Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Research

  • 1,616 Articles
  • 0 Posts
  • ← Previous
  • 1
  • 2
  • …
  • 79
  • 80
  • 81
  • …
  • 161
  • 162
  • Next →
Tetracycline-induced mitohormesis mediates disease tolerance against influenza
Adrienne Mottis, … , Mark L. Nelson, Johan Auwerx
Adrienne Mottis, … , Mark L. Nelson, Johan Auwerx
Published July 5, 2022
Citation Information: J Clin Invest. 2022. https://doi.org/10.1172/JCI151540.
View: Text | PDF

Tetracycline-induced mitohormesis mediates disease tolerance against influenza

  • Text
  • PDF
Abstract

Mitohormesis defines the increase in fitness mediated by adaptive responses to mild mitochondrial stress. Tetracyclines inhibit not only bacterial but also mitochondrial translation, thus imposing a low level of mitochondrial stress to eukaryotic cells. We demonstrate in cell and germ-free mouse models, that tetracyclines induce a mild adaptive mitochondrial stress response (MSR), involving both the ATF4-mediated integrative stress response and type I interferon (IFN) signaling. To overcome the interferences of tetracyclines with the host microbiome, we identify tetracycline derivatives that have minimal antimicrobial activity, yet retain full capacity to induce the MSR, such as the lead compound, 9-tert-butyldoxycycline (9-TB). The MSR induced by Doxycycline (Dox) and 9-TB improves survival and disease tolerance against lethal influenza virus (IFV) infection when given preventively. 9-TB, unlike Dox, did not affect the gut microbiome and showed also encouraging results against IFV when given in a therapeutic setting. Tolerance to IFV infection is associated with the induction of genes involved in lung epithelial cell and cilia function, and with down-regulation of inflammatory and immune gene sets in lungs, liver, and kidneys. Mitohormesis induced by non-antimicrobial tetracyclines and the ensuing IFN response may dampen excessive inflammation and tissue damage during viral infections, opening innovative therapeutic avenues.

Authors

Adrienne Mottis, Terytty Y. Li, Gaby El Alam, Alexis Rapin, Elena Katsyuba, David Liaskos, Davide D'Amico, Nicola L. Harris, Mark C. Grier, Laurent Mouchiroud, Mark L. Nelson, Johan Auwerx

×

The NCF1 variant aggravates autoimmunity by facilitating the activation of plasmacytoid dendritic cells
Yao Meng, … , Haibo Zhou, Nan Shen
Yao Meng, … , Haibo Zhou, Nan Shen
Published July 5, 2022
Citation Information: J Clin Invest. 2022. https://doi.org/10.1172/JCI153619.
View: Text | PDF

The NCF1 variant aggravates autoimmunity by facilitating the activation of plasmacytoid dendritic cells

  • Text
  • PDF
Abstract

Plasmacytoid dendritic cell (pDC) is a professional type I interferon producer, which plays critical roles in the pathogenesis of autoimmune diseases. However, both genetic regulation of pDC function and their relationships with autoimmunity are largely undetermined. Here, we investigated the causality of NCF1 missense variant, which is one of the most significant associated risk variants for lupus, and found that the substitution from arginine (R) to histidine (H) at position 90 in NCF1 protein (NCF1 p.R90H) led to excessive activation of pDCs. Mechanism study demonstrated that p.R90H reduced the affinity of NCF1 to phospholipid, thereby impaired endosomal localization of NCF1. As NCF1 is a subunit of NOX2 complex, this impairment led to acidified endosomal pH and facilitated downstream TLR signaling. Consistently, the homozygous knock-in mice manifested aggravated lupus progression in a pDC dependent lupus model. More importantly, pharmaceutical intervention revealed that hydroxychloroquine (HCQ) could antagonize the detrimental function of NCF1 p.R90H in lupus model and systemic lupus erythematosus (SLE) samples, supporting that NCF1 p.R90H could be identified as a genetic biomarker for HCQ application. Therefore, our study provides insights into the genetic control of pDC function and paradigm for applying genetic variants to improve targeted therapy for autoimmune diseases.

Authors

Yao Meng, Jianyang Ma, Chao Yao, Zhizhong Ye, Huihua Ding, Can Liu, Jun Li, Guanhua Li, Yuke He, Jia Li, Zhihua Yin, Li Wu, Haibo Zhou, Nan Shen

×

Noninvasive interrogation of CD8+ T cell effector function for monitoring tumor early responses to immunotherapy
Haoyi Zhou, … , Zhi Yang, Zhaofei Liu
Haoyi Zhou, … , Zhi Yang, Zhaofei Liu
Published July 5, 2022
Citation Information: J Clin Invest. 2022. https://doi.org/10.1172/JCI161065.
View: Text | PDF

Noninvasive interrogation of CD8+ T cell effector function for monitoring tumor early responses to immunotherapy

  • Text
  • PDF
Abstract

Accurately identifying patients that respond to immunotherapy remains clinically challenging. A noninvasive method that can longitudinally capture information about immune cell function and assist in the early assessment of tumor responses is highly desirable for precision immunotherapy. Here, we show that positron emission tomography (PET) imaging using a granzyme B-targeted radiotracer, named 68Ga-grazytracer, can noninvasively and effectively predict tumor responses to immune checkpoint inhibitors and adoptive T-cell transfer therapy in multiple tumor models. 68Ga-grazytracer was designed and selected from several non-aldehyde peptidomimetic-based radiotracers and exhibited excellent in vivo metabolic stability and favorable targeting efficiency to granzyme B secreted by effector CD8+ T cells upon immune responses. 68Ga-grazytracer permits more sensitive discrimination of responders and non-responders than 18F-fluorodeoxyglucose, thereby distinguishing between tumor pseudoprogression and true progression upon immune checkpoint blockade therapy in mouse models with varying immunogenicity. In a preliminary clinical trial with five patients, no adverse event was observed after 68Ga-grazytracer injection, and clinical responses in cancer patients undergoing immunotherapy were favorably correlated with 68Ga-grazytracer PET results. These results highlight the potential of 68Ga-grazytracer PET for enhancing the clinical applications of granzyme B secretion-related immunotherapies by supporting early response assessment and precise patient stratification in a noninvasive and longitudinal manner.

Authors

Haoyi Zhou, Yanpu Wang, Hongchuang Xu, Xiuling Shen, Ting Zhang, Xin Zhou, Yuwen Zeng, Kui Li, Li Zhang, Hua Zhu, Xing Yang, Nan Li, Zhi Yang, Zhaofei Liu

×

Degradation of GSPT1 causes TP53-independent cell death in leukemia whilst sparing normal hematopoietic stem cells
Rob S. Sellar, … , Chun-Wei Chen, Benjamin L. Ebert
Rob S. Sellar, … , Chun-Wei Chen, Benjamin L. Ebert
Published June 28, 2022
Citation Information: J Clin Invest. 2022. https://doi.org/10.1172/JCI153514.
View: Text | PDF

Degradation of GSPT1 causes TP53-independent cell death in leukemia whilst sparing normal hematopoietic stem cells

  • Text
  • PDF
Abstract

Targeted protein degradation is a rapidly advancing and expanding therapeutic approach. Drugs that degrade GSPT1 via the CRL4CRBN ubiquitin ligase are a new class of cancer therapy in active clinical development with evidence of activity against acute myeloid leukemia in early phase trials. However, other than activation of the integrated stress response, the downstream effects of GSPT1 degradation leading to cell death are largely undefined, and no murine models are available to study these agents. We identified the domains of GSPT1 essential for cell survival and show that GSPT1 degradation leads to impaired translation termination, activation of the integrated stress response pathway, and TP53-independent cell death. CRISPR-Cas9 screens implicated decreased translation initiation as protective to GSPT1 degradation, suggesting that cells with higher levels of translation are more susceptible to GSPT1 degradation. We defined two Crbn amino acids that prevent Gspt1 degradation in mice, generated a knock-in mouse with alteration of these residues, and demonstrated the efficacy of GSPT1-degrading drugs in vivo with relative sparing of numbers and function of long-term hematopoietic stem cells. Our results provide a mechanistic basis for the use of GSPT1 degraders for the treatment of cancer, including TP53-mutant AML.

Authors

Rob S. Sellar, Adam S. Sperling, Mikołaj Słabicki, Jessica A. Gasser, Marie E. McConkey, Katherine A. Donovan, Nada Mageed, Dylan N. Adams, Charles Zou, Peter G. Miller, Ravi Kumar Dutta, Steffen Boettcher, Amy E. Lin, Brittany E. Sandoval, Vanessa A. Quevedo Barrios, Veronica Shkolnik, Jonas Koeppel, Elizabeth K. Henderson, Emma C. Fink, Lu Yang, Anthony K.N. Chan, Sheela Pangeni Pokharel, Erik J. Bergstrom, Rajan Burt, Namrata D. Udeshi, Steven A. Carr, Eric S. Fischer, Chun-Wei Chen, Benjamin L. Ebert

×

Maternal Fc-mediated non-neutralizing antibody responses correlate with protection against congenital human cytomegalovirus infection
Eleanor C. Semmes, … , Kyle M. Walsh, Sallie R. Permar
Eleanor C. Semmes, … , Kyle M. Walsh, Sallie R. Permar
Published June 28, 2022
Citation Information: J Clin Invest. 2022. https://doi.org/10.1172/JCI156827.
View: Text | PDF

Maternal Fc-mediated non-neutralizing antibody responses correlate with protection against congenital human cytomegalovirus infection

  • Text
  • PDF
Abstract

Human cytomegalovirus (HCMV) is the most common congenital infection and a leading cause of stillbirth, neurodevelopmental impairment, and pediatric hearing loss worldwide. Development of a maternal vaccine or therapeutic to prevent congenital HCMV has been hindered by limited knowledge of the immune responses that protect against HCMV transmission in utero. To identify protective antibody responses, we measured HCMV-specific IgG binding and anti-viral functions in paired maternal and cord blood sera from HCMV seropositive transmitting (n=41) and non-transmitting (n=40) mother-infant dyads identified via a large U.S.-based public cord blood bank. We found that high avidity IgG binding to HCMV and antibody-dependent cellular phagocytosis (ADCP) were associated with reduced risk of congenital HCMV infection. We also determined that HCMV-specific IgG activation of FcγRI and FcγRII was enhanced in non-transmitting dyads and that increased ADCP responses were mediated through both FcγRI and FcγRIIA expressed on human monocytes. These findings suggest that engagement of FcγRI/FcγRIIA and Fc effector functions including ADCP may protect against congenital HCMV infection. Taken together, these data can guide future prospective studies on immune correlates against cCMV transmission and inform HCMV vaccine and immunotherapeutic development.

Authors

Eleanor C. Semmes, Itzayana G. Miller, Courtney E. Wimberly, Caroline T. Phan, Jennifer A. Jenks, Melissa J. Harnois, Stella J. Berendam, Helen Webster, Jillian H. Hurst, Joanne Kurtzberg, Genevieve G. Fouda, Kyle M. Walsh, Sallie R. Permar

×

Lymphangiogenesis requires Ang2/Tie/PI3K signaling for VEGFR3 cell surface expression
Emilia A. Korhonen, … , Taija Mäkinen, Kari Alitalo
Emilia A. Korhonen, … , Taija Mäkinen, Kari Alitalo
Published June 28, 2022
Citation Information: J Clin Invest. 2022. https://doi.org/10.1172/JCI155478.
View: Text | PDF

Lymphangiogenesis requires Ang2/Tie/PI3K signaling for VEGFR3 cell surface expression

  • Text
  • PDF
Abstract

Vascular endothelial growth factor C (VEGF-C) induces lymphangiogenesis via VEGF receptor-3 (VEGFR3), encoded by the most frequently mutated gene in human primary lymphedema. Angiopoietins (Angs) and their Tie receptors regulate lymphatic vessel development and mutations of the ANGPT2 gene were recently found in human primary lymphedema. However, the mechanistic basis of Ang2 activity in lymphangiogenesis is not fully understood. Here we used gene deletion, blocking antibodies, transgene induction and gene transfer to study how Ang2, its Tie2 receptor and Tie1 regulate lymphatic vessels. We discovered that VEGF-C-induced Ang2 secretion from lymphatic endothelial cells (LECs) is involved in full Akt activation downstream of phosphoinositide-3 kinase (PI3K). Neonatal deletion of genes encoding the Tie receptors or Ang2 in LECs, or administration of Ang2 blocking antibody decreased VEGFR3 presentation on LECs and inhibited lymphangiogenesis. A similar effect was observed in LECs upon deletion of PI3K catalytic p110α subunit or with small molecule inhibition of a constitutively active PI3K located downstream of Ang2. Deletion of Tie receptors or blockade of Ang2 decreased VEGF-C-induced lymphangiogenesis also in adult mice. Our results reveal important crosstalk between the VEGF-C and Ang signaling pathways and suggest new avenues for therapeutic manipulation of lymphangiogenesis by targeting Ang2-Tie-PI3K signaling.

Authors

Emilia A. Korhonen, Aino Murtomäki, Sawan Kumar Jha, Andrey Anisimov, Anne Pink, Yan Zhang, Simon Stritt, Inam Liaqat, Lukas Stanczuk, Laura Alderfer, Zhiliang Sun, Emmi Kapiainen, Abhishek Singh, Ibrahim Sultan, Anni Lantta, Veli-Matti Leppänen, Lauri Eklund, Yulong He, Hellmut G. Augustin, Kari Vaahtomeri, Pipsa Saharinen, Taija Mäkinen, Kari Alitalo

×

The epithelial-specific ER stress sensor ERN2/IRE1β enables host-microbiota crosstalk to affect colon goblet cell development
Michael J. Grey, … , Jerrold R. Turner, Wayne I. Lencer
Michael J. Grey, … , Jerrold R. Turner, Wayne I. Lencer
Published June 21, 2022
Citation Information: J Clin Invest. 2022. https://doi.org/10.1172/JCI153519.
View: Text | PDF

The epithelial-specific ER stress sensor ERN2/IRE1β enables host-microbiota crosstalk to affect colon goblet cell development

  • Text
  • PDF
Abstract

Epithelial cells lining mucosal surfaces of the gastrointestinal and respiratory tracts uniquely express ERN2/IRE1β, a paralogue of the most evolutionarily conserved endoplasmic reticulum stress sensor ERN1/IRE1α. How ERN2 functions at the host-environment interface and why a second paralogue evolved remain incompletely understood. Using conventionally raised and germ-free Ern2-/- mice, we found that ERN2 was required for microbiota-induced goblet cell maturation and mucus barrier assembly in the colon. This occurred only after colonization of the alimentary tract with normal gut microflora, which induced Ern2 expression. ERN2 acted by splicing Xbp1 mRNA to expand ER function and prevent ER stress in goblet cells. Although ERN1 can also splice Xbp1 mRNA, it did not act redundantly to ERN2 in this context. By regulating assembly of the colon mucus layer, ERN2 further shaped the composition of the gut microbiota. Mice lacking Ern2 had a dysbiotic microbial community that failed to induce goblet cell development and increased susceptibility to colitis when transferred into germ-free wild type mice. These results show that ERN2 evolved at mucosal surfaces to mediate crosstalk between gut microbes and the colonic epithelium required for normal homeostasis and host defense.

Authors

Michael J. Grey, Heidi De Luca, Doyle V. Ward, Irini A.M. Kreulen, Katlynn Bugda Gwilt, Sage E. Foley, Jay R. Thiagarajah, Beth A. McCormick, Jerrold R. Turner, Wayne I. Lencer

×

MERTK activation drives osimertinib resistance in EGFR-mutant non-small cell lung cancer
Dan Yan, … , Deborah DeRyckere, Douglas K. Graham
Dan Yan, … , Deborah DeRyckere, Douglas K. Graham
Published June 16, 2022
Citation Information: J Clin Invest. 2022. https://doi.org/10.1172/JCI150517.
View: Text | PDF

MERTK activation drives osimertinib resistance in EGFR-mutant non-small cell lung cancer

  • Text
  • PDF
Abstract

Acquired resistance is inevitable in non-small cell lung cancers (NSCLCs) treated with osimertinib (OSI), and the mechanisms are not well defined. The MERTK ligand GAS6 promoted downstream oncogenic signaling in EGFR-mutated (EGFRMT) NSCLC cells treated with OSI, suggesting a role for MERTK activation in OSI resistance. Indeed, treatment with MRX-2843, a first-in-class MERTK kinase inhibitor, re-sensitized GAS6-treated NSCLC cells to OSI. Both GAS6 and EGF stimulated downstream PI3K-AKT and MAPK-ERK signaling in parental cells, but only GAS6 activated these pathways in OSI resistant (OSIR) derivative cell lines. Functionally, OSIR cells were more sensitive to MRX-2843 than parental cells, suggesting acquired dependence on MERTK signaling. Furthermore, MERTK and/or its ligands were dramatically upregulated in EGFRMT tumors after treatment with OSI in both xenograft models and patient samples, consistent with induction of autocrine/paracrine MERTK activation. Moreover, treatment with MRX-2843 in combination with OSI, but not OSI alone, provided durable suppression of tumor growth in vivo, even after treatment was stopped. These data identify MERTK as a driver of bypass signaling in treatment-naïve and EGFRMT-OSIR NSCLC cells and predict that MRX-2843 and OSI combination therapy will provide clinical benefit in patients with EGFRMT NSCLC.

Authors

Dan Yan, Justus M. Huelse, Dmitri Kireev, Zikang Tan, Luxiao Chen, Subir Goyal, Xiaodong Wang, Stephen V. Frye, Madhusmita Behera, Frank Schneider, Suresh S. Ramalingam, Taofeek K. Owonikoko, H. Shelton Earp, Deborah DeRyckere, Douglas K. Graham

×

Satellite repeat RNA expression in epithelial ovarian cancer associates with a tumor immunosuppressive phenotype
Rebecca L. Porter, … , Benjamin D. Greenbaum, David T. Ting
Rebecca L. Porter, … , Benjamin D. Greenbaum, David T. Ting
Published June 16, 2022
Citation Information: J Clin Invest. 2022. https://doi.org/10.1172/JCI155931.
View: Text | PDF

Satellite repeat RNA expression in epithelial ovarian cancer associates with a tumor immunosuppressive phenotype

  • Text
  • PDF
Abstract

Aberrant expression of viral-like repeat elements is a common feature in epithelial cancers, but the significant diversity of repeat species provides a distinct view of the cancer transcriptome. Repeatome profiling across ovarian, pancreatic, and colorectal cell lines identifies distinct clustering that is independent of tissue of origin that is seen with coding gene analysis. Deeper analysis of ovarian cancer cell lines demonstrated that HSATII satellite repeat expression was highly associated with epithelial mesenchymal transition (EMT) and anti-correlated with interferon (IFN) response genes indicative of a more aggressive phenotype. This relationship of HSATII with high EMT and low IFN response genes was also found in RNA-seq of primary ovarian cancers and associated with significantly shorter survival in a second independent cohort of ovarian cancer patients. Repeat RNAs were also found enriched in tumor derived extracellular vesicles that were capable of stimulating monocyte derived macrophages demonstrating a mechanism of altering the tumor microenvironment with these viral-like sequences. Targeting of HSATII with anti-sense locked nucleic acids (LNAs) stimulated IFN response and induced MHC I expression in ovarian cancer cells lines, highlighting a potential strategy of modulating the repeatome to re-establish anti-tumor cell immune surveillance.

Authors

Rebecca L. Porter, Siyu Sun, Micayla N. Flores, Emily Berzolla, Eunae You, Ildiko E. Phillips, Neelima KC, Niyati Desai, Eric C. Tai, Annamaria Szabolcs, Evan R. Lang, Amaya Pankaj, Michael J. Raabe, Vishal Thapar, Katherine H. Xu, Linda T. Nieman, Daniel C. Rabe, David L. Kolin, Elizabeth H. Stover, David Pepin, Shannon L. Stott, Vikram Deshpande, Joyce F. Liu, Alexander Solovyov, Ursula A. Matulonis, Benjamin D. Greenbaum, David T. Ting

×

Longitudinal analysis reveals age-related changes in the T cell receptor repertoire of human T cell subsets
Xiaoping Sun, … , Luigi Ferrucci, Nan-ping Weng
Xiaoping Sun, … , Luigi Ferrucci, Nan-ping Weng
Published June 16, 2022
Citation Information: J Clin Invest. 2022. https://doi.org/10.1172/JCI158122.
View: Text | PDF

Longitudinal analysis reveals age-related changes in the T cell receptor repertoire of human T cell subsets

  • Text
  • PDF
Abstract

A diverse T cell receptor (TCR) repertoire is essential for protection against a variety of pathogens and T cell repertoire size is believed to decline with age. However, the precise size of human TCR repertoire in total and subsets of T cells, and their changes with age are not fully characterized. We conducted a longitudinal analysis of the human blood TCRα and TCRβ repertoire of CD4+ and CD8+ T cell subsets using a unique molecular identifier (UMI) based RNAseq method. Thorough analysis of 1.9 x 108 T cells yielded the lower estimate of TCR repertoire richness in an adult at 3.8 x 108. Alterations of TCR repertoire with age were observed in all four subsets of T cells. The greatest reduction was observed in naïve CD8+ T cells; the greatest clonal expansion was in memory CD8+ T cells, and the highest increased retention of TCR sequences was in memory CD8+ T cells. Our results demonstrated that age-related TCR repertoire attrition is subset specific and more profound for CD8+ than CD4+ T cells, suggesting aging has a more profound impact on the cytotoxic than on the helper T cell functions. This may explain the increased susceptibility of older adults to the novel infections.

Authors

Xiaoping Sun, Thomas Nguyen, Achouak Achour, Annette Ko, Jeffrey Cifello, Chen Ling, Jay Sharma, Toyoko Hiroi, Yongqing Zhang, Chee W. Chia, William Wood III, Wells W. Wu, Linda Zukley, Je-Nie Phue, Kevin G. Becker, Rong-Fong Shen, Luigi Ferrucci, Nan-ping Weng

×
  • ← Previous
  • 1
  • 2
  • …
  • 79
  • 80
  • 81
  • …
  • 161
  • 162
  • Next →

No posts were found with this tag.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts