Deep vein thrombosis (DVT), caused by alterations in venous homeostasis is the third most common cause of cardiovascular mortality; however, key molecular determinants in venous thrombosis have not been fully elucidated. Several lines of evidence indicate that DVT occurs at the intersection of dysregulated inflammation and coagulation. The enzyme ectonucleoside tri(di)phosphohydrolase (ENTPD1, also known as CD39) is a vascular ecto-apyrase on the surface of leukocytes and the endothelium that inhibits intravascular inflammation and thrombosis by hydrolysis of phosphodiester bonds from nucleotides released by activated cells. Here, we evaluated the contribution of CD39 to venous thrombosis in a restricted-flow model of murine inferior vena cava stenosis. CD39-deficiency conferred a >2-fold increase in venous thrombogenesis, characterized by increased leukocyte engagement, neutrophil extracellular trap formation, fibrin, and local activation of tissue factor in the thrombotic milieu. This was orchestrated by increased phosphorylation of the p65 subunit of NFκB, activation of the NLRP3 inflammasome, and interleukin-1β (IL-1β) release in CD39-deficient mice. Substantiating these findings, an IL-1β-neutralizing antibody attenuated the thrombosis risk in CD39-deficient mice. These data demonstrate that IL-1β is a key accelerant of venous thrombo-inflammation, which can be suppressed by CD39. CD39 inhibits in vivo crosstalk between inflammation and coagulation pathways, and is a critical vascular checkpoint in venous thrombosis.
Vinita Yadav, Liguo Chi, Raymond Zhao, Benjamin Tourdot, Srilakshmi Yalavarthi, Benjamin N. Jacobs, Alison Banka, Hui Liao, Sharon Koonse, Anuli C. Anyanwu, Scott Visovatti, Michael Holinstat, J. Michelle Kahlenberg, Jason S. Knight, David J. Pinsky, Yogendra Kanthi
The polarization of macrophages is regulated by transcription factors such as nuclear factor kappa B (NF-κB) and activator protein 1 (AP-1). In this manuscript, we delineated the role of the transcription factor Fos-related antigen 1 (Fra-1) during macrophage activation and development of arthritis. Network level interaction analysis of microarray data derived from Fra-1- or Fra-2-deficient macrophages revealed a central role of Fra-1, but not of Fra-2 in orchestrating the expression of genes related to wound response, toll-like receptor activation and interleukin signaling. Chromatin-immunoprecipitation (ChIP)-sequencing and standard ChIP analyses of macrophages identified arginase 1 (Arg1) as a target of Fra-1. Luciferase reporter assays revealed that Fra-1 down-regulated Arg1 expression by direct binding to the promoter region. Using macrophage-specific Fra-1- or Fra-2- deficient mice, we observed an enhanced expression and activity of Arg1 and a reduction of arthritis in the absence of Fra-1, but not of Fra-2. This phenotype was reversed by treatment with the arginase inhibitor Nω-hydroxy-nor-L-arginine, while ʟ-arginine supplementation increased arginase activity and alleviated arthritis, supporting the notion that reduced arthritis in macrophage-specific Fra-1-deficient mice resulted from enhanced Arg1 expression and activity. Moreover, patients with active RA showed increased Fra-1 expression in the peripheral blood and elevated Fra-1 protein in synovial macrophages compared to RA patients in remission. In addition, the Fra-1/ARG1 ratio in synovial macrophages was related to RA disease activity. In conclusion, these data suggest that Fra-1 orchestrates the inflammatory state of macrophages by inhibition of Arg1 expression and thereby impedes the resolution of inflammation.
Nicole Hannemann, Shan Cao, Daniel Eriksson, Anne Schnelzer, Jutta Jordan, Martin Eberhardt, Ulrike Schleicher, Jürgen Rech, Andreas Ramming, Steffen Uebe, Arif Ekici, Juan D. Cañete, Xiaoxiang Chen, Tobias Bäuerle, Julio Vera, Christian Bogdan, Georg Schett, Aline Bozec
Preclinical studies demonstrate that rapid acting antidepressants, including ketamine require stimulation of mTORC1 signaling. This pathway is regulated by neuronal activity, endocrine and metabolic signals, notably the amino acid leucine, which activates mTORC1 signaling via binding to the upstream regulator sestrin. Here, we examined the antidepressant actions of NV-5138, a novel highly selective small molecule modulator of sestrin that penetrates the blood brain barrier. The results demonstrate that a single dose of NV-5138 produced rapid and long-lasting antidepressant effects, and rapidly reversed anhedonia caused by chronic stress exposure. The antidepressant actions of NV-5138 required BDNF release as the behavioral responses are blocked by infusion of a BDNF neutralizing antibody into the medial prefrontal cortex (mPFC) or in mice with a knock-in of a BDNF polymorphism that blocks activity dependent BDNF release. NV-5138 administration also rapidly increased synapse number and function in the mPFC, and reversed the synaptic deficits caused by chronic stress. Together, the results demonstrate that NV-5138 produced rapid synaptic and antidepressant behavioral responses via activation of the mTORC1 pathway and BDNF signaling, indicating that pharmacological modulation of sestrin is a novel approach for development of rapid acting antidepressants.
Taro Kato, Santosh Pothula, Rong-Jian Liu, Catharine H. Duman, Rosemarie Terwilliger, George P. Vlasuk, Eddine Saiah, Seung Hahm, Ronald S. Duman
Increased urinary oxalate excretion (hyperoxaluria) promotes the formation of calcium oxalate crystals. Monogenic diseases due to hepatic enzymes deficiency result in chronic hyperoxaluria, promoting end-stage renal disease in children and young adults. Ethylene glycol poisoning also results in hyperoxaluria promoting acute renal failure and frequently death. Stiripentol is an antiepileptic drug used to treat children affected by Dravet syndrome, possibly by inhibiting neuronal lactate dehydrogenase 5 isoenzyme. As this isoenzyme is also the last step of hepatic oxalate production, we hypothesized that Stiripentol would potentially reduce hepatic oxalate production and urine oxalate excretion. In vitro, Stiripentol decreased in a dose-dependent manner the synthesis of oxalate by hepatocytes. In vivo, Stiripentol oral administration reduced significantly urine oxalate excretion in rats. Stiripentol protected kidneys against calcium oxalate crystal deposits in acute ethylene glycol intoxication and chronic calcium oxalate nephropathy models. In both models, Stiripentol improved significantly renal function. Patients affected by Dravet syndrome and treated with Stiripentol had a lower urine oxalate excretion than control patients. A young girl affected by severe type I hyperoxaluria received Stiripentol for several weeks: urine oxalate excretion decreased by two-thirds. Stiripentol is a promising potential therapy against genetic hyperoxaluria and ethylene glycol poisoning.
Marine Le Dudal, Lea Huguet, Joëlle Perez, Sophie Vandermeersch, Elise Bouderlique, Ellie Tang, Carole Martori, Nicole Chemaly, Rima Nabbout, Jean-Philippe Haymann, Vincent Frochot, Laurent Baud, Georges Deschênes, Michel Daudon, Emmanuel Letavernier
The lung is a specialized barrier organ that must tightly regulate interstitial fluid clearance and prevent infection in order to maintain effective gas exchange. Lymphatic vessels are important for these functions in other organs, but their roles in the lung have not been fully defined. In the present study, we addressed how the lymphatic vasculature participates in lung homeostasis. Studies using mice carrying a lymphatic reporter allele revealeded that, in contrast to other organs, lung lymphatic collecting vessels lack smooth muscle cells entirely, suggesting that forward lymph flow is highly dependent on movement and changes in pressure associated with respiration. Functional studies using CLEC2-deficient mice in which lymph flow is impaired due to loss of lympho-venous hemostasis or using inducible lung-specific ablation of lymphatic endothelial cells in a lung transplant model revealeded that loss of lymphatic function leads to an inflammatory state characterized by the formation of tertiary lymphoid organs (TLOs). In addition, impaired lymphatic flow in mice resulteds in hypoxia and features of lung injury that resemble emphysema. These findings reveal both a lung-specific mechanism of lymphatic physiology and a lung-specific consequence of lymphatic dysfunction that may contribute to chronic lung diseases that arise in association with TLO formation.
Hasina Outtz Reed, Liqing Wang, Jarrod Sonett, Mei Chen, Jisheng Yang, Larry Li, Petra Aradi, Zoltán Jakus, Jeanine M. D'Armiento, Wayne W. Hancock, Mark L. Kahn
The periosteum, a thin tissue that covers almost the entire bone surface, accounts for more than 80% of human bone mass and is essential for bone regeneration. Its osteogenic and bone regenerative abilities are well studied, but much is unknown about the periosteum. In this study, we found that macrophage-lineage cells recruit periosteum-derived cells (PDCs) for cortical bone formation. Knockout of colony stimulating factor-1 eliminated macrophage-lineage cells and resulted in loss of PDCs with impaired periosteal bone formation. Moreover, macrophage-lineage TRAP+ cells induced transcriptional expression of periostin and recruitment of PDCs to the periosteal surface through secretion of platelet-derived growth factor-BB (PDGF-BB), where the recruited PDCs underwent osteoblast differentiation coupled with type H vessel formation. We also found that subsets of Nestin+ and LepR+ PDCs possess multipotent and self-renewal abilities and contribute to cortical bone formation. Nestin+ PDCs are found primarily during bone development, whereas LepR+ PDCs are essential for bone homeostasis in adult mice. Importantly, conditional knockout of Pdgfrβ (platelet-derived growth factor receptor beta) in LepR+ cells impaired periosteal bone formation and regeneration. These findings uncover the essential role of periosteal macrophage-lineage cells in regulating periosteum homeostasis and regeneration.
Bo Gao, Ruoxian Deng, Yu Chai, Hao Chen, Bo Hu, Xiao Wang, Shouan Zhu, Yong Cao, Shuangfei Ni, Mei Wan, Liu Yang, Zhuojing Luo, Xu Cao
Glial cells have emerged as key players in the central control of energy balance and etiology of obesity. Astrocytes play a central role in neural communication via the release of gliotransmitters. Acyl-CoA binding protein (ACBP)-derived endozepines are secreted peptides that modulate the GABAA receptor. In the hypothalamus, ACBP is enriched in arcuate nucleus (ARC) astrocytes, ependymocytes and tanycytes. Central administration of the endozepine octadecaneuropeptide (ODN) reduces feeding and improves glucose tolerance, yet the contribution of endogenous ACBP in energy homeostasis is unknown. We demonstrated that ACBP deletion in GFAP+ astrocytes, but not in Nkx2.1-lineage neural cells, promoted diet-induced hyperphagia and obesity in both male and female mice, an effect prevented by viral rescue of ACBP in ARC astrocytes. ACBP-astrocytes were observed in apposition with proopiomelanocortin (POMC) neurons and ODN selectively activated POMC neurons through the ODN-GPCR but not GABAA, and supressed feeding while increasing carbohydrate utilization via the melanocortin system. Similarly, ACBP overexpression in ARC astrocytes reduced feeding and weight gain. Finally, the ODN-GPCR agonist decreased feeding and promoted weight loss in ob/ob mice. These findings uncover ACBP as an ARC gliopeptide playing a key role in energy balance control and exerting strong anorectic effects via the central melanocortin system.
Khalil Bouyakdan, Hugo Martin, Fabienne Liénard, Lionel Budry, Bouchra Taib, Demetra Rodaros, Chloé Chrétien, Éric Biron, Zoé Husson, Daniela Cota, Luc Pénicaud, Stephanie Fulton, Xavier Fioramonti, Thierry Alquier
We investigated human T-cell repertoire formation using high throughput TCRβ CDR3 sequencing in immunodeficient mice receiving human hematopoietic stem cells (HSCs) and human thymus grafts. Replicate humanized mice generated diverse and highly divergent repertoires. Repertoire narrowing and increased CDR3β sharing was observed during thymocyte selection. While hydrophobicity analysis implicated self-peptides in positive selection of the overall repertoire, positive selection favored shorter shared sequences that had reduced hydrophobicity at positions 6 and 7 of CDR3βs, suggesting weaker interactions with self-peptides than unshared sequences, possibly allowing escape from negative selection. Sharing was similar between autologous and allogeneic thymi and occurred between different cell subsets. Shared sequences were enriched for allo-crossreactive CDR3βs and for Type 1 diabetes-associated autoreactive CDR3βs. Single-cell TCR-sequencing showed increased sharing of CDR3αs compared to CDR3βs between mice. Our data collectively implicate preferential positive selection for shared human CDR3βs that are highly cross-reactive. While previous studies suggested a role for recombination bias in producing “public” sequences in mice, our study is the first to demonstrate a role for thymic selection. Our results implicate positive selection for promiscuous TCRβ sequences that likely evade negative selection, due to their low affinity for self-ligands, in the abundance of “public” human TCRβ sequences.
Mohsen Khosravi-Maharlooei, Aleksandar Obradovic, Aditya Misra, Keshav Motwani, Markus Holzl, Howard R. Seay, Susan DeWolf, Grace Nauman, Nichole Danzl, Haowei Li, Siu-hong Ho, Robert Winchester, Yufeng Shen, Todd M. Brusko, Megan Sykes
Intrinsically disordered proteins (IDPs) are emerging as attractive drug targets by virtue of their prevalence in various diseases including cancer. Drug development targeting IDPs is challenging because they have dynamical structure features and conventional drug design is not applicable. NUPR1 is an IDP playing an important role in pancreatic cancer. We previously reported that Trifluoperazine (TFP), an antipsychotic agent, was capable of binding to NUPR1 and inhibiting tumors growth. Unfortunately, TFP showed strong central nervous system side-effects. In this work, we undertook a multidisciplinary approach to optimize TFP, based on the synergy of computer modeling, chemical synthesis, and a variety of biophysical, biochemical and biological evaluations. A family of TFP-derived compounds was produced and the most active one, named ZZW-115, showed a dose-dependent tumor regression with no neurological effects and induced cell death mainly by necroptosis. This study opens a new perspective for drug development against IDPs, demonstrating the possibility of successful ligand-based drug design for such challenging targets.
Patricia Santofimia-Castaño, Yi Xia, Wenjun Lan, Zhengwei Zhou, Can Huang, Ling Peng, Philippe Soubeyran, Adrian Velazquez-Campoy, Olga Abian, Bruno Rizzuti, Jose L. Neira, Juan Iovanna
BACKGROUND. African American (AA) patients have higher cancer mortality rates and shorter survival times compared to European American (EA) patients. Despite a significant focus on socioeconomic factors, recent findings strongly argue the existence of biological factors driving this disparity. Most of these factors have been described in a cancer-type specific context rather than a pan-cancer setting. METHODS. A novel in silico approach based on Gene Set Enrichment Analysis (GSEA) coupled to Transcription Factor enrichment was carried out to identify common biological drivers of pan-cancer racial disparity using The Cancer Genome Atlas (TCGA) dataset. Mitochondrial content in patient tissues was examined using a multi-cancer tissue microarray approach (TMA). RESULTS. Mitochondrial oxidative phosphorylation was uniquely enriched in AA tumors compared to EA tumors across various cancer types. AA tumors also showed strong enrichment for the ERR1-PGC1α-mediated transcriptional program, which has been implicated in mitochondrial biogenesis. TMA analysis revealed that AA cancers harbor significantly more mitochondria compared to their EA counterparts. CONCLUSIONS. These findings highlight changes in mitochondria as a common distinguishing feature between AA and EA tumors in a pan-cancer setting, and provide the rationale for the repurposing of mitochondrial inhibitors to treat AA cancers.
Danthasinghe Waduge Badrajee Piyarathna, Akhila Balasubramanian, James M. Arnold, Stacy M. Lloyd, Balasubramanyam Karanam, Patricia Castro, Michael M. Ittmann, Nagireddy Putluri, Nora Navone, Jeffrey A. Jones, Wendong Yu, Vlad C. Sandulache, Andrew G. Sikora, George Michailidis, Arun Sreekumar
No posts were found with this tag.