During epithelial-mesenchymal transition (EMT) epithelial cancer cells trans-differentiate into highly-motile, invasive, mesenchymal-like cells giving rise to disseminating tumor cells. Only few of these disseminated cells successfully metastasize. Immune cells and inflammation in the tumor microenvironment was shown to drive EMT, but few studies investigated the consequences of EMT on tumor immunosurveillance. In addition to initiating metastasis, we demonstrate that EMT confers increased susceptibility to NK cells and contributes, in part, to the inefficiency of the metastatic process. Depletion of NK cells allowed spontaneous metastasis without effecting primary tumor growth. EMT-induced modulation of E-cadherin and cell adhesion molecule 1 (CADM1) mediated increased susceptibility to NK cytotoxicity. Higher CADM1 expression correlates with improved patient survival in two lung and one breast adenocarcinoma patient cohorts and decreased metastasis. Our observation reveal a novel NK-mediated, metastasis-specific, immunosurveillance in lung cancer and presents a window of opportunity for the prevention of metastasis by boosting NK cell activity.
Peter J. Chockley, Jun Chen, Guoan Chen, David G. Beer, Theodore J. Standiford, Venkateshwar G. Keshamouni
The human lung harbors a large population of resident memory T cells (Trm cells). These cells are perfectly positioned to mediate rapid protection against respiratory pathogens such as influenza virus, a highly contagious respiratory pathogen that continues to be a major public health burden. Animal models show that influenza-specific lung CD8+ Trm cells are indispensable for crossprotection against pulmonary infection with different influenza virus strains. However, it is not known whether influenza-specific CD8+ Trm cells present within the human lung have the same critical role in modulating the course of the disease. Here, we showed that human lung contains a population of CD8+ Trm cells that are highly proliferative and have polyfunctional progeny. We observed that different influenza virus–specific CD8+ T cell specificities differentiated into Trm cells with varying efficiencies and that the size of the influenza-specific CD8+ T cell population persisting in the lung directly correlated with the efficiency of differentiation into Trm cells. To our knowledge, we provide the first ex vivo dissection of paired T cell receptor (TCR) repertoires of human influenza–specific CD8+ Trm cells. Our data reveal diverse TCR profiles within the human lung Trm cells and a high degree of clonal sharing with other CD8+ T cell populations, a feature important for effective T cell function and protection against the generation of viral-escape mutants.
Angela Pizzolla, Thi H.O. Nguyen, Sneha Sant, Jade Jaffar, Tom Loudovaris, Stuart I. Mannering, Paul G. Thomas, Glen P. Westall, Katherine Kedzierska, Linda M. Wakim
Combination checkpoint blockade (CCB) targeting inhibitory CTLA4 and PD1 receptors holds promise for cancer therapy. Immune-related adverse events (IRAEs) remain a major obstacle for the optimal application of CCB in cancer. Here, we analyzed B cell changes in patients with melanoma following treatment with either anti-CTLA4 or anti-PD1, or in combination. CCB therapy led to changes in circulating B cells that were detectable after the first cycle of therapy and characterized by a decline in circulating B cells and an increase in CD21lo B cells and plasmablasts. PD1 expression was higher in the CD21lo B cells, and B cell receptor sequencing of these cells demonstrated greater clonality and a higher frequency of clones compared with CD21hi cells. CCB induced proliferation in the CD21lo compartment, and single-cell RNA sequencing identified B cell activation in cells with genomic profiles of CD21lo B cells in vivo. Increased clonality of circulating B cells following CCB occurred in some patients. Treatment-induced changes in B cells preceded and correlated with both the frequency and timing of IRAEs. Patients with early B cell changes experienced higher rates of grade 3 or higher IRAEs 6 months after CCB. Thus, early changes in B cells following CCB may identify patients who are at increased risk of IRAEs, and preemptive strategies targeting B cells may reduce toxicities in these patients.
Rituparna Das, Noffar Bar, Michelle Ferreira, Aaron M. Newman, Lin Zhang, Jithendra Kini Bailur, Antonella Bacchiocchi, Harriet Kluger, Wei Wei, Ruth Halaban, Mario Sznol, Madhav V. Dhodapkar, Kavita M. Dhodapkar
BACKGROUND. The clinical management of chronic hepatitis B virus (HBV) patients is based exclusively on virological parameters that cannot independently determine in which patients nucleos(t)ide-analogue (NUC) therapy can be safely discontinued. NUCs efficiently suppress viral replication, but do not eliminate HBV. Thus, therapy discontinuation can be associated with virological and biochemical relapse and, consequently, therapy in the majority is life-long. METHODS. Since antiviral immunity is pivotal for HBV control, we investigated potential biomarkers for the safe discontinuation of NUCs within immune profiles of chronic HBV patients by utilizing traditional immunological assays (ELISPOT, flow cytometry) in conjunction with analyses of global non–antigen-specific immune populations (NanoString and CyTOF). Two distinct cohorts of 19 and 27 chronic HBV patients, respectively, were analyzed longitudinally prior to and after discontinuation of 2 different NUC therapy strategies. RESULTS. Absence of hepatic flares following discontinuation of NUC treatment correlated with the presence, during NUC viral suppression, of HBV core and polymerase-specific T cells that were contained within the ex vivo PD-1+ population. CONCLUSIONS. This study identifies the presence of functional HBV-specific T cells as a candidate immunological biomarker for safe therapy discontinuation in chronic HBV patients. Furthermore, the persistent and functional antiviral activity of PD-1+ HBV–specific T cells highlights the potential beneficial role of the expression of T cell exhaustion markers during human chronic viral infection. FUNDING. This work was funded by a Singapore Translational Research Investigator Award (NMRC/STaR/013/2012), the Eradication of HBV TCR Program (NMRC/TCR/014-NUHS/2015), the Singapore Immunology Network, the Wellcome Trust (107389/Z/15/Z), and a Barts and The London Charity (723/1795) grant.
Laura Rivino, Nina Le Bert, Upkar S. Gill, Kamini Kunasegaran, Yang Cheng, Damien Z.M. Tan, Etienne Becht, Navjyot K. Hansi, Graham R. Foster, Tung-Hung Su, Tai-Chung Tseng, Seng Gee Lim, Jia-Horng Kao, Evan W. Newell, Patrick T.F. Kennedy, Antonio Bertoletti
γδT cells produce inflammatory cytokines and have been implicated in the pathogenesis of cancer, infectious diseases, and autoimmunity. The T cell receptor (TCR) signal transduction that specifically regulates the development of IL-17–producing γδT (γδT17) cells largely remains unclear. Here, we showed that the receptor proximal tyrosine kinase Syk is essential for γδTCR signal transduction and development of γδT17 in the mouse thymus. Zap70, another tyrosine kinase essential for the development of αβT cells, failed to functionally substitute for Syk in the development of γδT17. Syk induced the activation of the PI3K/Akt pathway upon γδTCR stimulation. Mice deficient in PI3K signaling exhibited a complete loss of γδT17, without impaired development of IFN-γ–producing γδT cells. Moreover, γδT17-dependent skin inflammation was ameliorated in mice deficient in RhoH, an adaptor known to recruit Syk. Thus, we deciphered lineage-specific TCR signaling and identified the Syk/PI3K pathway as a critical determinant of proinflammatory γδT cell differentiation.
Ryunosuke Muro, Takeshi Nitta, Kenta Nakano, Tadashi Okamura, Hiroshi Takayanagi, Harumi Suzuki
Humoral rejection is the most common cause of solid organ transplant failure. Here, we evaluated a cohort of 49 patients who were successfully grafted with allogenic islets and determined that the appearance of donor-specific anti-HLA antibodies (DSAs) did not accelerate the rate of islet graft attrition, suggesting resistance to humoral rejection. Murine DSAs bound to allogeneic targets expressed by islet cells and induced their destruction in vitro; however, passive transfer of the same DSAs did not affect islet graft survival in murine models. Live imaging revealed that DSAs were sequestrated in the circulation of the recipients and failed to reach the endocrine cells of grafted islets. We used murine heart transplantation models to confirm that endothelial cells were the only accessible targets for DSAs, which induced the development of typical microvascular lesions in allogeneic transplants. In contrast, the vasculature of DSA-exposed allogeneic islet grafts was devoid of lesions because sprouting of recipient capillaries reestablished blood flow in grafted islets. Thus, we conclude that endothelial chimerism combined with vascular sequestration of DSAs protects islet grafts from humoral rejection. The reduced immunoglobulin concentrations in the interstitial tissue, confirmed in patients, may have important implications for biotherapies such as vaccines and monoclonal antibodies.
Chien-Chia Chen, Eric Pouliquen, Alexis Broisat, Francesco Andreata, Maud Racapé, Patrick Bruneval, Laurence Kessler, Mitra Ahmadi, Sandrine Bacot, Carole Saison-Delaplace, Marina Marcaud, Jean-Paul Duong Van Huyen, Alexandre Loupy, Jean Villard, Sandrine Demuylder-Mischler, Thierry Berney, Emmanuel Morelon, Meng-Kun Tsai, Marie-Nathalie Kolopp-Sarda, Alice Koenig, Virginie Mathias, Stéphanie Ducreux, Catherine Ghezzi, Valerie Dubois, Antonino Nicoletti, Thierry Defrance, Olivier Thaunat
The NLRP3 inflammasome is a protein complex responsible for caspase-1–dependent maturation of the proinflammatory cytokines IL-1β and IL-18. Gain-of-function missense mutations in NLRP3 cause the disease spectrum known as the cryopyrin-associated periodic syndromes (CAPS). In this study, we generated Nlrp3-knockin mice on various KO backgrounds including Il1b/Il18-, caspase-1–, caspase-11– (Casp1/11-), and Tnf-deficient strains. The Nlrp3L351P Il1b–/– Il18–/– mutant mice survived and grew normally until adulthood and, at 6 months of age, exhibited marked splenomegaly and leukophilia. Injection of these mice with low-dose LPS resulted in elevated serum TNF levels compared with Nlrp3L351P Casp1/11–/– mice and Il1b–/– Il18–/– littermates. Treatment of Nlrp3A350V mice with the TNF inhibitor etanercept resulted in all pups surviving to adulthood, with normal body and spleen/body weight ratios. Nlrp3A350V Tnf–/– mice showed a similar phenotypic rescue, with marked reductions in serum IL-1β and IL-18, reduced myeloid inflammatory infiltrate in the skin and spleen, and substantial decreases in splenic mRNA expression of both inflammasome components (Nlrp3, Pycard, pro-Casp1) and pro-cytokines (Il1b, Il18). Likewise, we observed a reduction in the expression of both pro-Casp1 and pro-Il1b in cultured Nlrp3A350V Tnf–/– BM-derived DCs. Our data show that TNF is an important transcriptional regulator of NLRP3 inflammasome components in murine inflammasomopathies. Moreover, these results may have therapeutic implications for CAPS patients with partial responses to IL-1–targeted therapies.
Matthew D. McGeough, Alexander Wree, Maria E. Inzaugarat, Ariela Haimovich, Casey D. Johnson, Carla A. Peña, Raphaela Goldbach-Mansky, Lori Broderick, Ariel E. Feldstein, Hal M. Hoffman
Primary immunodeficiencies are often monogenic disorders characterized by vulnerability to specific infectious pathogens. Here, we performed whole-exome sequencing of a patient with disseminated Mycobacterium tuberculosis, Streptococcus viridians bacteremia, and cytomegalovirus (CMV) viremia and identified mutations in 2 genes that regulate distinct IFN pathways. The patient had a homozygous frameshift deletion in IFNGR2, which encodes the signal transducing chain of the IFN-γ receptor, that resulted in minimal protein expression and abolished downstream signaling. The patient also harbored a homozygous deletion in IFNAR1 (IFNAR1*557Gluext*46), which encodes the IFN-α receptor signaling subunit. The IFNAR1*557Gluext*46 resulted in replacement of the stop codon with 46 additional codons at the C-terminus. The level of IFNAR1*557Gluext*46 mutant protein expressed in patient fibroblasts was comparable to levels of WT IFNAR1 in control fibroblasts. IFN-α–induced signaling was impaired in the patient fibroblasts, as evidenced by decreased STAT1/STAT2 phosphorylation, nuclear translocation of STAT1, and expression of IFN-α–stimulated genes critical for CMV immunity. Pretreatment with IFN-α failed to suppress CMV protein expression in patient fibroblasts, whereas expression of WT IFNAR1 restored IFN-α–mediated suppression of CMV. This study identifies a human IFNAR1 mutation and describes a digenic immunodeficiency specific to type I and type II IFNs.
Rodrigo Hoyos-Bachiloglu, Janet Chou, Catherine N. Sodroski, Abdallah Beano, Wayne Bainter, Magdalena Angelova, Eman Al Idrissi, Murad K. Habazi, Hamza Ali Alghamdi, Fahd Almanjomi, Mohamed Al Shehri, Nagi Elsidig, Morsi Alaa Eldin, David M. Knipe, Mofareh AlZahrani, Raif S. Geha
NK cells, lymphocytes of the innate immune system, are important for defense against infectious pathogens and cancer. Classically, the CD56dim NK cell subset is thought to mediate antitumor responses, whereas the CD56bright subset is involved in immunomodulation. Here, we challenge this paradigm by demonstrating that brief priming with IL-15 markedly enhanced the antitumor response of CD56bright NK cells. Priming improved multiple CD56bright cell functions: degranulation, cytotoxicity, and cytokine production. Primed CD56bright cells from leukemia patients demonstrated enhanced responses to autologous blasts in vitro, and primed CD56bright cells controlled leukemia cells in vivo in a murine xenograft model. Primed CD56bright cells from multiple myeloma (MM) patients displayed superior responses to autologous myeloma targets, and furthermore, CD56bright NK cells from MM patients primed with the IL-15 receptor agonist ALT-803 in vivo displayed enhanced ex vivo functional responses to MM targets. Effector mechanisms contributing to IL-15–based priming included improved cytotoxic protein expression, target cell conjugation, and LFA-1–, CD2-, and NKG2D-dependent activation of NK cells. Finally, IL-15 robustly stimulated the PI3K/Akt/mTOR and MEK/ERK pathways in CD56bright compared with CD56dim NK cells, and blockade of these pathways attenuated antitumor responses. These findings identify CD56bright NK cells as potent antitumor effectors that warrant further investigation as a cancer immunotherapy.
Julia A. Wagner, Maximillian Rosario, Rizwan Romee, Melissa M. Berrien-Elliott, Stephanie E. Schneider, Jeffrey W. Leong, Ryan P. Sullivan, Brea A. Jewell, Michelle Becker-Hapak, Timothy Schappe, Sara Abdel-Latif, Aaron R. Ireland, Devika Jaishankar, Justin A. King, Ravi Vij, Dennis Clement, Jodie Goodridge, Karl-Johan Malmberg, Hing C. Wong, Todd A. Fehniger
Consumption of human breast milk (HBM) attenuates the incidence of necrotizing enterocolitis (NEC), which remains a leading and intractable cause of mortality in preterm infants. Here, we report that this diminution correlates with alterations in the gut microbiota, particularly enrichment of Propionibacterium species. Transfaunation of microbiota from HBM-fed preterm infants or a newly identified and cultured Propionibacterium strain, P. UF1, to germfree mice conferred protection against pathogen infection and correlated with profound increases in intestinal Th17 cells. The induction of Th17 cells was dependent on bacterial dihydrolipoamide acetyltransferase (DlaT), a major protein expressed on the P. UF1 surface layer (S-layer). Binding of P. UF1 to its cognate receptor, SIGNR1, on dendritic cells resulted in the regulation of intestinal phagocytes. Importantly, transfer of P. UF1 profoundly mitigated induced NEC-like injury in neonatal mice. Together, these results mechanistically elucidate the protective effects of HBM and P. UF1–induced immunoregulation, which safeguard against proinflammatory diseases, including NEC.
Natacha Colliou, Yong Ge, Bikash Sahay, Minghao Gong, Mojgan Zadeh, Jennifer L. Owen, Josef Neu, William G. Farmerie, Francis Alonzo III, Ken Liu, Dean P. Jones, Shuzhao Li, Mansour Mohamadzadeh