Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact
  • Current Issue
  • Past Issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • 100th Anniversary of Insulin's Discovery (Jan 2021)
    • Hypoxia-inducible factors in disease pathophysiology and therapeutics (Oct 2020)
    • Latency in Infectious Disease (Jul 2020)
    • Immunotherapy in Hematological Cancers (Apr 2020)
    • Big Data's Future in Medicine (Feb 2020)
    • Mechanisms Underlying the Metabolic Syndrome (Oct 2019)
    • Reparative Immunology (Jul 2019)
    • View all review series ...
  • Viewpoint
  • Collections
    • Recently published
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact

Neuroscience

  • 451 Articles
  • 7 Posts
  • ← Previous
  • 1
  • 2
  • …
  • 5
  • 6
  • 7
  • …
  • 45
  • 46
  • Next →
Dominant mutations of the Notch ligand Jagged1 cause peripheral neuropathy
Jeremy M. Sullivan, … , Andrew H. Crosby, Charlotte J. Sumner
Jeremy M. Sullivan, … , Andrew H. Crosby, Charlotte J. Sumner
Published February 17, 2020
Citation Information: J Clin Invest. 2020. https://doi.org/10.1172/JCI128152.
View: Text | PDF

Dominant mutations of the Notch ligand Jagged1 cause peripheral neuropathy

  • Text
  • PDF
Abstract

Notch signaling is a highly conserved intercellular pathway with tightly regulated and pleiotropic roles in normal tissue development and homeostasis. Dysregulated Notch signaling has also been implicated in human disease, including multiple forms of cancer, and represents an emerging therapeutic target. Successful development of such therapeutics requires a detailed understanding of potential on-target toxicities. Here, we identify autosomal dominant mutations of the canonical Notch ligand Jagged1 (or JAG1) as a cause of peripheral nerve disease in 2 unrelated families with the hereditary axonal neuropathy Charcot-Marie-Tooth disease type 2 (CMT2). Affected individuals in both families exhibited severe vocal fold paresis, a rare feature of peripheral nerve disease that can be life-threatening. Our studies of mutant protein posttranslational modification and localization indicated that the mutations (p.Ser577Arg, p.Ser650Pro) impair protein glycosylation and reduce JAG1 cell surface expression. Mice harboring heterozygous CMT2-associated mutations exhibited mild peripheral neuropathy, and homozygous expression resulted in embryonic lethality by midgestation. Together, our findings highlight a critical role for JAG1 in maintaining peripheral nerve integrity, particularly in the recurrent laryngeal nerve, and provide a basis for the evaluation of peripheral neuropathy as part of the clinical development of Notch pathway–modulating therapeutics.

Authors

Jeremy M. Sullivan, William W. Motley, Janel O. Johnson, William H. Aisenberg, Katherine L. Marshall, Katy E.S. Barwick, Lingling Kong, Jennifer S. Huh, Pamela C. Saavedra-Rivera, Meriel M. McEntagart, Marie-Helene Marion, Lucy A. Hicklin, Hamid Modarres, Emma L. Baple, Mohamed H. Farah, Aamir R. Zuberi, Cathleen M. Lutz, Rachelle Gaudet, Bryan J. Traynor, Andrew H. Crosby, Charlotte J. Sumner

×

Muscle-specific SMN reduction reveals motor neuron–independent disease in spinal muscular atrophy models
Jeong-Ki Kim, … , Chien-Ping Ko, Umrao R. Monani
Jeong-Ki Kim, … , Chien-Ping Ko, Umrao R. Monani
Published February 10, 2020
Citation Information: J Clin Invest. 2020. https://doi.org/10.1172/JCI131989.
View: Text | PDF

Muscle-specific SMN reduction reveals motor neuron–independent disease in spinal muscular atrophy models

  • Text
  • PDF
Abstract

Paucity of the survival motor neuron (SMN) protein triggers the oft-fatal infantile-onset motor neuron disorder, spinal muscular atrophy (SMA). Augmenting the protein is one means of treating SMA and recently led to FDA approval of an intrathecally delivered SMN-enhancing oligonucleotide currently in use. Notwithstanding the advent of this and other therapies for SMA, it is unclear whether the paralysis associated with the disease derives solely from dysfunctional motor neurons that may be efficiently targeted by restricted delivery of SMN-enhancing agents to the nervous system, or stems from broader defects of the motor unit, arguing for systemic SMN repletion. We investigated the disease-contributing effects of low SMN in one relevant peripheral organ — skeletal muscle — by selectively depleting the protein in only this tissue. We found that muscle deprived of SMN was profoundly damaged. Although a disease phenotype was not immediately obvious, persistent low levels of the protein eventually resulted in muscle fiber defects, neuromuscular junction abnormalities, compromised motor performance, and premature death. Importantly, restoring SMN after the onset of muscle pathology reversed disease. Our results provide the most compelling evidence yet for a direct contributing role of muscle in SMA and argue that an optimal therapy for the disease must be designed to treat this aspect of the dysfunctional motor unit.

Authors

Jeong-Ki Kim, Narendra N. Jha, Zhihua Feng, Michelle R. Faleiro, Claudia A. Chiriboga, Lan Wei-Lapierre, Robert T. Dirksen, Chien-Ping Ko, Umrao R. Monani

×

D1-mGlu5 heteromers mediate noncanonical dopamine signaling in Parkinson’s disease
Irene Sebastianutto, … , M. Angela Cenci, Julie Perroy
Irene Sebastianutto, … , M. Angela Cenci, Julie Perroy
Published February 10, 2020
Citation Information: J Clin Invest. 2020. https://doi.org/10.1172/JCI126361.
View: Text | PDF

D1-mGlu5 heteromers mediate noncanonical dopamine signaling in Parkinson’s disease

  • Text
  • PDF
Abstract

Dopamine receptor D1 modulates glutamatergic transmission in cortico-basal ganglia circuits and represents a major target of L-DOPA therapy in Parkinson’s disease. Here we show that D1 and metabotropic glutamate type 5 (mGlu5) receptors can form previously unknown heteromeric entities with distinctive functional properties. Interacting with Gq proteins, cell-surface D1-mGlu5 heteromers exacerbated PLC signaling and intracellular calcium release in response to either glutamate or dopamine. In rodent models of Parkinson’s disease, D1-mGlu5 nanocomplexes were strongly upregulated in the dopamine-denervated striatum, resulting in a synergistic activation of PLC signaling by D1 and mGlu5 receptor agonists. In turn, D1-mGlu5–dependent PLC signaling was causally linked with excessive activation of extracellular signal–regulated kinases in striatal neurons, leading to dyskinesia in animals treated with L-DOPA or D1 receptor agonists. The discovery of D1-mGlu5 functional heteromers mediating maladaptive molecular and motor responses in the dopamine-denervated striatum may prompt the development of new therapeutic principles for Parkinson’s disease.

Authors

Irene Sebastianutto, Elise Goyet, Laura Andreoli, Joan Font-Ingles, David Moreno-Delgado, Nathalie Bouquier, Céline Jahannault-Talignani, Enora Moutin, Luisa Di Menna, Natallia Maslava, Jean-Philippe Pin, Laurent Fagni, Ferdinando Nicoletti, Fabrice Ango, M. Angela Cenci, Julie Perroy

×

Exosomes mediate sensory hair cell protection in the inner ear
Andrew M. Breglio, … , Matthew J.A. Wood, Lisa L. Cunningham
Andrew M. Breglio, … , Matthew J.A. Wood, Lisa L. Cunningham
Published February 6, 2020
Citation Information: J Clin Invest. 2020. https://doi.org/10.1172/JCI128867.
View: Text | PDF

Exosomes mediate sensory hair cell protection in the inner ear

  • Text
  • PDF
Abstract

Hair cells are the mechanosensory receptors of the inner ear, responsible for hearing and balance. Hair cell death and consequent hearing loss are common results of treatment with ototoxic drugs, including the widely-used aminoglycoside antibiotics. Induction of heat shock proteins (HSPs) confers protection against aminoglycoside-induced hair cell death via paracrine signaling that requires extracellular HSP70 (Heat Shock 70 kDa Protein). We investigated the mechanisms underlying this non-cell-autonomous protective signaling in the inner ear. In response to heat stress, inner ear tissue releases exosomes that carry HSP70 in addition to canonical exosome markers and other proteins. Isolated exosomes from heat-shocked utricles were sufficient to improve survival of hair cells exposed to the aminoglycoside antibiotic neomycin, while inhibition or depletion of exosomes from the extracellular environment abolished the protective effect of heat shock. Hair-cell specific expression of the known HSP70 receptor, Toll-like receptor 4 (TLR4), was required for the protective effect of exosomes, and exosomal HSP70 interacted with TLR4 on hair cells. Our results indicate that exosomes are a previously undescribed mechanism of intercellular communication in the inner ear that can mediate non-autonomous hair cell survival. Exosomes may represent a novel class of nano-carriers for delivery of therapeutics against hearing loss.

Authors

Andrew M. Breglio, Lindsey A. May, Melanie Barzik, Nora C. Welsh, Shimon P. Francis, Tucker Q. Costain, Lizhen Wang, D. Eric Anderson, Ronald S. Petralia, Ya-Xian Wang, Thomas B. Friedman, Matthew J.A. Wood, Lisa L. Cunningham

×

GPR160 de-orphanization reveals critical roles in neuropathic pain in rodents
Gina LC Yosten, … , Willis K. Samson, Daniela Salvemini
Gina LC Yosten, … , Willis K. Samson, Daniela Salvemini
Published January 30, 2020
Citation Information: J Clin Invest. 2020. https://doi.org/10.1172/JCI133270.
View: Text | PDF

GPR160 de-orphanization reveals critical roles in neuropathic pain in rodents

  • Text
  • PDF
Abstract

Treating neuropathic pain is challenging and novel non-opioid based medicines are needed. Using unbiased receptomics, transcriptomic analyses, immunofluorescence and in situ hybridization, we found the expression of the orphan GPCR (oGPCR) Gpr160 and GPR160 increased in the rodent dorsal horn of the spinal cord (DH-SC) following traumatic nerve injury. Genetic and immunopharmacological approaches demonstrated that GPR160 inhibition in the spinal cord prevented and reversed neuropathic pain in male and female rodents without altering normal pain response. GPR160 inhibition in the spinal cord attenuated sensory processing in the thalamus, a key relay in the sensory discriminative pathways of pain. We also identified cocaine- and amphetamine-regulated transcript peptide (CARTp) as a GPR160 ligand. Inhibiting endogenous CARTp signaling in spinal cord attenuated neuropathic pain, whereas exogenous intrathecal (i.th.) CARTp evoked painful hypersensitivity through GPR160-dependent ERK and cAMP response element-binding protein (CREB). Our findings de-orphanize GPR160, identify it as a determinant of neuropathic pain and potential therapeutic target, and provide insights to its signaling pathways. CARTp is involved in many diseases including depression, reward and addiction, de-orphanization of GPR160 is a major step forward understanding the role of CARTp signaling in health and disease.

Authors

Gina LC Yosten, Caron M. Harada, Christopher J. Haddock, Luigino Antonio Giancotti, Grant R. Kolar, Ryan Patel, Chun Guo, Zhoumou Chen, Jinsong Zhang, Timothy M. Doyle, Anthony H. Dickenson, Willis K. Samson, Daniela Salvemini

×

Prion protein glycans reduce intracerebral fibril formation and spongiosis in prion disease
Alejandro M. Sevillano, … , K. Peter R. Nilsson, Christina J. Sigurdson
Alejandro M. Sevillano, … , K. Peter R. Nilsson, Christina J. Sigurdson
Published January 27, 2020
Citation Information: J Clin Invest. 2020. https://doi.org/10.1172/JCI131564.
View: Text | PDF

Prion protein glycans reduce intracerebral fibril formation and spongiosis in prion disease

  • Text
  • PDF
Abstract

Posttranslational modifications (PTMs) are common among proteins that aggregate in neurodegenerative disease, yet how PTMs impact the aggregate conformation and disease progression remains unclear. By engineering knockin mice expressing prion protein (PrP) lacking 2 N-linked glycans (Prnp180Q/196Q), we provide evidence that glycans reduce spongiform degeneration and hinder plaque formation in prion disease. Prnp180Q/196Q mice challenged with 2 subfibrillar, non–plaque-forming prion strains instead developed plaques highly enriched in ADAM10-cleaved PrP and heparan sulfate (HS). Intriguingly, a third strain composed of intact, glycophosphatidylinositol-anchored (GPI-anchored) PrP was relatively unchanged, forming diffuse, HS-deficient deposits in both the Prnp180Q/196Q and WT mice, underscoring the pivotal role of the GPI-anchor in driving the aggregate conformation and disease phenotype. Finally, knockin mice expressing triglycosylated PrP (Prnp187N) challenged with a plaque-forming prion strain showed a phenotype reversal, with a striking disease acceleration and switch from plaques to predominantly diffuse, subfibrillar deposits. Our findings suggest that the dominance of subfibrillar aggregates in prion disease is due to the replication of GPI-anchored prions, with fibrillar plaques forming from poorly glycosylated, GPI-anchorless prions that interact with extracellular HS. These studies provide insight into how PTMs impact PrP interactions with polyanionic cofactors, and highlight PTMs as a major force driving the prion disease phenotype.

Authors

Alejandro M. Sevillano, Patricia Aguilar-Calvo, Timothy D. Kurt, Jessica A. Lawrence, Katrin Soldau, Thu H. Nam, Taylor Schumann, Donald P. Pizzo, Sofie Nyström, Biswa Choudhury, Hermann Altmeppen, Jeffrey D. Esko, Markus Glatzel, K. Peter R. Nilsson, Christina J. Sigurdson

×

Profilin1 delivery tunes cytoskeleton dynamics towards CNS axon regeneration
Rita Pinto-Costa, … , Reinhard Fässler, Monica M. Sousa
Rita Pinto-Costa, … , Reinhard Fässler, Monica M. Sousa
Published January 16, 2020
Citation Information: J Clin Invest. 2020. https://doi.org/10.1172/JCI125771.
View: Text | PDF

Profilin1 delivery tunes cytoskeleton dynamics towards CNS axon regeneration

  • Text
  • PDF
Abstract

After trauma, regeneration of adult CNS axons is abortive causing devastating neurologic deficits. Despite progress in rehabilitative care, there is no effective treatment stimulating axon growth following injury. Using models with different regenerative capacities, followed by gain- and loss-of-function analysis, we identified profilin1 (Pfn1) as a coordinator of actin and microtubules (MTs), powering axon growth and regeneration. In growth cones, Pfn1 increased actin retrograde flow, MT growth speed and invasion of filopodia by MTs, orchestrating cytoskeleton dynamics towards axon growth. In vitro, active Pfn1 promoted MT growth in a formin-dependent manner, whereas localization of MTs to growth cone filopodia was facilitated by direct MT binding and interaction with formins. In vivo, Pfn1 ablation limited regeneration of growth-competent axons after sciatic nerve and spinal cord injury. Adeno-associated viral (AAV) delivery of constitutively active Pfn1 to rodents promoted axon regeneration, neuromuscular junction maturation and functional recovery of injured sciatic nerves, and increased the ability of regenerating axons to penetrate the inhibitory spinal cord glial scar. Thus, we identify Pfn1 as an important regulator of axon regeneration and suggest that AAV-mediated delivery of constitutively active Pfn1, together with the identification of modulators of Pfn1 activity, should be considered to treat the injured nervous system.

Authors

Rita Pinto-Costa, Sara Castro Sousa, Sérgio C. Leite, Joana Nogueira-Rodrigues, Tiago Ferreira da Silva, Diana Machado, Joana Beatriz Moreira Marques, Ana Catarina Costa, Márcia A. Liz, Francesca Bartolini, Pedro Brites, Mercedes Costell, Reinhard Fässler, Monica M. Sousa

×

Visceral adipose NLRP3 impairs cognition in obesity via IL1R1 on Cx3cr1+ cells
De-Huang Guo, … , Babak Baban, Alexis M. Stranahan
De-Huang Guo, … , Babak Baban, Alexis M. Stranahan
Published January 14, 2020
Citation Information: J Clin Invest. 2020. https://doi.org/10.1172/JCI126078.
View: Text | PDF

Visceral adipose NLRP3 impairs cognition in obesity via IL1R1 on Cx3cr1+ cells

  • Text
  • PDF
Abstract

Induction of the inflammasome protein cryopyrin (NLRP3) in visceral adipose tissue (VAT) promotes release of the pro-inflammatory cytokine interleukin-1β (IL1β) in obesity. While this mechanism contributes to peripheral metabolic dysfunction, effects on the brain remain unexplored. These studies investigated whether visceral adipose NLRP3 impairs cognition by activating microglial interleukin-1 receptor 1 (IL1R1). After observing protection against obesity-induced neuroinflammation and cognitive impairment in NLRP3KO mice, we transplanted VAT from obese WT or NLRP3KO donors into lean recipients. Transplantation of VAT from a WT donor (TRANSWT) increased hippocampal IL1β and impaired cognition, but VAT transplants from comparably obese NLRP3KO donors (TRANSKO) had no effect. Visceral adipose NLRP3 was required for deficits in long-term potentiation (LTP) in transplant recipients, and LTP impairment in TRANSWT mice was IL1-dependent. Flow cytometric and gene expression analyses revealed that VAT transplantation recapitulated the effects of obesity on microglial activation and IL1β gene expression, and visualization of hippocampal microglia revealed similar effects in vivo. Inducible ablation of IL1R1 in CX3CR1-expressing cells eliminated cognitive impairment in mice with dietary obesity and in transplant recipients and restored immunoquiescence in hippocampal microglia. These results indicate that visceral adipose NLRP3 impairs memory via IL1-mediated microglial activation, and suggest that NLRP3-IL1β signaling may underlie correlations between visceral adiposity and cognitive impairment in humans.

Authors

De-Huang Guo, Masaki Yamamoto, Caterina M. Hernandez, Hesam Khodadadi, Babak Baban, Alexis M. Stranahan

×

The glucocorticoid receptor–FKBP51 complex contributes to fear conditioning and posttraumatic stress disorder
Haiyin Li, … , Kerry J. Ressler, Fang Liu
Haiyin Li, … , Kerry J. Ressler, Fang Liu
Published January 13, 2020
Citation Information: J Clin Invest. 2020. https://doi.org/10.1172/JCI130363.
View: Text | PDF

The glucocorticoid receptor–FKBP51 complex contributes to fear conditioning and posttraumatic stress disorder

  • Text
  • PDF
Abstract

Posttraumatic stress disorder (PTSD) can develop after exposure to severe psychological trauma, leaving patients with disabling anxiety, nightmares, and flashbacks. Current treatments are only partially effective, and development of better treatments is hampered by limited knowledge of molecular mechanisms underlying PTSD. We have discovered that the glucocorticoid receptor (GR) and FK506 binding protein 51 (FKBP51) form a protein complex that is elevated in PTSD patients compared with unaffected control subjects, subjects exposed to trauma without PTSD, and patients with major depressive disorder (MDD). The GR-FKBP51 complex is also elevated in fear-conditioned mice, an aversive learning paradigm that models some aspects of PTSD. Both PTSD patients and fear-conditioned mice had decreased GR phosphorylation, decreased nuclear GR, and lower expression of 14-3-3ε, a gene regulated by GR. We created a peptide that disrupts GR-FKBP51 binding and reverses behavioral and molecular changes induced by fear conditioning. This peptide reduces freezing time and increases GR phosphorylation, GR-FKBP52 binding, GR nuclear translocation, and 14-3-3ε expression in fear-conditioned mice. These experiments demonstrate a molecular mechanism contributing to PTSD and suggest that the GR-FKBP51 complex may be a diagnostic biomarker and a potential therapeutic target for preventing or treating PTSD.

Authors

Haiyin Li, Ping Su, Terence K.Y. Lai, Anlong Jiang, Jing Liu, Dongxu Zhai, Charlie T.G. Campbell, Frankie H.F. Lee, WeiDong Yong, Suvercha Pasricha, Shupeng Li, Albert H.C. Wong, Kerry J. Ressler, Fang Liu

×

Type I interferon response drives neuroinflammation and synapse loss in Alzheimer disease
Ethan R. Roy, … , Hui Zheng, Wei Cao
Ethan R. Roy, … , Hui Zheng, Wei Cao
Published January 9, 2020
Citation Information: J Clin Invest. 2020. https://doi.org/10.1172/JCI133737.
View: Text | PDF

Type I interferon response drives neuroinflammation and synapse loss in Alzheimer disease

  • Text
  • PDF
Abstract

Type I interferon (IFN) is a key cytokine that curbs viral infection and cell malignancy. Previously, we have demonstrated a potent IFN immunogenicity of nucleic acid (NA)-containing amyloid fibrils in the periphery. Here, we investigated whether IFN is associated with β-amyloidosis inside the brain and contributes to neuropathology. An IFN-stimulated gene (ISG) signature was detected in the brains of multiple murine Alzheimer disease (AD) models, a phenomenon also observed in wild-type mouse brain challenged with generic NA-containing amyloid fibrils. In vitro, microglia innately responded to NA-containing amyloid fibrils. In AD models, activated ISG-expressing microglia exclusively surrounded NA-positive amyloid β plaques, which accumulated in an age-dependent manner. Brain administration of rIFNβ resulted in microglial activation and complement C3-dependent synapse elimination in vivo. Conversely, selective IFN receptor blockade effectively diminished the ongoing microgliosis and synapse loss in AD models. Moreover, we detected activated ISG-expressing microglia enveloping NA-containing neuritic plaques in post-mortem brains of AD patients. Gene expression interrogation revealed that IFN pathway was grossly upregulated in clinical AD and significantly correlated with disease severity and complement activation. Therefore, IFN constitutes a pivotal element within the neuroinflammatory network of AD and critically contributes to neuropathogenic processes.

Authors

Ethan R. Roy, Baiping Wang, Ying-Wooi Wan, Gabriel S. Chiu, Allysa L. Cole, Zhuoran Yin, Nicholas E. Propson, Yin Xu, Joanna L. Jankowsky, Zhandong Liu, Virginia M.Y. Lee, John Q. Trojanowski, Stephen D. Ginsberg, Oleg Butovsky, Hui Zheng, Wei Cao

×
  • ← Previous
  • 1
  • 2
  • …
  • 5
  • 6
  • 7
  • …
  • 45
  • 46
  • Next →
DREAM suppression in Huntington’s disease
José Naranjo and colleagues reveal that downregulation of DREAM mediates derepression of ATF6, and this elevation of ATF6 plays an early neuroprotective role in Huntington’s disease…
Published January 11, 2016
Scientific Show StopperNeuroscience

Extra-cerebellar motor symptoms in Angelman’s syndrome
Caroline Bruinsma and colleagues evaluated cerebellar involvement in Angelman’s Syndrome motor deficits…
Published October 20, 2015
Scientific Show StopperNeuroscience

An epigenetic intervention for neurodegenerative diseases
Eva Benito and colleagues demonstrate that SAHA, a histone-deacetylase inhibitor, improves spatial memory and selectively regulates the neuronal epigenome in a mouse model of neurodegeneration…
Published August 17, 2015
Scientific Show StopperNeuroscience

Genetic and environmental interactions in Parkinson’s disease
Alevtina Zharikov and colleagues reveal that interplay between α-synuclein and environmental toxin exposure influences parkinsonian neurodegeneration…
Published June 15, 2015
Scientific Show StopperNeuroscience

TREM2 keeps myelinated axons under wraps
Pietro Poliani, Yaming Wang, and colleagues demonstrate that TREM2 deficiency reduces age-associated expansion of microglia and microglia-dependent remyelination…
Published April 20, 2015
Scientific Show StopperNeuroscience

Synergy among Parkinson’s disease-associated genes
Durga Meka and colleagues demonstrate that crosstalk between parkin and RET maintains mitochondrial integrity and protects dopaminergic neurons…
Published March 30, 2015
Scientific Show StopperNeuroscience

A model of periventricular leukomalacia
Tamar Licht, Talia Dor-Wollman and colleagues demonstrate that specific vulnerability of immature blood vessels surrounding ventricles predisposes to hypoxia-induced periventricular leukomalacia…
Published February 17, 2015
Scientific Show StopperNeuroscience
Advertisement
Follow JCI:
Copyright © 2021 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts