Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Clinical Research and Public Health

  • 395 Articles
  • 0 Posts
  • ← Previous
  • 1
  • 2
  • …
  • 5
  • 6
  • 7
  • …
  • 39
  • 40
  • Next →
Deciphering bone marrow engraftment after allogeneic stem cell transplantation in humans using single cell analyses
Jennifer Bordenave, … , Emmanuel Curis, Gerard Socie
Jennifer Bordenave, … , Emmanuel Curis, Gerard Socie
Published August 29, 2024
Citation Information: J Clin Invest. 2024. https://doi.org/10.1172/JCI180331.
View: Text | PDF

Deciphering bone marrow engraftment after allogeneic stem cell transplantation in humans using single cell analyses

  • Text
  • PDF
Abstract

Background. Donor cell engraftment is a pre-requisite of successful allogeneic hematopoietic stem cell transplantation. Based on peripheral blood analyses it is characterized by early myeloid recovery and T- and B-cells lymphopenia. However, cellular networks associated with bone marrow engraftment of allogeneic human cells have been poorly described. Methods. Mass cytometry and CITEseq analyses were performed on bone marrow cells, three months post-transplant in patients with acute myelogenous leukemia. Results. Mass cytometry in 26 patients and 20 healthy controls disclosed profound alterations in myeloid and B-cell progenitors, with a shift towards terminal myeloid differentiation and decreased B-cell progenitors. Unsupervised analysis separated recipients into 2 groups, one of them being driven by previous GVHD (R2 patients). We then used single-cell CITEseq to decipher engraftment, which resolved 36 clusters, encompassing all bone marrow cellular components. Hematopoiesis in transplant recipients was sustained by committed myeloid and erythroid progenitors in a setting of monocytes-, NK cells- and T-cells mediated inflammation. Gene expression disclosed major pathways in transplant recipients, namely, TNFα signaling via NFκ-B, and interferon-γ response. The hallmark of allograft rejection was consistently found in clusters from transplant recipients, especially in R2 recipients. Conclusion. Bone marrow cell engraftment of allogeneic donor cells is characterized by a state of emergency hematopoiesis in the setting of allogeneic response driving inflammation. Trial registration. Not applicable. Funding. This study has been supported by the French National Cancer Institute (Institut National du Cancer): PLBIO19-239 and by an unrestricted research grant by Alexion Pharmaceutical.

Authors

Jennifer Bordenave, Dorota Gajda, David Michonneau, Nicolas Vallet, Mathieu F. Chevalier, Emmanuelle Clappier, Pierre Lemaire, Stéphanie Mathis, Marie Robin, Aliénor Xhaard, Flore Sicre de Fontbrune, Aurélien Corneau, Sophie Caillat-Zucman, Regis PEFFAULT de LATOUR, Emmanuel Curis, Gerard Socie

×

Quantifying variant contributions in cystic kidney disease using national-scale whole genome sequencing
Omid Sadeghi-Alavijeh, … , Adam P. Levine, Daniel P. Gale
Omid Sadeghi-Alavijeh, … , Adam P. Levine, Daniel P. Gale
Published August 27, 2024
Citation Information: J Clin Invest. 2024. https://doi.org/10.1172/JCI181467.
View: Text | PDF

Quantifying variant contributions in cystic kidney disease using national-scale whole genome sequencing

  • Text
  • PDF
Abstract

Background Cystic kidney disease (CyKD) is a predominantly familial disease in which gene discovery has been led by family-based and candidate gene studies, an approach that is susceptible to ascertainment and other biases. Methods Using whole genome sequencing data from 1,209 cases and 26,096 ancestry-matched controls participating in the 100,000 Genomes Project, we adopted hypothesis-free approaches to generate quantitative estimates of disease risk for each genetic contributor to CyKD, across genes, variant types and allelic frequencies. Results In 82.3% of cases, a qualifying potentially disease-causing rare variant in an established gene was found. There was an enrichment of rare coding, splicing, and structural variants in known CyKD genes, with novel statistically significant gene-based signals in COL4A3 and (monoallelic) PKHD1. Quantification of disease risk for each gene (with replication in the separate UK BioBank study) revealed substantially lower risk associated with genes more recently associated with autosomal dominant polycystic kidney disease, with odds ratios for some below what might usually be regarded as necessary for classical Mendelian inheritance. Meta-analysis of common variants did not reveal significant associations but suggested this category of variation contributes 3-9% to the heritability of CyKD across European ancestries. Conclusion By providing unbiased quantification of risk effects per gene, this research suggests that not all rare variant genetic contributors to CyKD are equally likely to manifest as a Mendelian trait in families. This information may inform genetic testing and counselling in the clinic. Keywords: genomics, cystic kidney disease, renal, ADPKD, WGS

Authors

Omid Sadeghi-Alavijeh, Melanie MY. Chan, Gabriel T. Doctor, Catalin D. Voinescu, Alexander Stuckey, Athanasios Kousathanas, Alexander T. Ho, Horia C. Stanescu, Detlef Bockenhauer, Richard N. Sandford, Adam P. Levine, Daniel P. Gale

×

Teplizumab induces persistent changes in the antigen‐specific repertoire in individuals at‐risk for type 1 diabetes
Ana Lledó-Delgado, … , John S. Tsang, Kevan C. Herold
Ana Lledó-Delgado, … , John S. Tsang, Kevan C. Herold
Published August 13, 2024
Citation Information: J Clin Invest. 2024. https://doi.org/10.1172/JCI177492.
View: Text | PDF

Teplizumab induces persistent changes in the antigen‐specific repertoire in individuals at‐risk for type 1 diabetes

  • Text
  • PDF
Abstract

BACKGROUND. Teplizumab, a FcR non-binding anti-CD3 mAb, is approved to delay progression of type 1 diabetes (T1D) at-risk patients. Previous investigations described the immediate effects of the 14-day treatment, but longer-term effects of the drug remain unknown. METHODS. With an extended analysis of study participants, we found that 36% were undiagnosed or remained clinical diabetes free after 5 years suggesting operational tolerance. Using single cell RNA-seq, we compared the phenotypes, transcriptome, and repertoire of peripheral blood CD8+ T cells including autoreactive T cells from study participants before and after teplizumab and features of responders and non-responders. RESULTS. At 3 months, there were transcriptional signatures of cell activation in CD4+ and CD8+ T cells including signaling that was reversed at 18 months. At that time, there was reduced expression of genes in T cell receptor and activation pathways in clinical responders. In CD8+ T cells, we found increased expression of genes associated with exhaustion and immune regulation with teplizumab treatment. These transcriptional features were further confirmed in an independent cohort. Pseudotime analysis showed differentiation of CD8+ exhausted and memory cells with teplizumab treatment. IL7R expression was reduced and patients with lower expression of CD127 had longer diabetes free intervals. In addition, the frequency of autoantigen reactive CD8+ T cells, that expanded in the placebo group over 18 months, did not increase in the teplizumab group. CONCLUSION. These findings indicate that teplizumab promotes operational tolerance in T1D, involving activation followed by exhaustion and regulation and prevents expansion of autoreactive T cells. TRIAL REGISTRATION. ClinicalTrials.gov: NCT01030861. FUNDING. NIDDK/NIH, Juvenile Diabetes Research Foundation.

Authors

Ana Lledó-Delgado, Paula Preston-Hurlburt, Sophia Currie, Pamela Clark, Peter S. Linsley, S. Alice Long, Can Liu, Galina Koroleva, Andrew J. Martins, John S. Tsang, Kevan C. Herold

×

Human milk antibodies to global pathogens reveal geographic and interindividual variations in IgA and IgG
Joseph J. Campo, … , William A. Petri Jr., Kirsi M. Järvinen
Joseph J. Campo, … , William A. Petri Jr., Kirsi M. Järvinen
Published August 1, 2024
Citation Information: J Clin Invest. 2024;134(15):e168789. https://doi.org/10.1172/JCI168789.
View: Text | PDF

Human milk antibodies to global pathogens reveal geographic and interindividual variations in IgA and IgG

  • Text
  • PDF
Abstract

BACKGROUND The use of high-throughput technologies has enabled rapid advancement in the knowledge of host immune responses to pathogens. Our objective was to compare the repertoire, protection, and maternal factors associated with human milk antibodies to infectious pathogens in different economic and geographic locations.METHODS Using multipathogen protein microarrays, 878 milk and 94 paired serum samples collected from 695 women in 5 high and low-to-middle income countries (Bangladesh, Finland, Peru, Pakistan, and the United States) were assessed for specific IgA and IgG antibodies to 1,607 proteins from 30 enteric, respiratory, and bloodborne pathogens.RESULTS The antibody coverage across enteric and respiratory pathogens was highest in Bangladeshi and Pakistani cohorts and lowest in the U.S. and Finland. While some pathogens induced a dominant IgA response (Campylobacter, Klebsiella, Acinetobacter, Cryptosporidium, and pertussis), others elicited both IgA and IgG antibodies in milk and serum, possibly related to the invasiveness of the infection (Shigella, enteropathogenic E. coli “EPEC”, Streptococcus pneumoniae, Staphylococcus aureus, and Group B Streptococcus). Besides the differences between economic regions and decreases in concentrations over time, human milk IgA and IgG antibody concentrations were lower in mothers with high BMI and higher parity, respectively. In Bangladeshi infants, a higher specific IgA concentration in human milk was associated with delayed time to rotavirus infection, implying protective properties of antirotavirus antibodies, whereas a higher IgA antibody concentration was associated with greater incidence of Campylobacter infection.CONCLUSION This comprehensive assessment of human milk antibody profiles may be used to guide the development of passive protection strategies against infant morbidity and mortality.FUNDING Bill and Melinda Gates Foundation grant OPP1172222 (to KMJ); Bill and Melinda Gates Foundation grant OPP1066764 funded the MDIG trial (to DER); University of Rochester CTSI and Environmental Health Sciences Center funded the Rochester Lifestyle study (to RJL); and R01 AI043596 funded PROVIDE (to WAP).

Authors

Joseph J. Campo, Antti E. Seppo, Arlo Z. Randall, Jozelyn Pablo, Chris Hung, Andy Teng, Adam D. Shandling, Johnathon Truong, Amit Oberai, James Miller, Najeeha Talat Iqbal, Pablo Peñataro Yori, Anna Kaarina Kukkonen, Mikael Kuitunen, L. Beryl Guterman, Shaun K. Morris, Lisa G. Pell, Abdullah Al Mahmud, Girija Ramakrishan, Eva Heinz, Beth D. Kirkpatrick, Abu S.G. Faruque, Rashidul Haque, R. John Looney, Margaret N. Kosek, Erkki Savilahti, Saad B. Omer, Daniel E. Roth, William A. Petri Jr., Kirsi M. Järvinen

×

Molecular analysis of primary and metastatic sites in patients with renal cell carcinoma
Shuchi Gulati, … , Chadi Nabhan, Rana R. McKay
Shuchi Gulati, … , Chadi Nabhan, Rana R. McKay
Published July 15, 2024
Citation Information: J Clin Invest. 2024;134(14):e176230. https://doi.org/10.1172/JCI176230.
View: Text | PDF

Molecular analysis of primary and metastatic sites in patients with renal cell carcinoma

  • Text
  • PDF
Abstract

BACKGROUND Metastases are the hallmark of lethal cancer, though underlying mechanisms that drive metastatic spread to specific organs remain poorly understood. Renal cell carcinoma (RCC) is known to have distinct sites of metastases, with lung, bone, liver, and lymph nodes being more common than brain, gastrointestinal tract, and endocrine glands. Previous studies have shown varying clinical behavior and prognosis associated with the site of metastatic spread; however, little is known about the molecular underpinnings that contribute to the differential outcomes observed by the site of metastasis.METHODS We analyzed primary renal tumors and tumors derived from metastatic sites to comprehensively characterize genomic and transcriptomic features of tumor cells as well as to evaluate the tumor microenvironment at both sites.RESULTS We included a total of 657 tumor samples (340 from the primary site [kidney] and 317 from various sites of metastasis). We show distinct genomic alterations, transcriptomic signatures, and immune and stromal tumor microenvironments across metastatic sites in a large cohort of patients with RCC.CONCLUSION We demonstrate significant heterogeneity among primary tumors and metastatic sites and elucidate the complex interplay between tumor cells and the extrinsic tumor microenvironment that is vital for developing effective anticancer therapies.

Authors

Shuchi Gulati, Pedro C. Barata, Andrew Elliott, Mehmet Asim Bilen, Earle F. Burgess, Toni K. Choueiri, Sourat Darabi, Nancy Ann Dawson, Benjamin Adam Gartrell, Hans J. Hammers, Elisabeth I. Heath, Daniel Magee, Arpit Rao, Charles J. Ryan, Przemyslaw Twardowski, Shuanzeng Wei, James Brugarolas, Tian Zhang, Matthew R. Zibelman, Chadi Nabhan, Rana R. McKay

×

Randomised controlled trial reveals no benefit to a 3-month delay in COVID-19 mRNA booster vaccine
Wen Shi Lee, … , Kevin J. Selva, Stephen J. Kent
Wen Shi Lee, … , Kevin J. Selva, Stephen J. Kent
Published July 11, 2024
Citation Information: J Clin Invest. 2024. https://doi.org/10.1172/JCI181244.
View: Text | PDF

Randomised controlled trial reveals no benefit to a 3-month delay in COVID-19 mRNA booster vaccine

  • Text
  • PDF
Abstract

BACKGROUND. There is uncertainty around the timing of booster vaccination against COVID-19 in highly vaccinated populations during the present endemic phase of COVID-19. Studies focused on primary vaccination have previously suggested improved immunity after delaying immunisation. METHODS. We conducted a randomised controlled trial (Nov 2022 – Aug 2023) and assigned 52 fully vaccinated adults to an immediate or a 3-month delayed bivalent Spikevax mRNA booster vaccine. Follow-up visits were completed for 48 participants (n = 24 per arm), with saliva and plasma samples collected following each visit. RESULTS. The rise in neutralising antibody responses to ancestral and Omicron strains were almost identical between the immediate and delayed vaccination arms. Analyses of plasma and salivary antibody responses (IgG, IgA), plasma antibody-dependent phagocytic activity, and the decay kinetics of antibody responses were similar between the 2 arms. Symptomatic and asymptomatic SARS-CoV-2 infection occurred in 49% (21/49) participants over the median 11.5 months of follow up and were also similar between the 2 arms. CONCLUSIONS. Our data suggests no benefit from delaying COVID-19 mRNA booster vaccination in pre-immune populations during the present endemic phase of COVID-19 TRIAL REGISTRATION. Australian New Zealand Clinical Trials Registry number 12622000411741. FUNDING. National Health and Medical Research Council, Australia, Program Grant App1149990 and Medical Research Future Fund App2005544.

Authors

Wen Shi Lee, Jennifer Audsley, Mai-Chi Trieu, Arnold Reynaldi, L. Carissa Aurelia, Palak H. Mehta, Joanne Patterson, Helen E. Kent, Julie Nguyen, Thakshila Amarasena, Robyn Esterbauer, Ebene R. Haycroft, Pradhipa Ramanathan, Miles P. Davenport, Timothy E. Schlub, Joseph Sasadeusz, Adam K. Wheatley, Amy W. Chung, Jennifer A. Juno, Kevin J. Selva, Stephen J. Kent

×

Disease-specific T cell receptors maintain pathogenic T helper cell responses in postinfectious Lyme arthritis
Johannes Dirks, … , Florian Erhard, Henner Morbach
Johannes Dirks, … , Florian Erhard, Henner Morbach
Published July 4, 2024
Citation Information: J Clin Invest. 2024. https://doi.org/10.1172/JCI179391.
View: Text | PDF

Disease-specific T cell receptors maintain pathogenic T helper cell responses in postinfectious Lyme arthritis

  • Text
  • PDF
Abstract

Background: Antibiotic-Refractory Lyme Arthritis (ARLA) involves a complex interplay of T cell responses targeting Borrelia burgdorferi antigens succeeding towards autoantigens by epitope spreading. However, the precise molecular mechanisms driving the pathogenic T cell response in ARLA remain unclear. Our aim was to elucidate the molecular program of disease-specific Th cells. Methods: Using flow cytometry, high-throughput T cell receptor (TCR) sequencing and scRNA-seq of CD4+ Th cells isolated from the joints of European ARLA patients, we aimed at inferring antigen specificity through unbiased analysis of TCR repertoire patterns, identifying surrogate markers for disease-specific TCRs and connecting TCR specificity to transcriptional patterns. Results: PD-1hiHLA-DR+CD4+ effector T cells were clonally expanded within the inflamed joints and persisted throughout disease course. Among these cells, we identified a distinct TCRβ motif restricted to HLA-DRB1*11 or *13 alleles. These alleles, being underrepresented in North American ARLA patients, were unexpectedly prevalent in our European cohort. The identified TCRβ motif served as surrogate marker for a convergent TCR response specific to ARLA, distinguishing it from other rheumatic diseases. In the scRNA-seq dataset, the TCRβ motif particularly mapped to peripheral T helper (TPH) cells displaying signs of sustained proliferation, continuous TCR signaling, and expressing CXCL13 and IFN-γ. Conclusion: By inferring disease-specific TCRs from synovial T cells we identified a convergent TCR response in the joints of ARLA patients that continuously fueled the expansion of TPH cells expressing a pathogenic cytokine effector program. The identified TCRs will aid in uncovering the major antigen targets of the maladaptive immune response. Funding: Supported by the German Research Foundation (DFG) MO 2160/4-1; the Federal Ministry of Education and Research (BMBF; Advanced Clinician Scientist-Program INTERACT; 01EO2108) embedded in the Interdisciplinary Center for Clinical Research (IZKF) of the University Hospital Würzburg; the German Center for Infection Research (DZIF; Clinical Leave Program; TI07.001_007) and the Interdisciplinary Center for Clinical Research (IZKF) Würzburg (Clinician Scientist Program, Z-2/CSP-30).

Authors

Johannes Dirks, Jonas Fischer, Julia Klaussner, Christine Hofmann, Annette Holl-Wieden, Viktoria Buck, Christian Klemann, Hermann J. Girschick, Ignazio Caruana, Florian Erhard, Henner Morbach

×

Body mass index and adiposity influence responses to immune checkpoint inhibition in endometrial cancer
Nicolás Gómez-Banoy, … , Paul Cohen, Juan C. Osorio
Nicolás Gómez-Banoy, … , Paul Cohen, Juan C. Osorio
Published June 20, 2024
Citation Information: J Clin Invest. 2024. https://doi.org/10.1172/JCI180516.
View: Text | PDF

Body mass index and adiposity influence responses to immune checkpoint inhibition in endometrial cancer

  • Text
  • PDF
Abstract

BACKGROUND. Obesity is the foremost risk factor in the development of endometrial cancer (EC). However, the impact of obesity on the response to immune checkpoint inhibitors (ICI) in EC remains poorly understood. This retrospective study investigates the association between body mass index (BMI), body fat distribution, and clinical and molecular characteristics of EC patients treated with ICI. METHODS. We analyzed progression-free survival (PFS) and overall survival (OS) in EC patients treated with ICI, categorized by BMI, fat mass distribution, and molecular subtypes. Incidence of immune-related adverse events (irAE) after ICI was also assessed based on BMI status. RESULTS. 524 EC patients were included in the study. Overweight and obese patients exhibited a significantly prolonged PFS and OS compared to normal BMI patients after treatment with ICI. Multivariable Cox regression analysis confirmed the independent association of overweight and obesity with improved PFS and OS. Elevated visceral adipose tissue (VAT) was identified as a strong independent predictor for improved PFS to ICI. Associations between obesity and OS/PFS were particularly significant in the copy number-high/TP53abnormal (CN-H/TP53abn) EC molecular subtype. Finally, obese patients demonstrated a higher irAE rate compared to normal BMI individuals. CONCLUSION. Obesity is associated with improved outcomes to ICI in EC patients and a higher rate of irAEs. This association is more pronounced in the CN-H/TP53abn EC molecular subtype. FUNDING. NIH/NCI Cancer Center Support Grant P30CA008748 (MSK). K08CA266740 and MSK Gerstner Physician Scholars Program (J.C.O). RUCCTS Grant #UL1 TR001866 (N.G-B and C.S.J). Cycle for survival and Breast Cancer Research Foundation grants (B.W).

Authors

Nicolás Gómez-Banoy, Eduardo J. Ortiz, Caroline S. Jiang, Christian Dagher, Carlo Sevilla, Jeffrey Girshman, Andrew M. Pagano, Andrew J. Plodkowski, William A. Zammarrelli, Jennifer J. Mueller, Carol Aghajanian, Britta Weigelt, Vicky Makker, Paul Cohen, Juan C. Osorio

×

Crizanlizumab for retinal vasculopathy with cerebral leukoencephalopathy in a phase II clinical study
Wilson X. Wang, … , Andria L. Ford, Rajendra S. Apte
Wilson X. Wang, … , Andria L. Ford, Rajendra S. Apte
Published June 17, 2024
Citation Information: J Clin Invest. 2024;134(12):e180916. https://doi.org/10.1172/JCI180916.
View: Text | PDF | Corrigendum

Crizanlizumab for retinal vasculopathy with cerebral leukoencephalopathy in a phase II clinical study

  • Text
  • PDF
Abstract

Background Retinal vasculopathy with cerebral leukoencephalopathy and systemic manifestations (RVCL-S) is a rare, autosomal dominant, universally fatal disease without effective treatment options. This study explores the safety and preliminary efficacy of crizanlizumab, a humanized monoclonal antibody against P-selectin approved for the prevention of sickle cell crises, in slowing retinal nonperfusion and preserving vision in patients with RVCL-S.METHODS Eleven patients with RVCL-S with confirmed exonuclease 3 prime repair exonuclease 1 (TREX1) mutations received monthly crizanlizumab infusions over 2 years. The study measured the nonperfusion index within 3 retinal zones and the total retina with fluorescein angiography, visual acuity, intraocular pressure (IOP), and optical coherence tomography central subfield thickness (CST) at baseline, 1 year, and 2 years. A mixed repeated-measures analysis was performed to assess the progression rates and changes from baseline.RESULTS Eleven participants received crizanlizumab infusions. All of the participants tolerated crizanlizumab well, with 8 of 11 (72.7%) reporting mild adverse effects such as nausea, fatigue, and gastrointestinal symptoms. The change in total retinal nonperfusion was 7.22% [4.47, 9.97] in year 1 and –0.69% [–4.06, 2.68] in year 2 (P < 0.001). In the mid periphery, the change in nonperfusion was 10.6% [5.1, 16.1] in year 1 and –0.68% [–3.98, 5.35] in year 2 (P < 0.01), demonstrating a reduction in progression of nonperfusion in the second year of treatment. Visual acuity, IOP, and CST remained stable.CONCLUSION Crizanlizumab has an acceptable safety profile. These results show promising potential for examining crizanlizumab in larger studies of RVCL-S and similar small-vessel diseases and for using the retina as a biomarker for systemic disease.Trial registration ClinicalTrials.gov NCT04611880.FUNDING The Clayco Foundation; DeNardo Education and Research Foundation Grant; Jeffrey T. Fort Innovation Fund; Siteman Retina Research Fund; unrestricted grant from Research to Prevent Blindness Inc.; National Heart,Lung, and Blood Institute (NHLBI), NIH (R01HL129241); National Institute of Neurological Disorders and Stroke (NINDS), NIH (RF1NS116565).

Authors

Wilson X. Wang, Dan Spiegelman, P. Kumar Rao, Andria L. Ford, Rajendra S. Apte

×

RNASEH2B loss and PARP inhibition in advanced prostate cancer
Juliet Carmichael, … , Adam Sharp, Johann de Bono
Juliet Carmichael, … , Adam Sharp, Johann de Bono
Published June 4, 2024
Citation Information: J Clin Invest. 2024. https://doi.org/10.1172/JCI178278.
View: Text | PDF

RNASEH2B loss and PARP inhibition in advanced prostate cancer

  • Text
  • PDF
Abstract

BACKGROUND. Clinical trials have suggested antitumor activity from PARP inhibition beyond homologous recombination deficiency (HRD). RNASEH2B loss is unrelated to HRD and preclinically sensitizes to PARP inhibition. The current study reports on RNASEH2B protein loss in advanced prostate cancer and its association with RB1 protein loss, clinical outcome and clonal dynamics during treatment with PARP inhibition in a prospective clinical trial. METHODS. Whole tumor biopsies from multiple cohorts of patients with advanced prostate cancer were interrogated using whole-exome sequencing (WES), RNA sequencing (bulk and single nucleus) and immunohistochemistry (IHC) for RNASEH2B and RB1. Biopsies from patients treated with olaparib in the TOPARP-A and TOPARP-B clinical trials were used to evaluate RNASEH2B clonal selection during olaparib treatment. RESULTS. Shallow co-deletion of RNASEH2B and adjacent RB1, co-located at chromosome 13q14, was common, deep co-deletion infrequent, and gene loss associated with lower mRNA expression. In castration-resistant PC (CRPC) biopsies, RNASEH2B and RB1 mRNA expression correlated, but single nucleus RNA sequencing indicated discordant loss of expression. IHC studies showed that loss of the two proteins often occurred independently, arguably due to stochastic second allele loss. Pre- and post-treatment metastatic CRPC (mCRPC) biopsy studies from BRCA1/2 wildtype tumors, treated on the TOPARP phase II trial, indicated that olaparib eradicates RNASEH2B-loss tumor subclones. CONCLUSION. PARP inhibition may benefit men suffering from mCRPC by eradicating tumor subclones with RNASEH2B loss. TRIAL REGISTRATION. Clinicaltrials.gov NCT01682772 FUNDING. AstraZeneca; Cancer Research UK; Medical Research Council; Cancer Research UK; Prostate Cancer UK; Movember Foundation; Prostate Cancer Foundation.

Authors

Juliet Carmichael, Ines Figueiredo, Bora Gurel, Nick Beije, Wei Yuan, Jan Rekowski, George Seed, Suzanne Carreira, Claudia Bertan, Maria de Los Dolores Fenor de la Maza, Khobe Chandran, Antje Neeb, Jon Welti, Lewis Gallagher, Denisa Bogdan, Mateus Crespo, Ruth Riisnaes, Ana Ferreira, Susana Miranda, Jinqiu Lu, Michael M. Shen, Emma Hall, Nuria Porta, Daniel Westaby, Christina Guo, Rafael Grochot, Christopher J. Lord, Joaquin Mateo, Adam Sharp, Johann de Bono

×
  • ← Previous
  • 1
  • 2
  • …
  • 5
  • 6
  • 7
  • …
  • 39
  • 40
  • Next →

No posts were found with this tag.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts