Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

In-Press Preview

  • 2,147 Articles
  • 0 Posts
  • ← Previous
  • 1
  • 2
  • …
  • 199
  • 200
  • 201
  • …
  • 214
  • 215
  • Next →
An airway epithelial IL-17A response signature identifies a steroid-unresponsive COPD patient subgroup
Stephanie A. Christenson, … , David J. Erle, Prescott G. Woodruff
Stephanie A. Christenson, … , David J. Erle, Prescott G. Woodruff
Published November 1, 2018
Citation Information: J Clin Invest. 2018. https://doi.org/10.1172/JCI121087.
View: Text | PDF

An airway epithelial IL-17A response signature identifies a steroid-unresponsive COPD patient subgroup

  • Text
  • PDF
Abstract

BACKGROUND. Chronic Obstructive Pulmonary Disease (COPD) is a heterogeneous smoking-related disease characterized by airway obstruction and inflammation. This inflammation may persist even after smoking cessation and responds variably to corticosteroids. Personalizing treatment to biologically similar “molecular phenotypes” may improve therapeutic efficacy in COPD. IL-17A is involved in neutrophilic inflammation and corticosteroid resistance, and thus may be particularly important in a COPD molecular phenotype. METHODS. We generated a gene expression signature of IL-17A response in bronchial airway epithelial brushings (“BAE”) from smokers with and without COPD (n = 238), and validated it using data from two randomized trials of IL-17 blockade in psoriasis. This IL-17 signature was related to clinical and pathologic characteristics in two additional human studies of COPD: (1) SPIROMICS (n = 47), which included former and current smokers with COPD, and (2) GLUCOLD (n = 79), in which COPD participants were randomized to placebo or corticosteroids. RESULTS. The IL-17 signature was associated with an inflammatory profile characteristic of an IL-17 response, including increased airway neutrophils and macrophages. In SPIROMICS the signature was associated with increased airway obstruction and functional small airway disease on quantitative chest CT. In GLUCOLD the signature was associated with decreased response to corticosteroids, irrespective of airway eosinophilic or Type 2 inflammation. CONCLUSION. These data suggest that a gene signature of IL-17 airway epithelial response distinguishes a biologically, radiographically, and clinically distinct COPD subgroup that may benefit from personalized therapy. TRIAL REGISTRATION. ClinicalTrials.gov NCT01969344. FUNDING. Primary support from NIH/NHLBI. For others see below.

Authors

Stephanie A. Christenson, Maarten van den Berge, Alen Faiz, Kai Imkamp, Nirav Bhakta, Luke R. Bonser, Lorna T. Zlock, Igor Z. Barjaktarevic, R. Graham Barr, Eugene R. Bleecker, Richard C. Boucher, Russell P. Bowler, Alejandro P. Comellas, Jeffrey L. Curtis, MeiLan K. Han, Nadia N. Hansel, Pieter S. Hiemstra, Robert J. Kaner, Jerry A. Krishnan, Fernando J. Martinez, Wanda K. O'Neal, Robert Paine III, Wim Timens, J. Michael Wells, Avrum Spira, David J. Erle, Prescott G. Woodruff

×

Acetaldehyde dehydrogenase 2 interactions with LDLR and AMPK regulate foam cell formation
Shanshan Zhong, … , Yun-Cheng Wu, Huiyong Yin
Shanshan Zhong, … , Yun-Cheng Wu, Huiyong Yin
Published October 30, 2018
Citation Information: J Clin Invest. 2018. https://doi.org/10.1172/JCI122064.
View: Text | PDF

Acetaldehyde dehydrogenase 2 interactions with LDLR and AMPK regulate foam cell formation

  • Text
  • PDF
Abstract

Aldehyde dehydrogenase 2 (ALDH2) is a mitochondrial enzyme detoxifying acetaldehyde and endogenous lipid aldehydes; previous studies suggest a protective role of ALDH2 against cardiovascular disease (CVD). Around 40% of East Asians carrying a single nucleotide polymorphism (SNP) ALDH2 rs671 have increased incidences of CVD. However, the role of ALDH2 in CVD beyond alcohol consumption remains poorly defined. Here we report that ALDH2/LDLR DKO mice have decreased atherosclerosis compared to LDLR KO mice, whereas ALDH2/APOpoE DKO have increased atherosclerosis, suggesting an unexpected interaction of ALDH2 with LDLR. Further studies demonstrate that in the absence of LDLR, AMPK phosphorylates ALDH2 at threonine 356 and enables its nuclear translocation. Nuclear ALDH2 interacts with HDAC3 and represses transcription of a lysosomal proton pump protein ATP6Vv0Ee2, critical for maintaining lysosomal function, autophagy and degradation of oxLDL. Interestingly, an interaction of cytosolic LDLR C-terminus with AMPK blocks ALDH2 phosphorylation and subsequent nuclear translocation, whereas ALDH2 rs671 mutant in human macrophages attenuates this interaction, which releases ALDH2 to nucleus to suppress ATP6Vv0Ee2 expression, resulting in increased foam cells due to impaired lysosomal function. Our studies reveal a novel role of ALDH2 and LDLR in atherosclerosis and provide a molecular mechanism by which ALDH2 rs671 SNP increases CVD.

Authors

Shanshan Zhong, Luxiao Li, Yu-Lei Zhang, Lili Zhang, Jianhong Lu, Shuyuan Guo, Ningning Liang, Jing Ge, Mingjiang Zhu, Yongzhen Tao, Yun-Cheng Wu, Huiyong Yin

×

Notch signaling dynamically regulates adult β cell proliferation and maturity
Alberto Bartolome, … , Lori Sussel, Utpal B. Pajvani
Alberto Bartolome, … , Lori Sussel, Utpal B. Pajvani
Published October 30, 2018
Citation Information: J Clin Invest. 2018. https://doi.org/10.1172/JCI98098.
View: Text | PDF

Notch signaling dynamically regulates adult β cell proliferation and maturity

  • Text
  • PDF
Abstract

Notch signaling regulates differentiation of the pancreatic endocrine lineage during embryogenesis, but the role of Notch in mature β cells is unclear. We found that islets derived from lean mice show modest β cell Notch activity, which increases in obesity and in response to high glucose. This response appeared maladaptive, as mice with β cell-specific deficient Notch transcriptional activity (β-Rbpj, β-DNMAML) showed improved glucose tolerance when subjected to high-fat diet feeding. Conversely, mice with β cell-specific expression of constitutively-active Notch1 (β-NICD) had a progressive loss of β cell maturity, due to proteasomal degradation of MafA, leading to impaired glucose-stimulated insulin secretion and glucose intolerance with aging or obesity. Surprisingly, Notch-active β cells had increased proliferative capacity, leading to increased but dysfunctional β cell mass. These studies demonstrate a dynamic role for Notch in developed β cells to simultaneously regulate β cell function and proliferation.

Authors

Alberto Bartolome, Changyu Zhu, Lori Sussel, Utpal B. Pajvani

×

DNA hypermethylation within TERT promoter upregulates TERT expression in cancer
Donghyun D. Lee, … , Pedro Castelo-Branco, Uri Tabori
Donghyun D. Lee, … , Pedro Castelo-Branco, Uri Tabori
Published October 25, 2018
Citation Information: J Clin Invest. 2018. https://doi.org/10.1172/JCI121303.
View: Text | PDF | Corrigendum

DNA hypermethylation within TERT promoter upregulates TERT expression in cancer

  • Text
  • PDF
Abstract

Replicative immortality is a hallmark of cancer governed by telomere maintenance. About 90% of human cancers maintain their telomeres by activating telomerase, driven by transcriptional upregulation of telomerase reverse transcriptase (TERT). Although TERT promoter mutations (TPMs) are a major cancer-associated genetic mechanism of TERT upregulation, many cancers exhibit TERT upregulation without TPMs. In this study, we described TERT Hypermethylated Oncological Region (THOR), a 433-bp genomic region encompassing 52 CpG sites located immediately upstream of the TERT core promoter, as a cancer-associated epigenetic mechanism of TERT upregulation. Unmethylated THOR repressed TERT promoter activity regardless of TPMs status, and hypermethylation of THOR counteracted this repressive function. THOR methylation analysis in 1,352 human tumors revealed frequent (>45%) cancer-associated DNA hypermethylation in 9 of 11 (82%) tumor types screened. Additionally, THOR hypermethylation — either independently or along with TPMs — accounted for how approximately 90% of human cancers can aberrantly activate telomerase. Thus, we propose THOR hypermethylation as a prevalent telomerase activating mechanism in cancer that can act independently or in conjunction with TPMs, further supporting the utility of THOR hypermethylation as a prognostic biomarker.

Authors

Donghyun D. Lee, Ricardo Leão, Martin Komosa, Marco Gallo, Cindy H. Zhang, Tatiana Lipman, Marc Remke, Abolfazl Heidari, Nuno Miguel Nunes, Joana D. Apolónio, Ramon Andrade De Mello, João Dias, David Huntsman, Thomas Hermanns, Peter J. Wild, Robert Vanner, Gelareh Zadeh, Jason Karamchandani, Sunit Das, Michael D. Taylor, Cynthia E. Hawkins, Jonathan D. Wasserman, Arnaldo Figueiredo, Robert J. Hamilton, Mark D. Minden, Khalida Wani, Bill Diplas, Hai Yan, Kenneth Aldape, Mohammad R. Akbari, Arnavaz Danesh, Trevor J. Pugh, Peter B. Dirks, Pedro Castelo-Branco, Uri Tabori

×

Type 2 deiodinase polymorphism causes ER stress and hypothyroidism in the brain
Sungro Jo, … , Miriam O. Ribeiro, Antonio C. Bianco
Sungro Jo, … , Miriam O. Ribeiro, Antonio C. Bianco
Published October 23, 2018
Citation Information: J Clin Invest. 2018. https://doi.org/10.1172/JCI123176.
View: Text | PDF

Type 2 deiodinase polymorphism causes ER stress and hypothyroidism in the brain

  • Text
  • PDF
Abstract

Levothyroxine (LT4) is a form of thyroid hormone used to treat hypothyroidism. In the brain, T4 is converted to the active form T3 by the type 2 deiodinase (D2). Thus, it is intriguing that carriers of the Thr92Ala polymorphism in the D2 gene (DIO2) exhibit clinical improvement when liothyronine (LT3) is added to LT4 therapy. Here we report that D2 is a cargo protein in endoplasmic reticulum Golgi intermediary compartment (ERGIC) vesicles, recycling between ER and Golgi. The Thr92 to Ala substitution (Ala92-D2) caused ER stress and activated the unfolded protein response (UPR); Ala92-D2 accumulated in the trans-Golgi and generated less T3, all of which was restored by eliminating ER stress with the chemical chaperone 4-phenyl butyric acid (4-PBA). An Ala92-Dio2 polymorphism-carrying mouse exhibited UPR and hypothyroidism in distinct brain areas. The mouse refrained from physical activity, slept more and required additional time to memorize objects. Enhancing T3 signaling in the brain with LT3 improved cognition, whereas restoring proteostasis with 4-PBA eliminated the Ala92-Dio2 phenotype. In contrast, primary hypothyroidism intensified the Ala92-Dio2 phenotype, with only partial response to LT4 therapy. Disruption of cellular proteostasis and reduced Ala92-D2 activity may explain the failure of LT4 therapy in carriers of Thr92Ala-DIO2.

Authors

Sungro Jo, Tatiana L. Fonseca, Barbara M.L. Da Costa Bocco, Gustavo W. Fernandes, Elizabeth A. McAninch, Anaysa P. Bolin, Rodrigo R. Da Conceição, Joao Pedro W.S. De Castro, Daniele L. Ignacio, Péter Egri, Dorottya Németh, Csaba Fekete, Maria Martha Bernardi, Victoria D. Leitch, Naila S. Mannan, Katharine F. Curry, Natalie C. Butterfield, J.H. Duncan Bassett, Graham R. Williams, Balázs Gereben, Miriam O. Ribeiro, Antonio C. Bianco

×

Ube3a reinstatement mitigates epileptogenesis in Angelman syndrome model mice
Bin Gu, … , Serena M. Dudek, Benjamin D. Philpot
Bin Gu, … , Serena M. Dudek, Benjamin D. Philpot
Published October 23, 2018
Citation Information: J Clin Invest. 2018. https://doi.org/10.1172/JCI120816.
View: Text | PDF

Ube3a reinstatement mitigates epileptogenesis in Angelman syndrome model mice

  • Text
  • PDF
Abstract

Angelman syndrome (AS) is a neurodevelopmental disorder in which epilepsy is common (~90%) and often refractory to antiepileptics. AS is caused by mutation of the maternal allele encoding the ubiquitin protein ligase E3A (UBE3A), but it is unclear how this genetic insult confers vulnerability to seizure development and progression (i.e., epileptogenesis). Here we implemented the flurothyl kindling and retest paradigm in AS model mice to assess epileptogenesis and to gain mechanistic insights owed to loss of maternal Ube3a. AS model mice kindled similarly to wildtype mice, but they displayed a markedly increased sensitivity to flurothyl-, kainic acid-, and hyperthermia-induced seizures measured a month later during retest. Pathological characterization revealed enhanced deposition of perineuronal nets in dentate gyrus of hippocampus of AS mice in the absence of overt neuronal loss or mossy fiber sprouting. This pro-epileptogenic phenotype resulted from Ube3a deletion in GABAergic but not glutamatergic neurons, and it was rescued by pancellular reinstatement of Ube3a at postnatal day 21 (P21), but not during adulthood. Our results suggest that epileptogenic susceptibility in AS patients is a consequence of the dysfunctional development of GABAergic circuits, which may be amenable to therapies leveraging juvenile reinstatement of UBE3A.

Authors

Bin Gu, Kelly E. Carstens, Matthew C. Judson, Katherine A. Dalton, Marie Rougié, Ellen P. Clark, Serena M. Dudek, Benjamin D. Philpot

×

Hepatic hepcidin/intestinal HIF-2α axis maintains iron absorption during iron deficiency and overload
Andrew J. Schwartz, … , Justin A. Colacino, Yatrik M. Shah
Andrew J. Schwartz, … , Justin A. Colacino, Yatrik M. Shah
Published October 23, 2018
Citation Information: J Clin Invest. 2018. https://doi.org/10.1172/JCI122359.
View: Text | PDF

Hepatic hepcidin/intestinal HIF-2α axis maintains iron absorption during iron deficiency and overload

  • Text
  • PDF
Abstract

Iron-related disorders are among the most prevalent diseases worldwide. Systemic iron homeostasis requires hepcidin, a hepatic-derived hormone that controls iron mobilization through its molecular target, ferroportin (FPN), the only known mammalian iron exporter. This pathway is perturbed in diseases that cause iron overload. Additionally, intestinal HIF-2α is essential for the local absorptive response to systemic iron deficiency and iron overload. Our data demonstrate a hetero-tissue crosstalk mechanism, where liver hepcidin regulated intestinal HIF-2α in iron deficiency, anemia, and iron overload. We show that FPN controlled cell autonomous iron efflux to regulate the activity of iron-dependent, intestinal prolyl hydroxylase domain enzymes to stabilize HIF-2α. Pharmacological blockade of HIF-2α using a clinically relevant and highly specific inhibitor successfully treated iron overload in a mouse model. These findings demonstrate a molecular link between liver hepcidin and intestinal HIF-2α that controls physiological iron uptake and drives iron hyperabsorption during iron overload.

Authors

Andrew J. Schwartz, Nupur K. Das, Sadeesh K. Ramakrishnan, Chesta Jain, Mladen Jurkovic, Jun Wu, Elizabeta Nemeth, Samira Lakhal-Littleton, Justin A. Colacino, Yatrik M. Shah

×

Targeted demethylation at the CDKN1C/p57 induces human β cell replication
Kristy Ou, … , Dana Avrahami, Klaus H. Kaestner
Kristy Ou, … , Dana Avrahami, Klaus H. Kaestner
Published October 23, 2018
Citation Information: J Clin Invest. 2018. https://doi.org/10.1172/JCI99170.
View: Text | PDF

Targeted demethylation at the CDKN1C/p57 induces human β cell replication

  • Text
  • PDF
Abstract

The loss of insulin-secreting β cells is characteristic among Type I and Type II diabetes. Stimulating proliferation to expand sources of β cells for transplantation remains a challenge because adult β cells do not proliferate readily. The cell cycle inhibitor p57 has been shown to control cell division in human β cells. Expression of p57 is regulated by the DNA methylation status of the Imprinting Control Region 2 (ICR2), which is commonly hypomethylated in Beckwith Wiedemann-Syndrome patients who exhibit massive β cell proliferation. We hypothesized that targeted demethylation of the ICR2 using a transcription activator-like effector protein fused to the catalytic domain of TET1 (ICR2-TET1) would repress p57 expression and promote cell proliferation. We report here that overexpression of ICR2-TET1 in human fibroblasts reduces p57 expression levels and increases proliferation. Furthermore, human islets overexpressing ICR2-TET1 exhibit repression of p57 with concomitant upregulation of Ki-67 while maintaining glucose-sensing functionality. When transplanted into diabetic, immunodeficient mice, the epigenetically edited islets show increased β cell replication compared to control islets. These findings demonstrate that epigenetic editing is a promising tool for inducing β cell proliferation, which may one day alleviate the scarcity of transplantable β cells for the treatment of diabetes.

Authors

Kristy Ou, Ming Yu, Nicholas G. Moss, Yue J. Wang, Amber W. Wang, Son C. Nguyen, Connie Jiang, Eseye Feleke, Vasumathi Kameswaran, Eric F. Joyce, Ali Naji, Benjamin Glaser, Dana Avrahami, Klaus H. Kaestner

×

Androgen receptor splice variant-7 expression emerges with castration resistance in prostate cancer
Adam Sharp, … , Johann De Bono, Stephen R. Plymate
Adam Sharp, … , Johann De Bono, Stephen R. Plymate
Published October 18, 2018
Citation Information: J Clin Invest. 2018. https://doi.org/10.1172/JCI122819.
View: Text | PDF

Androgen receptor splice variant-7 expression emerges with castration resistance in prostate cancer

  • Text
  • PDF
Abstract

BACKGROUND. Liquid biopsies have demonstrated that the constitutively active androgen receptor splice variant-7 (AR-V7) associates with reduced response and overall survival (OS) from endocrine therapies in castration resistant prostate cancer (CRPC). However, these studies provide little information pertaining to AR-V7 expression in prostate cancer (PC) tissue. METHODS. Following generation and validation of a novel AR-V7 antibody for immunohistochemistry, AR-V7 protein expression was determined for 358 primary prostate samples and 293 metastatic biopsies. Associations with disease progression, full length AR (AR-FL) expression, response to therapy, and gene expression was determined. RESULTS. We demonstrated that AR-V7 protein is rarely expressed (<1%) in primary PC but is frequently detected (75% of cases) following androgen deprivation therapy, with further significant (P = 0.020) increase in expression following abiraterone acetate or enzalutamide therapy. In CRPC, AR-V7 expression is predominantly (94% of cases) nuclear and correlates with AR-FL expression (P ≤ 0.001) and AR copy number (P = 0.026). However, dissociation of expression was observed suggesting mRNA splicing remains crucial for AR-V7 generation. AR-V7 expression was heterogeneous between different metastases from a patient although AR-V7 expression was similar within a metastasis. Moreover, AR-V7 expression correlated with a unique 59-gene signature in CRPC, including HOXB13, a critical co-regulator of AR-V7 function. Finally, AR-V7 negative disease associated with better PSA responses (100% vs 54%; P = 0.03) and OS (74.3 vs 25.2mo, HR 0.23 [0.07-0.79], P = 0.02) from endocrine therapies (pre-chemotherapy). CONCLUSION. This study provides impetus to develop therapies that abrogate AR-V7 signaling to improve our understanding of AR-V7 biology, and to confirm its clinical significance.

Authors

Adam Sharp, Ilsa Coleman, Wei Yuan, Cynthia Sprenger, David Dolling, Daniel Nava Rodrigues, Joshua W. Russo, Ines Figueiredo, Claudia Bertan, George Seed, Ruth Riisnaes, Takuma Uo, Antje Neeb, Jonathan Welti, Colm Morrissey, Suzanne Carreira, Jun Luo, Peter S. Nelson, Steven P. Balk, Lawrence D. True, Johann De Bono, Stephen R. Plymate

×

microRNA-668 represses MTP18 to preserve mitochondrial dynamics in ischemic acute kidney injury
Qingqing Wei, … , Changlin Mei, Zheng Dong
Qingqing Wei, … , Changlin Mei, Zheng Dong
Published October 16, 2018
Citation Information: J Clin Invest. 2018. https://doi.org/10.1172/JCI121859.
View: Text | PDF

microRNA-668 represses MTP18 to preserve mitochondrial dynamics in ischemic acute kidney injury

  • Text
  • PDF
Abstract

The pathogenesis of ischemic diseases remains unclear. Here we demonstrate the induction of microRNA-668 (mir-668) in ischemic acute kidney injury (AKI) in human patients, mice, and renal tubular cells. The induction was HIF-1dependant as HIF-1-deficiency in cells and kidney proximal tubules attenuated mir-668 expression. We further identified a functional HIF-1 binding site in mir-668 gene promoter. Anti-mir-668 increased apoptosis in renal tubular cells and enhanced ischemic AKI in mice, whereas mir-668 mimic was protective. Mechanistically, anti-mir-668 induced mitochondrial fragmentation, whereas mir-668 blocked mitochondrial fragmentation during hypoxia. We analyzed mir-668 target genes through immunoprecipitation of microRNA-induced silencing complexes followed by RNA deep sequencing and identified 124 protein-coding genes as likely targets of mir-668. Among these genes, only Mitochondrial Protein 18 KDa (MTP18) has been implicated in mitochondrial dynamics. In renal cells and mouse kidneys, mir-668 mimic suppressed MTP18, whereas anti-mir-668 increased MTP18 expression. Luciferase microRNA target reporter assay further verified MTP18 as a direct target of mir-668. In renal tubular cells, knockdown of MTP18 suppressed mitochondrial fragmentation and apoptosis. Together, the results suggest that mir-668 is induced via HIF-1 in ischemic AKI and, upon induction, mir-668 represses MTP18 to preserve mitochondrial dynamics for renal tubular cell survival and kidney protection.

Authors

Qingqing Wei, Haipeng Sun, Shuwei Song, Yong Liu, Pengyuan Liu, Man J. Livingston, Jianwen Wang, Mingyu Liang, Qing-Sheng Mi, Yuqing Huo, N. Stanley Nahman, Changlin Mei, Zheng Dong

×
  • ← Previous
  • 1
  • 2
  • …
  • 199
  • 200
  • 201
  • …
  • 214
  • 215
  • Next →

No posts were found with this tag.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts