Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Inflammation

  • 297 Articles
  • 0 Posts
  • ← Previous
  • 1
  • 2
  • …
  • 20
  • 21
  • 22
  • …
  • 29
  • 30
  • Next →
Renal immune surveillance and dipeptidase-1 contribute to contrast-induced acute kidney injury
Arthur Lau, … , Craig N. Jenne, Daniel A. Muruve
Arthur Lau, … , Craig N. Jenne, Daniel A. Muruve
Published June 4, 2018
Citation Information: J Clin Invest. 2018. https://doi.org/10.1172/JCI96640.
View: Text | PDF

Renal immune surveillance and dipeptidase-1 contribute to contrast-induced acute kidney injury

  • Text
  • PDF
Abstract

Radiographic contrast agents cause acute kidney injury (AKI), yet the underlying pathogenesis is poorly understood. Nod-like receptor pyrin containing 3–deficient (Nlrp3-deficient) mice displayed reduced epithelial cell injury and inflammation in the kidney in a model of contrast-induced AKI (CI-AKI). Unexpectedly, contrast agents directly induced tubular epithelial cell death in vitro that was not dependent on Nlrp3. Rather, contrast agents activated the canonical Nlrp3 inflammasome in macrophages. Intravital microscopy revealed diatrizoate (DTA) uptake within minutes in perivascular CX3CR1+ resident phagocytes in the kidney. Following rapid filtration into the tubular luminal space, DTA was reabsorbed and concentrated in tubular epithelial cells via the brush border enzyme dipeptidase-1 in volume-depleted but not euvolemic mice. LysM-GFP+ macrophages recruited to the kidney interstitial space ingested contrast material transported from the urine via direct interactions with tubules. CI-AKI was dependent on resident renal phagocytes, IL-1, leukocyte recruitment, and dipeptidase-1. Levels of the inflammasome-related urinary biomarkers IL-18 and caspase-1 were increased immediately following contrast administration in patients undergoing coronary angiography, consistent with the acute renal effects observed in mice. Taken together, these data show that CI-AKI is a multistep process that involves immune surveillance by resident and infiltrating renal phagocytes, Nlrp3-dependent inflammation, and the tubular reabsorption of contrast via dipeptidase-1.

Authors

Arthur Lau, Hyunjae Chung, Takanori Komada, Jaye M. Platnich, Christina F. Sandall, Saurav Roy Choudhury, Justin Chun, Victor Naumenko, Bas G.J. Surewaard, Michelle C. Nelson, Annegret Ulke-Lemée, Paul L. Beck, Hallgrimur Benediktsson, Anthony M. Jevnikar, Sarah L. Snelgrove, Michael J. Hickey, Donna L. Senger, Matthew T. James, Justin A. Macdonald, Paul Kubes, Craig N. Jenne, Daniel A. Muruve

×

sNASP inhibits TLR signaling to regulate immune response in sepsis
Feng-Ming Yang, … , Hui-Ming Chang, Edward T.H. Yeh
Feng-Ming Yang, … , Hui-Ming Chang, Edward T.H. Yeh
Published May 7, 2018
Citation Information: J Clin Invest. 2018. https://doi.org/10.1172/JCI95720.
View: Text | PDF

sNASP inhibits TLR signaling to regulate immune response in sepsis

  • Text
  • PDF
Abstract

Many Toll-like receptors (TLRs) signal through TNF receptor–associated factor 6 (TRAF6) to activate innate immune responses. Here, we show that somatic nuclear autoantigenic sperm protein (sNASP) binds to TRAF6 to prevent TRAF6 autoubiquitination in unstimulated macrophages. Following LPS stimulation, a complex consisting of sNASP, TRAF6, IRAK4, and casein kinase 2 (CK2) is formed. CK2 phosphorylates sNASP at serine 158, allowing sNASP to dissociate from TRAF6. Free TRAF6 is then autoubiquitinated, followed by activation of downstream signaling pathways. In sNasp S158A knockin (S158A-KI) mice, LPS-treated macrophages could not phosphorylate sNASP, which remained bound to TRAF6. S158A-KI mice were more susceptible to sepsis due to a marked reduction in IL-1β, TNF-α, and IFN-γ production accompanied by an inability to clear bacteria and recruit leukocytes. Furthermore, phosphorylation-regulated release of sNASP from TRAF6 is observed following activation of TLR-1, -2, -4, -5, and -6. Thus, sNASP is a negative regulator of TLR signaling to modulate the innate immune response.

Authors

Feng-Ming Yang, Yong Zuo, Wei Zhou, Chuan Xia, Bumsuk Hahm, Mark Sullivan, Jinke Cheng, Hui-Ming Chang, Edward T.H. Yeh

×

Granulocyte-CSF links destructive inflammation and comorbidities in obstructive lung disease
Evelyn Tsantikos, … , Gary P. Anderson, Margaret L. Hibbs
Evelyn Tsantikos, … , Gary P. Anderson, Margaret L. Hibbs
Published April 30, 2018
Citation Information: J Clin Invest. 2018. https://doi.org/10.1172/JCI98224.
View: Text | PDF

Granulocyte-CSF links destructive inflammation and comorbidities in obstructive lung disease

  • Text
  • PDF
Abstract

Chronic obstructive pulmonary disease (COPD) is an incurable inflammatory lung disease that afflicts millions of people worldwide, and it is the fourth leading cause of death. Systemic comorbidities affecting the heart, skeletal muscle, bone, and metabolism are major contributors to morbidity and mortality. Given the surprising finding in large prospective clinical biomarker studies that peripheral white blood cell count is more closely associated with disease than inflammatory biomarkers, we probed the role of blood growth factors. Using the SHIP-1–deficient COPD mouse model, which manifests a syndrome of destructive lung disease and a complex of comorbid pathologies, we have identified a critical and unexpected role for granulocyte-CSF (G-CSF) in linking these conditions. Deletion of G-CSF greatly reduced airway inflammation and lung tissue destruction, and attenuated systemic inflammation, right heart hypertrophy, loss of fat reserves, and bone osteoporosis. In human clinical translational studies, bronchoalveolar lavage fluid of patients with COPD demonstrated elevated G-CSF levels. These studies suggest that G-CSF may play a central and unforeseen pathogenic role in COPD and its complex comorbidities, and identify G-CSF and its regulators as potential therapeutic targets.

Authors

Evelyn Tsantikos, Maverick Lau, Cassandra M.N. Castelino, Mhairi J. Maxwell, Samantha L. Passey, Michelle J. Hansen, Narelle E. McGregor, Natalie A. Sims, Daniel P. Steinfort, Louis B. Irving, Gary P. Anderson, Margaret L. Hibbs

×

RIP kinase 1–dependent endothelial necroptosis underlies systemic inflammatory response syndrome
Matija Zelic, … , Manolis Pasparakis, Michelle A. Kelliher
Matija Zelic, … , Manolis Pasparakis, Michelle A. Kelliher
Published April 16, 2018
Citation Information: J Clin Invest. 2018. https://doi.org/10.1172/JCI96147.
View: Text | PDF

RIP kinase 1–dependent endothelial necroptosis underlies systemic inflammatory response syndrome

  • Text
  • PDF
Abstract

Receptor interacting protein kinase 1 (RIPK1) has important kinase-dependent and kinase-independent scaffolding functions that activate or prevent apoptosis or necroptosis in a cell context–dependent manner. The kinase activity of RIPK1 mediates hypothermia and lethality in a mouse model of TNF-induced shock, reflecting the hyperinflammatory state of systemic inflammatory response syndrome (SIRS), where the proinflammatory “cytokine storm” has long been viewed as detrimental. Here, we demonstrate that cytokine and chemokine levels did not predict survival and, importantly, that kinase-inactive Ripk1D138N/D138N hematopoietic cells afforded little protection from TNF- or TNF/zVAD-induced shock in reconstituted mice. Unexpectedly, RIPK1 kinase–inactive mice transplanted with WT hematopoietic cells remained resistant to TNF-induced shock, revealing that a nonhematopoietic lineage mediated protection. TNF-treated Ripk1D138N/D138N mice exhibited no significant increases in intestinal or vascular permeability, nor did they activate the clotting cascade. We show that TNF administration damaged the liver vascular endothelium and induced phosphorylated mixed lineage kinase domain-like (phospho-MLKL) reactivity in endothelial cells isolated from TNF/zVAD-treated WT, but not Ripk1D138N/D138N, mice. These data reveal that the tissue damage present in this SIRS model is reflected, in part, by breaks in the vasculature due to endothelial cell necroptosis and thereby predict that RIPK1 kinase inhibitors may provide clinical benefit to shock and/or sepsis patients.

Authors

Matija Zelic, Justine E. Roderick, Joanne A. O’Donnell, Jesse Lehman, Sung Eun Lim, Harish P. Janardhan, Chinmay M. Trivedi, Manolis Pasparakis, Michelle A. Kelliher

×

A TLR/AKT/FoxO3 immune tolerance–like pathway disrupts the repair capacity of oligodendrocyte progenitors
Taasin Srivastava, … , Larry S. Sherman, Stephen A. Back
Taasin Srivastava, … , Larry S. Sherman, Stephen A. Back
Published April 16, 2018
Citation Information: J Clin Invest. 2018. https://doi.org/10.1172/JCI94158.
View: Text | PDF

A TLR/AKT/FoxO3 immune tolerance–like pathway disrupts the repair capacity of oligodendrocyte progenitors

  • Text
  • PDF
Abstract

Cerebral white matter injury (WMI) persistently disrupts myelin regeneration by oligodendrocyte progenitor cells (OPCs). We identified a specific bioactive hyaluronan fragment (bHAf) that downregulates myelin gene expression and chronically blocks OPC maturation and myelination via a tolerance-like mechanism that dysregulates pro-myelination signaling via AKT. Desensitization of AKT occurs via TLR4 but not TLR2 or CD44. OPC differentiation was selectively blocked by bHAf in a maturation-dependent fashion at the late OPC (preOL) stage by a noncanonical TLR4/TRIF pathway that induced persistent activation of the FoxO3 transcription factor downstream of AKT. Activated FoxO3 selectively localized to oligodendrocyte lineage cells in white matter lesions from human preterm neonates and adults with multiple sclerosis. FoxO3 constraint of OPC maturation was bHAf dependent, and involved interactions at the FoxO3 and MBP promoters with the chromatin remodeling factor Brg1 and the transcription factor Olig2, which regulate OPC differentiation. WMI has adapted an immune tolerance–like mechanism whereby persistent engagement of TLR4 by bHAf promotes an OPC niche at the expense of myelination by engaging a FoxO3 signaling pathway that chronically constrains OPC differentiation.

Authors

Taasin Srivastava, Parham Diba, Justin M. Dean, Fatima Banine, Daniel Shaver, Matthew Hagen, Xi Gong, Weiping Su, Ben Emery, Daniel L. Marks, Edward N. Harris, Bruce Baggenstoss, Paul H. Weigel, Larry S. Sherman, Stephen A. Back

×

Galectin-9 inhibits TLR7-mediated autoimmunity in murine lupus models
Santosh K. Panda, … , Rachel Ettinger, Yong-Jun Liu
Santosh K. Panda, … , Rachel Ettinger, Yong-Jun Liu
Published April 3, 2018
Citation Information: J Clin Invest. 2018. https://doi.org/10.1172/JCI97333.
View: Text | PDF

Galectin-9 inhibits TLR7-mediated autoimmunity in murine lupus models

  • Text
  • PDF
Abstract

Uncontrolled secretion of type I IFN, as the result of endosomal TLR (i.e., TLR7 and TLR9) signaling in plasmacytoid DCs (pDCs), and abnormal production of autoantibodies by B cells are critical for systemic lupus erythematosus (SLE) pathogenesis. The importance of galectin-9 (Gal-9) in regulating various autoimmune diseases, including lupus, has been demonstrated. However, the precise mechanism by which Gal-9 mediates this effect remains unclear. Here, using spontaneous murine models of lupus (i.e., BXSB/MpJ and NZB/W F1 mice), we demonstrate that administration of Gal-9 results in reduced TLR7-mediated autoimmune manifestations. While investigating the mechanism underlying this phenomenon, we observed that Gal-9 inhibits the phenotypic maturation of pDCs and B cells and abrogates their ability to mount cytokine responses to TLR7/TLR9 ligands. Importantly, immunocomplex-mediated (IC-mediated) and neutrophil extracellular trap–mediated (NET-mediated) pDC activation was inhibited by Gal-9. Additionally, the mTOR/p70S6K pathway, which is recruited by both pDCs and B cells for TLR-mediated IFN secretion and autoantibody generation, respectively, was attenuated. Gal-9 was found to exert its inhibitory effect on both the cells by interacting with CD44.

Authors

Santosh K. Panda, Valeria Facchinetti, Elisaveta Voynova, Shino Hanabuchi, Jodi L. Karnell, Richard N. Hanna, Roland Kolbeck, Miguel A. Sanjuan, Rachel Ettinger, Yong-Jun Liu

×

Autoinhibitory regulation of S100A8/S100A9 alarmin activity locally restricts sterile inflammation
Thomas Vogl, … , Thomas Pap, Johannes Roth
Thomas Vogl, … , Thomas Pap, Johannes Roth
Published April 3, 2018
Citation Information: J Clin Invest. 2018. https://doi.org/10.1172/JCI89867.
View: Text | PDF

Autoinhibitory regulation of S100A8/S100A9 alarmin activity locally restricts sterile inflammation

  • Text
  • PDF
Abstract

Autoimmune diseases, such as psoriasis and arthritis, show a patchy distribution of inflammation despite systemic dysregulation of adaptive immunity. Thus, additional tissue-derived signals, such as danger-associated molecular patterns (DAMPs), are indispensable for manifestation of local inflammation. S100A8/S100A9 complexes are the most abundant DAMPs in many autoimmune diseases. However, regulatory mechanisms locally restricting DAMP activities are barely understood. We now unravel for the first time, to our knowledge, a mechanism of autoinhibition in mice and humans restricting S100-DAMP activity to local sites of inflammation. Combining protease degradation, pull-down assays, mass spectrometry, and targeted mutations, we identified specific peptide sequences within the second calcium-binding EF-hands triggering TLR4/MD2-dependent inflammation. These binding sites are free when S100A8/S100A9 heterodimers are released at sites of inflammation. Subsequently, S100A8/S100A9 activities are locally restricted by calcium-induced (S100A8/S100A9)2 tetramer formation hiding the TLR4/MD2-binding site within the tetramer interphase, thus preventing undesirable systemic effects. Loss of this autoinhibitory mechanism in vivo results in TNF-α–driven fatal inflammation, as shown by lack of tetramer formation in crossing S100A9–/– mice with 2 independent TNF-α–transgene mouse strains. Since S100A8/S100A9 is the most abundant DAMP in many inflammatory diseases, specifically blocking the TLR4-binding site of active S100 dimers may represent a promising approach for local suppression of inflammatory diseases, avoiding systemic side effects.

Authors

Thomas Vogl, Athanasios Stratis, Viktor Wixler, Tom Völler, Sumita Thurainayagam, Selina K. Jorch, Stefanie Zenker, Alena Dreiling, Deblina Chakraborty, Mareike Fröhling, Peter Paruzel, Corinna Wehmeyer, Sven Hermann, Olympia Papantonopoulou, Christiane Geyer, Karin Loser, Michael Schäfers, Stephan Ludwig, Monika Stoll, Tomas Leanderson, Joachim L. Schultze, Simone König, Thomas Pap, Johannes Roth

×

PAI1 mediates fibroblast–mast cell interactions in skin fibrosis
Neha Pincha, … , Paul Mazhuvanchary Jacob, Colin Jamora
Neha Pincha, … , Paul Mazhuvanchary Jacob, Colin Jamora
Published March 26, 2018
Citation Information: J Clin Invest. 2018. https://doi.org/10.1172/JCI99088.
View: Text | PDF

PAI1 mediates fibroblast–mast cell interactions in skin fibrosis

  • Text
  • PDF
Abstract

Fibrosis is a prevalent pathological condition arising from the chronic activation of fibroblasts. This activation results from the extensive intercellular crosstalk mediated by both soluble factors and direct cell-cell connections. Prominent among these are the interactions of fibroblasts with immune cells, in which the fibroblast–mast cell connection, although acknowledged, is relatively unexplored. We have used a Tg mouse model of skin fibrosis, based on expression of the transcription factor Snail in the epidermis, to probe the mechanisms regulating mast cell activity and the contribution of these cells to this pathology. We have discovered that Snail-expressing keratinocytes secrete plasminogen activator inhibitor type 1 (PAI1), which functions as a chemotactic factor to increase mast cell infiltration into the skin. Moreover, we have determined that PAI1 upregulates intercellular adhesion molecule type 1 (ICAM1) expression on dermal fibroblasts, rendering them competent to bind to mast cells. This heterotypic cell-cell adhesion, also observed in the skin fibrotic disorder scleroderma, culminates in the reciprocal activation of both mast cells and fibroblasts, leading to the cascade of events that promote fibrogenesis. Thus, we have identified roles for PAI1 in the multifactorial program of fibrogenesis that expand its functional repertoire beyond its canonical role in plasmin-dependent processes.

Authors

Neha Pincha, Edries Yousaf Hajam, Krithika Badarinath, Surya Prakash Rao Batta, Tafheem Masudi, Rakesh Dey, Peter Andreasen, Toshiaki Kawakami, Rekha Samuel, Renu George, Debashish Danda, Paul Mazhuvanchary Jacob, Colin Jamora

×

Blocking fatty acid–fueled mROS production within macrophages alleviates acute gouty inflammation
Christopher J. Hall, … , Nicola Dalbeth, Philip S. Crosier
Christopher J. Hall, … , Nicola Dalbeth, Philip S. Crosier
Published March 26, 2018
Citation Information: J Clin Invest. 2018. https://doi.org/10.1172/JCI94584.
View: Text | PDF

Blocking fatty acid–fueled mROS production within macrophages alleviates acute gouty inflammation

  • Text
  • PDF
Abstract

Gout is the most common inflammatory arthritis affecting men. Acute gouty inflammation is triggered by monosodium urate (MSU) crystal deposition in and around joints that activates macrophages into a proinflammatory state, resulting in neutrophil recruitment. A complete understanding of how MSU crystals activate macrophages in vivo has been difficult because of limitations of live imaging this process in traditional animal models. By live imaging the macrophage and neutrophil response to MSU crystals within an intact host (larval zebrafish), we reveal that macrophage activation requires mitochondrial ROS (mROS) generated through fatty acid oxidation. This mitochondrial source of ROS contributes to NF-κB–driven production of IL-1β and TNF-α, which promote neutrophil recruitment. We demonstrate the therapeutic utility of this discovery by showing that this mechanism is conserved in human macrophages and, via pharmacologic blockade, that it contributes to neutrophil recruitment in a mouse model of acute gouty inflammation. To our knowledge, this study is the first to uncover an immunometabolic mechanism of macrophage activation that operates during acute gouty inflammation. Targeting this pathway holds promise in the management of gout and, potentially, other macrophage-driven diseases.

Authors

Christopher J. Hall, Leslie E. Sanderson, Lisa M. Lawrence, Bregina Pool, Maarten van der Kroef, Elina Ashimbayeva, Denver Britto, Jacquie L. Harper, Graham J. Lieschke, Jonathan W. Astin, Kathryn E. Crosier, Nicola Dalbeth, Philip S. Crosier

×

Hypercholesterolemia induces T cell expansion in humanized immune mice
Jonathan D. Proto, … , Yong-Guang Yang, Ira Tabas
Jonathan D. Proto, … , Yong-Guang Yang, Ira Tabas
Published March 22, 2018
Citation Information: J Clin Invest. 2018. https://doi.org/10.1172/JCI97785.
View: Text | PDF

Hypercholesterolemia induces T cell expansion in humanized immune mice

  • Text
  • PDF
Abstract

Emerging data suggest that hypercholesterolemia has stimulatory effects on adaptive immunity and that these effects can promote atherosclerosis and perhaps other inflammatory diseases. However, research in this area has relied primarily on inbred strains of mice, whose adaptive immune system can differ substantially from that of humans. Moreover, the genetically induced hypercholesterolemia in these models typically results in plasma cholesterol levels that are much higher than those in most humans. To overcome these obstacles, we studied human immune system-reconstituted mice (hu-mice) rendered hypercholesterolemic by treatment with AAV8- PCSK9 and a high-fat/high-cholesterol Western-type diet (WD). These mice had a high percentage of human T cells and moderate hypercholesterolemia. Compared with hu-mice having lower plasma cholesterol, the PCSK9-WD mice developed a T cell-mediated inflammatory response in the lung and liver. Human CD4+ and CD8+ T cells bearing an effector memory phenotype were significantly elevated in the blood, spleen, and lungs of PCSK9-WD hu-mice, while splenic and circulating regulatory T cells were reduced. These data show that moderately high plasma cholesterol can disrupt human T cell homeostasis in vivo. This process may not only exacerbate atherosclerosis but also contribute to T cell-mediated inflammatory diseases in the setting of hypercholesterolemia.

Authors

Jonathan D. Proto, Amanda C. Doran, Manikandan Subramanian, Hui Wang, Mingyou Zhang, Erdi Sozen, Christina Rymond, George Kuriakose, Vivette D'Agati, Robert Winchester, Megan Sykes, Yong-Guang Yang, Ira Tabas

×
  • ← Previous
  • 1
  • 2
  • …
  • 20
  • 21
  • 22
  • …
  • 29
  • 30
  • Next →

No posts were found with this tag.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts