Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact
  • Current Issue
  • Past Issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • 100th Anniversary of Insulin's Discovery (Jan 2021)
    • Hypoxia-inducible factors in disease pathophysiology and therapeutics (Oct 2020)
    • Latency in Infectious Disease (Jul 2020)
    • Immunotherapy in Hematological Cancers (Apr 2020)
    • Big Data's Future in Medicine (Feb 2020)
    • Mechanisms Underlying the Metabolic Syndrome (Oct 2019)
    • Reparative Immunology (Jul 2019)
    • View all review series ...
  • Viewpoint
  • Collections
    • Recently published
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • Recently published
  • In-Press Preview
  • Commentaries
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact

Bone Biology

  • 131 Articles
  • 3 Posts
  • ← Previous
  • 1
  • 2
  • 3
  • 4
  • …
  • 13
  • 14
  • Next →
Sympathetic β1-adrenergic signaling contributes to regulation of human bone metabolism
Sundeep Khosla, … , David G. Monroe, Joshua N. Farr
Sundeep Khosla, … , David G. Monroe, Joshua N. Farr
Published August 28, 2018
Citation Information: J Clin Invest. 2018. https://doi.org/10.1172/JCI122151.
View: Text | PDF

Sympathetic β1-adrenergic signaling contributes to regulation of human bone metabolism

  • Text
  • PDF
Abstract

BACKGROUND. Evidence from rodent studies indicates that the sympathetic nervous system (SNS) regulates bone metabolism, principally via β2-adrenergic receptors (β2-ARs). Given conflicting human data, we used multiple approaches to evaluate the role of the SNS in regulating human bone metabolism. METHODS. (1) Bone biopsies were obtained from 19 young and 19 old women for assessment of ADRB1, ADRB2, and ADRB3 mRNA expression; (2) the relationship of β-blocker use to bone microarchitecture was assessed by high resolution-peripheral quantitative computed tomography in a population sample of 248 subjects; and (3) 155 postmenopausal women were randomized to one of five treatment groups for 20 weeks: placebo; propranolol, 20 mg twice a day (BID); propranolol, 40 mg BID; atenolol, 50 mg/d; and nebivolol, 5 mg/d. We took advantage of the β1-AR selectivity gradient of these drugs (propranolol [non-selective] << atenolol [relatively β1-AR selective] < nebivolol [highly β1-AR selective]) to define the β-AR selectivity for SNS effects on bone. RESULTS. (1) ADRB1and ADRB2, but not ADRB3, were expressed in human bone; (2) patients treated clinically with β1-AR selective blockers had better bone microarchitecture than non-users; and (3) relative to placebo, atenolol and nebivolol, but not propranolol, reduced the bone resorption marker serum C-telopeptide of type I collagen (by 19.5% and 20.6%, respectively; P < 0.01) and increased ultra-distal radius BMD (by 3.6% and 2.9%; P < 0.01 and P < 0.05, respectively). CONCLUSIONS. These three independent lines of evidence strongly support a role for adrenergic signaling in regulating bone metabolism in humans, principally via β1-ARs. TRIAL REGISTRATION. ClinicalTrials.gov NCT02467400. FUNDING. This research was supported by NIH grants AG004875, AR027065, and the Mayo Clinic CTSA (UL1 TR002377).

Authors

Sundeep Khosla, Matthew T. Drake, Tammie L. Volkman, Brianne S. Thicke, Sara J. Achenbach, Elizabeth J. Atkinson, Michael J. Joyner, Clifford J. Rosen, David G. Monroe, Joshua N. Farr

×

Optimal bone fracture repair requires 24R,25-dihydroxyvitamin D3 and its effector molecule FAM57B2
Corine Martineau, … , Glenville Jones, René St-Arnaud
Corine Martineau, … , Glenville Jones, René St-Arnaud
Published July 16, 2018
Citation Information: J Clin Invest. 2018. https://doi.org/10.1172/JCI98093.
View: Text | PDF

Optimal bone fracture repair requires 24R,25-dihydroxyvitamin D3 and its effector molecule FAM57B2

  • Text
  • PDF
Abstract

The biological activity of 24R,25-dihydroxyvitamin D3 [24R,25(OH)2D3] remains controversial, but it has been suggested that it contributes to fracture healing. Cyp24a1–/– mice, synthesizing no 24R,25(OH)2D3, show suboptimal endochondral ossification during fracture repair, with smaller callus and reduced stiffness. These defects were corrected by 24R,25(OH)2D3 treatment, but not by 1,25-dihydroxyvitamin D3. Microarrays with Cyp24a1–/– callus mRNA identified FAM57B2 as a mediator of the 24R,25(OH)2D3 effect. FAM57B2 produced lactosylceramide (LacCer) upon specific binding of 24R,25(OH)2D3. Fam57b inactivation in chondrocytes (Col2-Cre Fam57bfl/fl) phenocopied the callus formation defect of Cyp24a1–/– mice. LacCer or 24R,25(OH)2D3 injections restored callus volume, stiffness, and mineralized cartilage area in Cyp24a1-null mice, but only LacCer rescued Col2-Cre Fam57bfl/fl mice. Gene expression in callus tissue suggested that the 24R,25(OH)2D3/FAM57B2 cascade affects cartilage maturation. We describe a previously unrecognized pathway influencing endochondral ossification during bone repair through LacCer production upon binding of 24R,25(OH)2D3 to FAM57B2. Our results identify potential new approaches to ameliorate fracture healing.

Authors

Corine Martineau, Roy Pascal Naja, Abdallah Husseini, Bachar Hamade, Martin Kaufmann, Omar Akhouayri, Alice Arabian, Glenville Jones, René St-Arnaud

×

Neuronal hypothalamic regulation of body metabolism and bone density is galanin-dependent
Anna Idelevich, … , Francesca Gori, Roland Baron
Anna Idelevich, … , Francesca Gori, Roland Baron
Published March 29, 2018
Citation Information: J Clin Invest. 2018. https://doi.org/10.1172/JCI99350.
View: Text | PDF

Neuronal hypothalamic regulation of body metabolism and bone density is galanin-dependent

  • Text
  • PDF
Abstract

In the brain, the ventral hypothalamus (VHT) regulates energy and bone metabolism. Whether this regulation uses the same or different neuronal circuits is unknown. Alteration of AP1 signaling in the VHT increases energy expenditure, glucose utilization, and bone density, yet the specific neurons responsible for each or all of these phenotypes are not identified. Using neuron-specific genetically targeted AP1 alterations as a tool in adult mice, we found that AgRP- or POMC- expressing neurons, predominantly present in the arcuate nucleus (ARC) within the VHT, stimulate whole body energy expenditure, glucose utilization and bone formation and density, although their effects on bone resorption differed. In contrast, AP1 alterations in Steroidogenic factor 1 (SF1)-expressing neurons, present in the ventromedial hypothalamus (VMH), increase energy, but decrease bone density, suggesting that these effects are independent. Altered AP1 signaling also increased the levels of the neuromediator galanin in the hypothalamus and global galanin deletion, VHT galanin silencing using shRNA, or pharmacological galanin receptor blockade, counteracted the observed effects on energy and bone. Thus, AP1 antagonism reveals that AgRP- and POMC- expressing neurons can stimulate body metabolism and increase bone density, with galanin acting as a central downstream effector. The results obtained with SF1-expressing neurons, however, indicate that bone homeostasis is not always dictated by the global energy status, and vice versa.

Authors

Anna Idelevich, Kazusa Sato, Kenichi Nagano, Glenn Rowe, Francesca Gori, Roland Baron

×

Osteoclast-secreted SLIT3 coordinates bone resorption and formation
Beom-Jun Kim, … , Ghi Su Kim, Jung-Min Koh
Beom-Jun Kim, … , Ghi Su Kim, Jung-Min Koh
Published March 5, 2018
Citation Information: J Clin Invest. 2018. https://doi.org/10.1172/JCI91086.
View: Text | PDF

Osteoclast-secreted SLIT3 coordinates bone resorption and formation

  • Text
  • PDF
Abstract

Coupling is the process that links bone resorption to bone formation in a temporally and spatially coordinated manner within the remodeling cycle. Several lines of evidence point to the critical roles of osteoclast-derived coupling factors in the regulation of osteoblast performance. Here, we used a fractionated secretomic approach and identified the axon-guidance molecule SLIT3 as a clastokine that stimulated osteoblast migration and proliferation by activating β-catenin. SLIT3 also inhibited bone resorption by suppressing osteoclast differentiation in an autocrine manner. Mice deficient in Slit3 or its receptor, Robo1, exhibited osteopenic phenotypes due to a decrease in bone formation and increase in bone resorption. Mice lacking Slit3 specifically in osteoclasts had low bone mass, whereas mice with either neuron-specific Slit3 deletion or osteoblast-specific Slit3 deletion had normal bone mass, thereby indicating the importance of SLIT3 as a local determinant of bone metabolism. In postmenopausal women, higher circulating SLIT3 levels were associated with increased bone mass. Notably, injection of a truncated recombinant SLIT3 markedly rescued bone loss after an ovariectomy. Thus, these results indicate that SLIT3 plays an osteoprotective role by synchronously stimulating bone formation and inhibiting bone resorption, making it a potential therapeutic target for metabolic bone diseases.

Authors

Beom-Jun Kim, Young-Sun Lee, Sun-Young Lee, Wook-Young Baek, Young Jin Choi, Sung Ah Moon, Seung Hun Lee, Jung-Eun Kim, Eun-Ju Chang, Eun-Young Kim, Jin Yoon, Seung-Whan Kim, Sung Ho Ryu, Sun-Kyeong Lee, Joseph A. Lorenzo, Seong Hee Ahn, Hyeonmok Kim, Ki-Up Lee, Ghi Su Kim, Jung-Min Koh

×

CYP3A4 mutation causes vitamin D–dependent rickets type 3
Jeffrey D. Roizen, … , Hakon Hakonarson, Michael A. Levine
Jeffrey D. Roizen, … , Hakon Hakonarson, Michael A. Levine
Published February 20, 2018
Citation Information: J Clin Invest. 2018. https://doi.org/10.1172/JCI98680.
View: Text | PDF

CYP3A4 mutation causes vitamin D–dependent rickets type 3

  • Text
  • PDF
Abstract

Genetic forms of vitamin D–dependent rickets (VDDRs) are due to mutations impairing activation of vitamin D or decreasing vitamin D receptor responsiveness. Here we describe two unrelated patients with early-onset rickets, reduced serum levels of the vitamin D metabolites 25-hydroxyvitamin D and 1,25-dihydroxyvitamin D, and deficient responsiveness to parent and activated forms of vitamin D. Neither patient had a mutation in any genes known to cause VDDR, however, using whole exome sequence analysis we identified a recurrent de novo missense mutation c.902T>C (p.I301T) in CYP3A4 in both subjects that alters the conformation of substrate-recognition-site 4 (SRS-4). In vitro, the mutant CYP3A4 oxidized 1,25-dihydroxyvitamin D with 10-fold greater activity than wild-type CYP3A4 and 2-fold greater activity than CYP24A1, the principal inactivator of vitamin D metabolites. As CYP3A4 mutations have not previously been linked to rickets, these findings provide new insight into vitamin D metabolism, and demonstrate that accelerated inactivation of vitamin D metabolites represents a previously undescribed mechanism for vitamin D deficiency.

Authors

Jeffrey D. Roizen, Dong Li, Lauren O'Lear, Muhammad K. Javaid, Nicholas J. Shaw, Peter R. Ebeling, Hanh H. Nguyen, Christine P. Rodda, Kenneth E. Thummel, Tom D Thacher, Hakon Hakonarson, Michael A. Levine

×

Vhl deletion in osteoblasts boosts cellular glycolysis and improves global glucose metabolism
Naomi Dirckx, … , Thomas L. Clemens, Christa Maes
Naomi Dirckx, … , Thomas L. Clemens, Christa Maes
Published February 12, 2018
Citation Information: J Clin Invest. 2018. https://doi.org/10.1172/JCI97794.
View: Text | PDF

Vhl deletion in osteoblasts boosts cellular glycolysis and improves global glucose metabolism

  • Text
  • PDF
Abstract

The skeleton has emerged as an important regulator of systemic glucose homeostasis, with osteocalcin and insulin representing prime mediators of the interplay between bone and energy metabolism. However, genetic evidence indicates that osteoblasts can influence global energy metabolism through additional, as yet unknown, mechanisms. Here, we report that constitutive or postnatally induced deletion of the hypoxia signaling pathway component von Hippel–Lindau (VHL) in skeletal osteolineage cells of mice led to high bone mass as well as hypoglycemia and increased glucose tolerance, not accounted for by osteocalcin or insulin. In vitro and in vivo data indicated that Vhl-deficient osteoblasts displayed massively increased glucose uptake and glycolysis associated with upregulated HIF-target gene expression, resembling the Warburg effect that typifies cancer cells. Overall, the glucose consumption by the skeleton was increased in the mutant mice, as revealed by 18F-FDG radioactive tracer experiments. Moreover, the glycemia levels correlated inversely with the level of skeletal glucose uptake, and pharmacological treatment with the glycolysis inhibitor dichloroacetate (DCA), which restored glucose metabolism in Vhl-deficient osteogenic cells in vitro, prevented the development of the systemic metabolic phenotype in the mutant mice. Altogether, these findings reveal a novel link between cellular glucose metabolism in osteoblasts and whole-body glucose homeostasis, controlled by local hypoxia signaling in the skeleton.

Authors

Naomi Dirckx, Robert J. Tower, Evi M. Mercken, Roman Vangoitsenhoven, Caroline Moreau-Triby, Tom Breugelmans, Elena Nefyodova, Ruben Cardoen, Chantal Mathieu, Bart Van der Schueren, Cyrille B. Confavreux, Thomas L. Clemens, Christa Maes

×

Aberrant TGF-β activation in bone tendon insertion induces enthesopathy-like disease
Xiao Wang, … , Mei Wan, Xu Cao
Xiao Wang, … , Mei Wan, Xu Cao
Published January 22, 2018
Citation Information: J Clin Invest. 2018. https://doi.org/10.1172/JCI96186.
View: Text | PDF

Aberrant TGF-β activation in bone tendon insertion induces enthesopathy-like disease

  • Text
  • PDF
Abstract

Enthesopathy is a disorder of bone, tendon, or ligament insertion. It represents one-fourth of all tendon-ligament diseases and is one of the most difficult tendon-ligament disorders to treat. Despite its high prevalence, the exact pathogenesis of this condition remains unknown. Here, we show that TGF-β was activated in both a semi-Achilles tendon transection (SMTS) mouse model and in a dorsiflexion immobilization (DI) mouse model of enthesopathy. High concentrations of active TGF-β recruited mesenchymal stromal stem cells (MSCs) and led to excessive vessel formation, bone deterioration, and fibrocartilage calcification. Transgenic expression of active TGF-β1 in bone also induced enthesopathy with a phenotype similar to that observed in SMTS and DI mice. Systemic inhibition of TGF-β activity by injection of 1D11, a TGF-β–neutralizing antibody, but not a vehicle antibody, attenuated the excessive vessel formation and restored uncoupled bone remodeling in SMTS mice. 1D11-treated SMTS fibrocartilage had increased proteoglycan and decreased collagen X and matrix metalloproteinase 13 expression relative to control antibody treatment. Notably, inducible knockout of the TGF-β type II receptor in mouse MSCs preserved the bone microarchitecture and fibrocartilage composition after SMTS relative to the WT littermate controls. Thus, elevated levels of active TGF-β in the enthesis bone marrow induce the initial pathological changes of enthesopathy, indicating that TGF-β inhibition could be a potential therapeutic strategy.

Authors

Xiao Wang, Liang Xie, Janet Crane, Gehua Zhen, Fengfeng Li, Ping Yang, Manman Gao, Ruoxian Deng, Yiguo Wang, Xiaohua Jia, Cunyi Fan, Mei Wan, Xu Cao

×

Polycystin-1 interacts with TAZ to stimulate osteoblastogenesis and inhibit adipogenesis
Zhousheng Xiao, … , Jeremy C. Smith, L. Darryl Quarles
Zhousheng Xiao, … , Jeremy C. Smith, L. Darryl Quarles
Published November 27, 2017
Citation Information: J Clin Invest. 2017. https://doi.org/10.1172/JCI93725.
View: Text | PDF

Polycystin-1 interacts with TAZ to stimulate osteoblastogenesis and inhibit adipogenesis

  • Text
  • PDF
Abstract

The molecular mechanisms that transduce the osteoblast response to physical forces in the bone microenvironment are poorly understood. Here, we used genetic and pharmacological experiments to determine whether the polycystins PC1 and PC2 (encoded by Pkd1 and Pkd2) and the transcriptional coactivator TAZ form a mechanosensing complex in osteoblasts. Compound-heterozygous mice lacking 1 copy of Pkd1 and Taz exhibited additive decrements in bone mass, impaired osteoblast-mediated bone formation, and enhanced bone marrow fat accumulation. Bone marrow stromal cells and osteoblasts derived from these mice showed impaired osteoblastogenesis and enhanced adipogenesis. Increased extracellular matrix stiffness and application of mechanical stretch to multipotent mesenchymal cells stimulated the nuclear translocation of the PC1 C-terminal tail/TAZ (PC1-CTT/TAZ) complex, leading to increased runt-related transcription factor 2–mediated (Runx2-mediated) osteogenic and decreased PPARγ-dependent adipogenic gene expression. Using structure-based virtual screening, we identified a compound predicted to bind to PC2 in the PC1:PC2 C-terminal tail region with helix:helix interaction. This molecule stimulated polycystin- and TAZ-dependent osteoblastogenesis and inhibited adipogenesis. Thus, we show that polycystins and TAZ integrate at the molecular level to reciprocally regulate osteoblast and adipocyte differentiation, indicating that the polycystins/TAZ complex may be a potential therapeutic target to increase bone mass.

Authors

Zhousheng Xiao, Jerome Baudry, Li Cao, Jinsong Huang, Hao Chen, Charles R. Yates, Wei Li, Brittany Dong, Christopher M. Waters, Jeremy C. Smith, L. Darryl Quarles

×

Circulating osteocrin stimulates bone growth by limiting C-type natriuretic peptide clearance
Yugo Kanai, … , Naoki Mochizuki, Nobuya Inagaki
Yugo Kanai, … , Naoki Mochizuki, Nobuya Inagaki
Published October 9, 2017
Citation Information: J Clin Invest. 2017. https://doi.org/10.1172/JCI94912.
View: Text | PDF

Circulating osteocrin stimulates bone growth by limiting C-type natriuretic peptide clearance

  • Text
  • PDF
Abstract

Although peptides are safe and useful as therapeutics, they are often easily degraded or metabolized. Dampening the clearance system for peptide ligands is a promising strategy for increasing the efficacy of peptide therapies. Natriuretic peptide receptor B (NPR-B) and its naturally occurring ligand, C-type natriuretic peptide (CNP), are potent stimulators of endochondral bone growth, and activating the CNP/NPR-B system is expected to be a powerful strategy for treating impaired skeletal growth. CNP is cleared by natriuretic peptide clearance receptor (NPR-C); therefore, we investigated the effect of reducing the rate of CNP clearance on skeletal growth by limiting the interaction between CNP and NPR-C. Specifically, we generated transgenic mice with increased circulating levels of osteocrin (OSTN) protein, a natural NPR-C ligand without natriuretic activity, and observed a dose-dependent skeletal overgrowth phenotype in these animals. Skeletal overgrowth in OSTN-transgenic mice was diminished in either CNP- or NPR-C–depleted backgrounds, confirming that CNP and NPR-C are indispensable for the bone growth–stimulating effect of OSTN. Interestingly, double-transgenic mice of CNP and OSTN had even higher levels of circulating CNP and additional increases in bone length, as compared with mice with elevated CNP alone. Together, these results support OSTN administration as an adjuvant agent for CNP therapy and provide a potential therapeutic approach for diseases with impaired skeletal growth.

Authors

Yugo Kanai, Akihiro Yasoda, Keita P. Mori, Haruko Watanabe-Takano, Chiaki Nagai-Okatani, Yui Yamashita, Keisho Hirota, Yohei Ueda, Ichiro Yamauchi, Eri Kondo, Shigeki Yamanaka, Yoriko Sakane, Kazumasa Nakao, Toshihito Fujii, Hideki Yokoi, Naoto Minamino, Masashi Mukoyama, Naoki Mochizuki, Nobuya Inagaki

×

Proprotein convertase furin regulates osteocalcin and bone endocrine function
Omar El-Rifai, … , Nabil G. Seidah, Mathieu Ferron
Omar El-Rifai, … , Nabil G. Seidah, Mathieu Ferron
Published October 3, 2017
Citation Information: J Clin Invest. 2017. https://doi.org/10.1172/JCI93437.
View: Text | PDF

Proprotein convertase furin regulates osteocalcin and bone endocrine function

  • Text
  • PDF
Abstract

Osteocalcin (OCN) is an osteoblast-derived hormone that increases energy expenditure, insulin sensitivity, insulin secretion, and glucose tolerance. The cDNA sequence of OCN predicts that, like many other peptide hormones, OCN is first synthesized as a prohormone (pro-OCN). The importance of pro-OCN maturation in regulating OCN and the identity of the endopeptidase responsible for pro-OCN cleavage in osteoblasts are still unknown. Here, we show that the proprotein convertase furin is responsible for pro-OCN maturation in vitro and in vivo. Using pharmacological and genetic experiments, we also determined that furin-mediated pro-OCN cleavage occurred independently of its γ-carboxylation, a posttranslational modification that is known to hamper OCN endocrine action. However, because pro-OCN is not efficiently decarboxylated and activated during bone resorption, inactivation of furin in osteoblasts in mice resulted in decreased circulating levels of undercarboxylated OCN, impaired glucose tolerance, and reduced energy expenditure. Furthermore, we show that Furin deletion in osteoblasts reduced appetite, a function not modulated by OCN, thus suggesting that osteoblasts may secrete additional hormones that regulate different aspects of energy metabolism. Accordingly, the metabolic defects of the mice lacking furin in osteoblasts became more apparent under pair-feeding conditions. These findings identify furin as an important regulator of bone endocrine function.

Authors

Omar El-Rifai, Jacqueline Chow, Julie Lacombe, Catherine Julien, Denis Faubert, Delia Susan-Resiga, Rachid Essalmani, John W.M. Creemers, Nabil G. Seidah, Mathieu Ferron

×
  • ← Previous
  • 1
  • 2
  • 3
  • 4
  • …
  • 13
  • 14
  • Next →
VEGF plays multiple roles in bone repair
Kai Hu and Bjorn Olsen reveal that osteoblast-derived VEGF serves as a proinflammatory, angiogenic, and osteogenic factor during bone healing…
Published January 5, 2016
Scientific Show StopperBone Biology

Fibrin removal paves the way for fracture repair
Masato Yuasa, Nicholas Mignemi, and colleagues reveal that fibrin deposition is dispensable during fracture healing but fibrinolysis is essential for a normal repair process…
Published July 27, 2015
Scientific Show StopperBone Biology

Breaking up with glutamine
Courtney Karner and colleagues reveal that WNT signaling mediates bone anabolism through increasing catabolism of glutamine…
Published December 22, 2014
Scientific Show StopperBone Biology
Advertisement
Follow JCI:
Copyright © 2021 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts