscale disease modeling across molecular and functional layers, uncovers the pathophysiological relevance of ribosomal biogenesis in a paradigmatic pair of NDDs, and uncouples the roles of p-RPS6 and p-4EBP as mechanistically actionable relays in NDDs.

Authors

Marija Mihailovich, Pierre-Luc Germain, Reinald Shyti, Davide Pozzi, Roberta Noberini, Yansheng Liu, Davide Aprile, Erika Tenderini, Flavia Troglio, Sebastiano Trattaro, Sonia Fabris, Ummi Ciptasari, Marco Tullio Rigoli, Nicolò Caporale, Giuseppe D’Agostino, Filippo Mirabella, Alessandro Vitriolo, Daniele Capocefalo, Adrianos Skaros, Agnese Virginia Franchini, Sara Ricciardi, Ida Biunno, Antonino Neri, Nael Nadif Kasri, Tiziana Bonaldi, Rudolf Aebersold, Michela Matteoli, Giuseppe Testa

×

Bi-allelic variants in RINT1 present as early-onset pure hereditary spastic paraplegia
Vicente Quiroz, … , Erik A. Eklund, Darius Ebrahimi-Fakhari
Vicente Quiroz, … , Erik A. Eklund, Darius Ebrahimi-Fakhari
Published July 11, 2024
Citation Information: J Clin Invest. 2024. https://doi.org/10.1172/JCI178919.
View: Text | PDF

Bi-allelic variants in RINT1 present as early-onset pure hereditary spastic paraplegia

  • Text
  • PDF
Abstract

Authors

Vicente Quiroz, Laura Planas-Serra, Abigail Sveden, Amy Tam, Hyo M. Kim, Umar Zubair, Dario Resch, Afshin Saffari, Matt C. Danzi, Stephan Züchner, Maya Chopra, Luca Schierbaum, Aurora Pujol, Erik A. Eklund, Darius Ebrahimi-Fakhari

×

De novo monoallelic Reelin missense variants act in a dominant-negative manner causing neuronal migration disorders
Martina Riva, … , Nadia Bahi-Buisson, Alessandra Pierani
Martina Riva, … , Nadia Bahi-Buisson, Alessandra Pierani
Published July 9, 2024
Citation Information: J Clin Invest. 2024. https://doi.org/10.1172/JCI153097.
View: Text | PDF

De novo monoallelic Reelin missense variants act in a dominant-negative manner causing neuronal migration disorders

  • Text
  • PDF
Abstract

Reelin (RELN) is a secreted glycoprotein essential for cerebral cortex development. In humans, recessive RELN variants cause cortical and cerebellar malformations, while heterozygous variants were associated to epilepsy, autism and mild cortical abnormalities. However, their functional effects remain unknown. We identified inherited and de novo RELN missense variants in heterozygous patients with neuronal migration disorders (NMDs) as diverse as pachygyria and polymicrogyria. We investigated in culture and in the developing mouse cerebral cortex how different variants impacted RELN function. Polymicrogyria-associated variants behaved as gain-of-function showing an enhanced ability to induce neuronal aggregation, while those linked to pachygyria as loss-of-function leading to defective neuronal aggregation/migration. The pachygyria-associated de novo heterozygous RELN variants acted as dominant-negative by preventing wild-type RELN secretion in culture, animal models and patients, thereby causing dominant NMDs. We demonstrated how mutant RELN proteins in vitro and in vivo predict cortical malformation phenotypes, providing valuable insights into the pathogenesis of such disorders.

Authors

Martina Riva, Sofia Ferreira, Kotaro Hayashi, Yoann Saillour, Vera P. Medvedeva, Takao Honda, Kanehiro Hayashi, Claire Altersitz, Shahad Albadri, Marion Rosello, Julie Dang, Malo Serafini, Frédéric Causeret, Olivia J. Henry, Charles-Joris Roux, Céline Bellesme, Elena Freri, Dragana Josifova, Elena Parrini, Renzo Guerrini, Filippo Del Bene, Kazunori Nakajima, Nadia Bahi-Buisson, Alessandra Pierani

×

Relationship between maternal serotonin levels and autism-associated genetic variants
Amandeep Jutla, … , Edwin H. Cook, Jeremy Veenstra-VanderWeele
Amandeep Jutla, … , Edwin H. Cook, Jeremy Veenstra-VanderWeele
Published July 4, 2024
Citation Information: J Clin Invest. 2024. https://doi.org/10.1172/JCI179238.
View: Text | PDF

Relationship between maternal serotonin levels and autism-associated genetic variants

  • Text
  • PDF
Abstract

Authors

Amandeep Jutla, Lauren C. Shuffrey, Stephen J. Guter, Kally C. O'Reilly, George M. Anderson, James S. Sutcliffe, Edwin H. Cook, Jeremy Veenstra-VanderWeele

×

Peripheral gating of mechanosensation by glial diazepam binding inhibitor
Xinmeng Li, … , Xiaona Du, Nikita Gamper
Xinmeng Li, … , Xiaona Du, Nikita Gamper
Published June 18, 2024
Citation Information: J Clin Invest. 2024. https://doi.org/10.1172/JCI176227.
View: Text | PDF

Peripheral gating of mechanosensation by glial diazepam binding inhibitor

  • Text
  • PDF
Abstract

We report that diazepam binding inhibitor (DBI) is a glial messenger mediating satellite glia-sensory neuron crosstalk in the dorsal root ganglion (DRG). DBI is highly expressed in satellite glia cells (SGCs) of mice, rat and human, but not in sensory neurons or most other DRG-resident cells. Knockdown of DBI results in a robust mechanical hypersensitivity without major effects on other sensory modalities. In vivo overexpression of DBI in SGCs reduces sensitivity to mechanical stimulation and alleviates mechanical allodynia in neuropathic and inflammatory pain models. We further show that DBI acts as an unconventional agonist and positive allosteric modulator at the neuronal GABAA receptors, particularly strongly effecting those with a high-affinity benzodiazepine binding site. Such receptors are selectively expressed by a subpopulation of mechanosensitive DRG neurons and these are also more enwrapped with DBI-expressing glia, as compared to other DRG neurons, suggesting a mechanism for specific effect of DBI on mechanosensation. These findings identified a new, peripheral neuron-glia communication mechanism modulating pain signalling, which can be targeted therapeutically.

Authors

Xinmeng Li, Arthur Silveira Prudente, Vincenzo Prato, Xianchuan Guo, Han Hao, Frederick Jones, Sofia Figoli, Pierce Mullen, Yujin Wang, Raquel Tonello, Sang Hoon Lee, Shihab Shah, Benito Maffei, Temugin Berta, Xiaona Du, Nikita Gamper

×

VCP activator reverses nuclear proteostasis defects and enhances TDP-43 aggregate clearance in multisystem proteinopathy models
Jessica M. Phan, … , Carolyn N. Mann, Edward B. Lee
Jessica M. Phan, … , Carolyn N. Mann, Edward B. Lee
Published May 24, 2024
Citation Information: J Clin Invest. 2024. https://doi.org/10.1172/JCI169039.
View: Text | PDF

VCP activator reverses nuclear proteostasis defects and enhances TDP-43 aggregate clearance in multisystem proteinopathy models

  • Text
  • PDF
Abstract

Pathogenic variants in VCP cause multisystem proteinopathy (MSP), a disease characterized by multiple clinical phenotypes including inclusion body myopathy, Paget’s disease of the bone, and frontotemporal dementia (FTD). How such diverse phenotypes are driven by pathogenic VCP variants is not known. We found that these diseases exhibit a common pathologic feature, ubiquitinated intranuclear inclusions affecting myocytes, osteoclasts and neurons. Moreover, knock-in cell lines harboring MSP variants show a reduction in nuclear VCP. Given that MSP is associated with neuronal intranuclear inclusions comprised of TDP-43 protein, we developed a cellular model whereby proteostatic stress results in the formation of insoluble intranuclear TDP-43 aggregates. Consistent with a loss of nuclear VCP function, cells harboring MSP variants or cells treated with VCP inhibitor exhibited decreased clearance of insoluble intranuclear TDP-43 aggregates. Moreover, we identified four compounds that activate VCP primarily by increasing D2 ATPase activity whereby pharmacologic VCP activation appears to enhance clearance of insoluble intranuclear TDP-43 aggregate. Our findings suggest that VCP function is important for nuclear protein homeostasis, that impaired nuclear proteostasis may contribute to MSP, and that VCP activation may be potential therapeutic by virtue of enhancing the clearance of intranuclear protein aggregates.

Authors

Jessica M. Phan, Benjamin C. Creekmore, Aivi T. Nguyen, Darya D. Bershadskaya, Nabil F. Darwich, Carolyn N. Mann, Edward B. Lee

×
  • ← Previous
  • 1
  • 2
  • …
  • 5
  • 6
  • 7
  • …
  • 65
  • 66
  • Next →
DREAM suppression in Huntington’s disease
José Naranjo and colleagues reveal that downregulation of DREAM mediates derepression of ATF6, and this elevation of ATF6 plays an early neuroprotective role in Huntington’s disease…
Published January 11, 2016
Scientific Show StopperNeuroscience

Extra-cerebellar motor symptoms in Angelman’s syndrome
Caroline Bruinsma and colleagues evaluated cerebellar involvement in Angelman’s Syndrome motor deficits…
Published October 20, 2015
Scientific Show StopperNeuroscience

An epigenetic intervention for neurodegenerative diseases
Eva Benito and colleagues demonstrate that SAHA, a histone-deacetylase inhibitor, improves spatial memory and selectively regulates the neuronal epigenome in a mouse model of neurodegeneration…
Published August 17, 2015
Scientific Show StopperNeuroscience

Genetic and environmental interactions in Parkinson’s disease
Alevtina Zharikov and colleagues reveal that interplay between α-synuclein and environmental toxin exposure influences parkinsonian neurodegeneration…
Published June 15, 2015
Scientific Show StopperNeuroscience

TREM2 keeps myelinated axons under wraps
Pietro Poliani, Yaming Wang, and colleagues demonstrate that TREM2 deficiency reduces age-associated expansion of microglia and microglia-dependent remyelination…
Published April 20, 2015
Scientific Show StopperNeuroscience

Synergy among Parkinson’s disease-associated genes
Durga Meka and colleagues demonstrate that crosstalk between parkin and RET maintains mitochondrial integrity and protects dopaminergic neurons…
Published March 30, 2015
Scientific Show StopperNeuroscience

A model of periventricular leukomalacia
Tamar Licht, Talia Dor-Wollman and colleagues demonstrate that specific vulnerability of immature blood vessels surrounding ventricles predisposes to hypoxia-induced periventricular leukomalacia…
Published February 17, 2015
Scientific Show StopperNeuroscience
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts