Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact
  • Current Issue
  • Past Issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Tumor Microenvironment (Mar 2021)
    • 100th Anniversary of Insulin's Discovery (Jan 2021)
    • Hypoxia-inducible factors in disease pathophysiology and therapeutics (Oct 2020)
    • Latency in Infectious Disease (Jul 2020)
    • Immunotherapy in Hematological Cancers (Apr 2020)
    • Big Data's Future in Medicine (Feb 2020)
    • Mechanisms Underlying the Metabolic Syndrome (Oct 2019)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact

Research

  • 557 Articles
  • 0 Posts
  • ← Previous
  • 1
  • 2
  • 3
  • 4
  • …
  • 55
  • 56
  • Next →
DUOX2 variants associate with preclinical disturbances in microbiota-immune homeostasis and increased inflammatory bowel disease risk
Helmut Grasberger, … , Gilbert S. Omenn, John Y. Kao
Helmut Grasberger, … , Gilbert S. Omenn, John Y. Kao
Published March 2, 2021
Citation Information: J Clin Invest. 2021. https://doi.org/10.1172/JCI141676.
View: Text | PDF

DUOX2 variants associate with preclinical disturbances in microbiota-immune homeostasis and increased inflammatory bowel disease risk

  • Text
  • PDF
Abstract

A primordial gut-epithelial innate defense response is the release of hydrogen peroxide by dual NADPH oxidase (DUOX). In inflammatory bowel disease (IBD), a condition characterized by an imbalanced gut microbiota-immune homeostasis, DUOX2 isoenzyme is the highest induced gene. Performing multi-omic analyses using 2,872 human participants of a wellness program, we detected a substantial burden of rare protein-altering DUOX2 gene variants of unknown physiologic significance (155 unique variants with allele frequency < 1%; 12.9% carrier rate). We identified a significant association between these rare loss-of-function variants and increased plasma levels of interleukin-17C (FDR=2.6e-5), which is induced also in mucosal biopsies of IBD patients. DUOX2 deficient mice replicated increased IL17C induction in the intestine, with outlier high Il17c expression linked to the mucosal expansion of specific Proteobacteria pathobionts. Integrated microbiota/host gene expression analyses in IBD patients corroborated IL17C as a marker for epithelial activation by gram-negative bacteria. Finally, the impact of DUOX2 variants on IL17C induction provided a rationale for variant stratification in case-control studies that substantiated DUOX2 as an IBD risk gene (pooled OR = 1.54 [95% CI 1.09-2.18]; P = 7.1e-4). Thus, our study identifies an association of deleterious DUOX2 variants with a preclinical hallmark of disturbed microbiota-immune homeostasis that appears to precede the manifestation of IBD.

Authors

Helmut Grasberger, Andrew T. Magis, Elisa Sheng, Matthew P. Conomos, Min Zhang, Lea S. Garzotto, Guoqing Hou, Shrinivas Bishu, Hiroko Nagao-Kitamoto, Mohamad El-Zataari, Sho Kitamoto, Nobuhiko Kamada, Ryan Stidham, Yasutada Akiba, Jonathan Kaunitz, Yael Haberman, Subra Kugathasan, Lee A. Denson, Gilbert S. Omenn, John Y. Kao

×

B cell activating factor modulates the factor VIII immune response in hemophilia A
Bhavya S. Doshi, … , Moanaro Biswas, Valder R. Arruda
Bhavya S. Doshi, … , Moanaro Biswas, Valder R. Arruda
Published March 2, 2021
Citation Information: J Clin Invest. 2021. https://doi.org/10.1172/JCI142906.
View: Text | PDF

B cell activating factor modulates the factor VIII immune response in hemophilia A

  • Text
  • PDF
Abstract

Inhibitors to factor VIII (FVIII) remain the most challenging complication of FVIII protein replacement therapy in hemophilia A (HA). Understanding the mechanisms that guide FVIII-specific B cell development could help identify therapeutic targets. The B cell activating factor (BAFF) cytokine family is a key regulator of B cell differentiation in normal homeostasis and immune disorders. Thus, we used patient samples and mouse models to investigate the potential role of BAFF in modulating FVIII inhibitors. BAFF levels were elevated in pediatric and adult HA inhibitor patients and decreased to levels similar to non-inhibitor controls after successful immune tolerance induction (ITI). Moreover, elevations in BAFF levels were seen in patients who failed to achieve FVIII tolerance with anti-CD20 mediated B-cell depletion. In naïve HA mice, prophylactic anti-BAFF therapy prior to FVIII immunization prevented inhibitors and this tolerance was maintained despite FVIII exposure after immune reconstitution. In preimmunized HA mice, combination therapy with anti-CD20 and anti-BAFF antibodies dramatically reduced FVIII inhibitors via inhibition of FVIII-specific plasma cells. Our data suggest that BAFF may regulate the generation and maintenance of FVIII inhibitors and/or anti-FVIII B cells. Finally, anti-CD20/anti-BAFF combination therapy may be clinically useful for ITI.

Authors

Bhavya S. Doshi, Jyoti Rana, Giancarlo Castaman, Mostafa A. Shaheen, Radoslaw Kaczmarek, John S. S. Butterfield, Shannon L. Meeks, Cindy Leissinger, Moanaro Biswas, Valder R. Arruda

×

Identification of SARS-CoV-2-specific immune alterations in acutely ill patients
Rose-Marie Rébillard, … , Alexandre Prat, Catherine Larochelle
Rose-Marie Rébillard, … , Alexandre Prat, Catherine Larochelle
Published February 26, 2021
Citation Information: J Clin Invest. 2021. https://doi.org/10.1172/JCI145853.
View: Text | PDF

Identification of SARS-CoV-2-specific immune alterations in acutely ill patients

  • Text
  • PDF
Abstract

Dysregulated immune profiles have been described in symptomatic SARS-CoV-2-infected patients. Whether the reported immune alterations are specific to SARS-CoV-2 infection or also triggered by other acute illnesses remains unclear. We performed flow cytometry analysis on fresh peripheral blood from a consecutive cohort of i) patients hospitalized with acute SARS-CoV-2 infection; ii) patients of comparable age/sex hospitalized for other acute disease (SARS-CoV-2 negative); and iii) healthy controls. Using both data-driven and hypothesis-driven analyses, we found several dysregulations in immune cell subsets (e.g., decreased proportion of T cells) that are similarly associated with acute SARS-CoV-2 infection and non-COVID-19 related acute illnesses. In contrast, we identified specific differences in myeloid and lymphocyte subsets that are associated with SARS-CoV-2 status (e.g., elevated proportion of ICAM-1+ mature/activated neutrophils, ALCAM+ monocytes, and CD38+CD8+ T cells). A subset of SARS-CoV-2-specific immune alterations correlated with disease severity, disease outcome at 30 days and mortality. Our data provide an understanding of the immune dysregulation that are specifically associated with SARS-CoV-2 infection among acute care hospitalized patients. Our study lays the foundation for the development of specific biomarkers to stratify SARS-CoV-2+ patients at risk of unfavorable outcome and uncover candidate molecules to investigate from a therapeutic perspective.

Authors

Rose-Marie Rébillard, Marc Charabati, Camille Grasmuck, Abdelali Filali-Mouhim, Olivier Tastet, Nathalie Brassard, Audrey Daigneault, Lyne Bourbonnière, Sai Priya Anand, Renaud Balthazard, Guillaume Beaudoin-Bussières, Romain Gasser, Mehdi Benlarbi, Ana Carmena Moratalla, Yves Carpentier Solorio, Marianne Boutin, Negar Farzam-kia, Jade Descôteaux-Dinelle, Antoine Philippe Fournier, Elizabeth M. Gowing, Annemarie Laumaea, Hélène Jamann, Boaz Lahav, Guillaume Goyette, Florent Lemaître, Victoria Hannah Mamane, Jérémie Prévost, Jonathan Richard, Karine Thai, Jean-François Cailhier, Nicolas Chomont, Andrés Finzi, Michaël Chassé, Madeleine Durand, Nathalie Arbour, Daniel E. Kaufmann, Alexandre Prat, Catherine Larochelle

×

CD8+ T cells fail to limit SIV reactivation following ART withdrawal until after viral amplification
Afam A. Okoye, … , Jeffery D. Lifson, Louis J. Picker
Afam A. Okoye, … , Jeffery D. Lifson, Louis J. Picker
Published February 25, 2021
Citation Information: J Clin Invest. 2021. https://doi.org/10.1172/JCI141677.
View: Text | PDF

CD8+ T cells fail to limit SIV reactivation following ART withdrawal until after viral amplification

  • Text
  • PDF
Abstract

To define the contribution of CD8+ T cell responses to control of SIV reactivation during and following antiretroviral therapy (ART), we determined the effect of long-term CD8+ T cell depletion using a rhesusized anti-CD8β monoclonal antibody (mAb) on barcoded SIVmac239 dynamics on stable ART and after ART cessation in Rhesus Macaques (RMs). Among the RMs with full CD8+ T cell depletion in both blood and tissue, there were no significant differences in the frequency of viral blips in plasma, the number of SIV RNA+ cells and the average number of RNA copies/infected cell in tissue, and levels of cell-associated SIV RNA and DNA in blood and tissue relative to control-treated RM during ART. Upon ART cessation, both CD8+ T cell-depleted and control RMs rebounded in <12 days with no difference in the time to viral rebound, or in either the number or growth rate of rebounding SIVmac239M barcode clonotypes. However, effectively CD8+ T cell-depleted RMs showed a stable ~2-log increase in post-ART plasma viremia relative to controls. These results indicate that while potent anti-viral CD8+ T cell responses can develop during ART-suppressed SIV infection, these responses effectively intercept post-ART SIV rebound only after systemic viral replication, too late to limit reactivation frequency or the early spread of reactivating SIV reservoirs.

Authors

Afam A. Okoye, Derick D. Duell, Yoshinori Fukazawa, Benjamin Varco-Merth, Alejandra Marenco, Hannah Behrens, Talent Morgan Chaunzwa, Andrea N. Selseth, Roxanne M. Gilbride, Jason Shao, Paul T. Edlefsen, Romas Geleziunas, Mykola Pinkevych, Miles P. Davenport, Kathleen Busman-Sahay, Michael D. Nekorchuk, Haesun Park, Jeremy V. Smedley, Michael K. Axthelm, Jacob D. Estes, Scott G. Hansen, Brandon F. Keele, Jeffery D. Lifson, Louis J. Picker

×

Beryllium-specific CD4+ T cells induced by chemokine neoantigens perpetuate inflammation
Michael T. Falta, … , Clemencia Pinilla, Andrew P. Fontenot
Michael T. Falta, … , Clemencia Pinilla, Andrew P. Fontenot
Published February 25, 2021
Citation Information: J Clin Invest. 2021. https://doi.org/10.1172/JCI144864.
View: Text | PDF

Beryllium-specific CD4+ T cells induced by chemokine neoantigens perpetuate inflammation

  • Text
  • PDF
Abstract

Discovering dominant epitopes for T cells, particularly CD4+ T cells, in human immune-mediated diseases remains a significant challenge. Here, we used bronchoalveolar lavage (BAL) cells from HLA-DP2-expressing patients with chronic beryllium disease (CBD), a debilitating granulomatous lung disorder characterized by accumulations of beryllium (Be)-specific CD4+ T cells in the lung. We discovered lung resident CD4+ T cells that expressed a disease-specific public CDR3β T cell receptor motif and were specific to Be-modified self-peptides derived from C-C motif ligands 4 (CCL4) and 3 (CCL3). HLA-DP2-CCL/Be tetramer staining confirmed that these chemokine-derived peptides represented major antigenic targets in CBD. Furthermore, Be induced CCL3 and 4 secretion in the lungs of mice and humans. In a murine model of CBD, the addition of LPS to Be oxide exposure enhanced CCL4 and CCL3 secretion in the lung and significantly increased the number and percentage of CD4+ T cells specific for the HLA-DP2-CCL/Be epitope. Thus, we demonstrate a direct link between Be-induced innate production of chemokines and the development of a robust adaptive immune response to those same chemokines presented as Be-modified self-peptides, creating a vicious cycle of innate and adaptive immune activation.

Authors

Michael T. Falta, Jeremy C. Crawford, Alex N. Tinega, Laurie G. Landry, Frances Crawford, Douglas G. Mack, Allison K. Martin, Shaikh M. Atif, Li Li, Radleigh G. Santos, Maki Nakayama, John W. Kappler, Lisa A. Maier, Paul G. Thomas, Clemencia Pinilla, Andrew P. Fontenot

×

Bardet-Biedl Syndrome proteins regulate intracellular signaling and neuronal function in patient-specific iPSC-derived neurons
Liheng Wang, … , Claudia A. Doege, Rudolph L. Leibel
Liheng Wang, … , Claudia A. Doege, Rudolph L. Leibel
Published February 25, 2021
Citation Information: J Clin Invest. 2021. https://doi.org/10.1172/JCI146287.
View: Text | PDF

Bardet-Biedl Syndrome proteins regulate intracellular signaling and neuronal function in patient-specific iPSC-derived neurons

  • Text
  • PDF
Abstract

Bardet-Biedl Syndrome (BBS) is a rare autosomal recessive disorder caused by mutations in genes encoding components of the primary cilium and characterized by hyperphagic obesity. To investigate the molecular basis of obesity in human BBS, we developed a cellular model of BBS using induced pluripotent stem cell (iPSCs)-derived hypothalamic arcuate-like neurons. BBS mutations BBS1M390R and BBS10C91fsX95 did not affect neuron differentiation efficiency but caused morphological defects including impaired neurite outgrowth and longer primary cilia. Single-cell RNA sequencing of BBS1M390R hypothalamic neurons identified several downregulated pathways including insulin and cAMP signaling, and axon guidance. Additional studies demonstrated that BBS1M390R and BBS10C91fsX95 mutations impaired insulin signaling in both human fibroblasts and iPSC-derived neurons. Overexpression of intact BBS10 fully restored insulin signaling by restoring insulin receptor tyrosine phosphorylation in BBS10C91fsX95 neurons. Moreover, mutations in BBS1 and BBS10 impaired leptin-mediated p-STAT3 activation in iPSC-derived hypothalamic neurons. Correction of the BBS mutation by CRISPR rescued leptin signaling. POMC expression and neuropeptide production were decreased in BBS1M390R and BBS10C91fsX95 iPSC-derived hypothalamic neurons. In the aggregate, these data provide insights into the anatomic and functional mechanisms by which components of the BBSome in CNS primary cilia mediate effects on energy homeostasis.

Authors

Liheng Wang, Yang Liu, George Stratigopoulos, Sunil K. Panigrahi, Lina Sui, Charles A. LeDuc, Hannah J. Glover, Maria Caterina De Rosa, Lisa C. Burnett, Damian J. Williams, Linshan Shang, Robin Goland, Stephen H. Tsang, Sharon L. Wardlaw, Dieter Egli, Deyou Zheng, Claudia A. Doege, Rudolph L. Leibel

×

Deficiency of macrophage PHACTR1 impairs efferocytosis and promotes atherosclerotic plaque necrosis
Canan Kasikara, … , Muredach P Reilly, Ira Tabas
Canan Kasikara, … , Muredach P Reilly, Ira Tabas
Published February 25, 2021
Citation Information: J Clin Invest. 2021. https://doi.org/10.1172/JCI145275.
View: Text | PDF

Deficiency of macrophage PHACTR1 impairs efferocytosis and promotes atherosclerotic plaque necrosis

  • Text
  • PDF
Abstract

Efferocytosis, the process through which apoptotic cells (ACs) are cleared through actin-mediated engulfment by macrophages, prevents secondary necrosis, suppresses inflammation, and promotes resolution. Impaired efferocytosis drives the formation of clinically dangerous necrotic atherosclerotic plaques, the underlying etiology of coronary artery disease (CAD). An intron of the gene encoding PHACTR1 contains a common variant rs9349379 (A > G) associated with CAD. As PHACTR1 is an actin-binding protein, we reasoned that if the rs9349379 risk allele G causes lower PHACTR1 expression in macrophages, it might link the risk-allele to CAD via impaired efferocytosis. We show here that rs9349379-G/G was associated with lower levels of PHACTR1 and impaired efferocytosis in human monocyte-derived macrophages and human atherosclerotic lesional macrophages compared with rs9349379-A/A. Silencing PHACTR1 in human and mouse macrophages compromised AC engulfment, and mice in which hematopoietic Phactr1 was genetically targeted in Western diet-fed Ldlr-/- mice showed impaired lesional efferocytosis, increased plaque necrosis, and thinner fibrous caps—all signs of vulnerable plaques in humans. Mechanistically, PHACTR1 prevented dephosphorylation of myosin light chain (MLC), which was necessary for AC engulfment. In summary, rs9349379-G lowers PHACTR1, which, by lowering phospho-MLC, compromised efferocytosis. Thus, rs9349379-G may contribute to CAD risk, at least in part, by impairing atherosclerotic lesional macrophage efferocytosis.

Authors

Canan Kasikara, Maaike Schilperoort, Brennan D. Gerlach, Chenyi Xue, Xiaobo Wang, Ze Zheng, George Kuriakose, Bernhard Dorweiler, Hanrui Zhang, Gabrielle Fredman, Danish Saleheen, Muredach P Reilly, Ira Tabas

×

Lymphohematopoietic graft-versus-host responses promote mixed chimerism in patients receiving intestinal transplantation
Jianing Fu, … , Tomoaki Kato, Megan Sykes
Jianing Fu, … , Tomoaki Kato, Megan Sykes
Published February 25, 2021
Citation Information: J Clin Invest. 2021. https://doi.org/10.1172/JCI141698.
View: Text | PDF

Lymphohematopoietic graft-versus-host responses promote mixed chimerism in patients receiving intestinal transplantation

  • Text
  • PDF
Abstract

In humans receiving intestinal transplantation (ITx), long-term multilineage blood chimerism often develops. Donor T cell macrochimerism (≥4%) frequently occurs without graft-versus-host disease (GVHD) and is associated with reduced rejection. Here we demonstrate that patients with macrochimerism had high graft-versus-host (GvH) to host-versus-graft (HvG) T cell clonal ratios in their allografts. These GvH clones entered the circulation, where their peak levels were associated with declines in HvG clones early post-transplant, suggesting that GvH reactions may contribute to chimerism and control HvG responses without causing GVHD. Consistently, donor-derived T cells, including GvH clones, and CD34+ HSPCs were simultaneously detected in the recipients’ bone marrow (BM) >100 days post-transplant. Individual GvH clones appeared in ileal mucosa or PBMCs before detection in recipient BM, consistent with an intestinal mucosal origin, where donor GvH-reactive T cells expanded early upon entry of recipient APCs into the graft. These results, combined cytotoxic single cell transcriptional profiles of donor T cells in recipient BM, suggest that tissue-resident GvH-reactive donor T cells migrated into the recipient circulation and BM, where they destroyed recipient hematopoietic cells through cytolytic effector functions and promoted engraftment of graft-derived HSPCs that maintain chimerism. These mechanisms suggest an approach to achieving intestinal allograft tolerance.

Authors

Jianing Fu, Julien Zuber, Brittany Shonts, Aleksandar Obradovic, Zicheng Wang, Kristjana Frangaj, Wenzhao Meng, Aaron M. Rosenfeld, Elizabeth E. Waffarn, Peter Liou, Sai-Ping Lau, Thomas M. Savage, Suxiao Yang, Kortney Rogers, Nichole M. Danzl, Shilpa Ravella, Prakash Satwani, Alina Iuga, Siu-Hong Ho, Adam Griesemer, Yufeng Shen, Eline T. Luning Prak, Mercedes Martinez, Tomoaki Kato, Megan Sykes

×

Cx43 hemichannel microdomain signaling at the intercalated disc enhances cardiac excitability
Maarten A.J. De Smet, … , Karin R. Sipido, Luc Leybaert
Maarten A.J. De Smet, … , Karin R. Sipido, Luc Leybaert
Published February 23, 2021
Citation Information: J Clin Invest. 2021. https://doi.org/10.1172/JCI137752.
View: Text | PDF

Cx43 hemichannel microdomain signaling at the intercalated disc enhances cardiac excitability

  • Text
  • PDF
Abstract

Cx43, a major cardiac connexin, forms precursor hemichannels that accrue at the intercalated disc to assemble as gap junctions. While gap junctions are crucial for electrical conduction in the heart, little is known on potential roles of hemichannels. Recent evidence suggests that inhibiting Cx43 hemichannel opening with Gap19 has antiarrhythmic effects. Here, we used multiple electrophysiology, imaging and super-resolution techniques to understand and define the conditions underlying Cx43 hemichannel activation in ventricular cardiomyocytes, their contribution to diastolic Ca2+ release from the sarcoplasmic reticulum, and their impact on electrical stability. We showed that Cx43 hemichannels are activated during diastolic Ca2+ release in single ventricular cardiomyocytes and cardiomyocyte cell pairs from mouse and pig. This activation involved Cx43 hemichannel Ca2+ entry and coupling to Ca2+ release microdomains at the intercalated disc resulting in enhanced Ca2+ dynamics. Hemichannel opening furthermore contributed to delayed afterdepolarizations and triggered action potentials. In single cardiomyocytes, cardiomyocyte cell pairs and arterially perfused tissue wedges from failing human hearts, increased hemichannel activity contributed to electrical instability as compared to non-failing rejected donor hearts. We conclude that microdomain coupling between Cx43 hemichannels and Ca2+ release is a novel, targetable, mechanism of cardiac arrhythmogenesis in heart failure.

Authors

Maarten A.J. De Smet, Alessio Lissoni, Timur Nezlobinsky, Nan Wang, Eef Dries, Marta Pérez-Hernández, Xianming Lin, Matthew Amoni, Tim Vervliet, Katja Witschas, Eli Rothenberg, Geert Bultynck, Rainer Schulz, Alexander V. Panfilov, Mario Delmar, Karin R. Sipido, Luc Leybaert

×

Endoplasmic reticulum-associated degradation is required for nephrin maturation and kidney glomerular filtration function
Sei Yoshida, … , Markus Bitzer, Ling Qi
Sei Yoshida, … , Markus Bitzer, Ling Qi
Published February 16, 2021
Citation Information: J Clin Invest. 2021. https://doi.org/10.1172/JCI143988.
View: Text | PDF

Endoplasmic reticulum-associated degradation is required for nephrin maturation and kidney glomerular filtration function

  • Text
  • PDF
Abstract

Podocytes are key to kidney glomerular filtration barrier by forming slit diaphragm between interdigitating foot processes; however, molecular details and functional importance of protein folding and degradation in the ER remain unknown. Here we show that SEL1L-HRD1 protein complex of endoplasmic reticulum (ER)-associated degradation (ERAD) is required for slit diaphragm formation and glomerular filtration function. SEL1L-HRD1 ERAD is highly expressed in podocytes of both mouse and human kidneys. Mice with podocyte-specific Sel1L deficiency develop podocytopathy and severe congenital nephrotic syndrome shortly after weaning with impaired slit diaphragm, and die prematurely with a median life span of ~3 months. Mechanistically, we show that nephrin, a type-1 membrane protein causally linked to congenital nephrotic syndrome, is an endogenous ERAD substrate. ERAD deficiency attenuates the maturation of nascent nephrin, leading to its retention in the ER. Lastly, we show that various autosomal-recessive nephrin disease mutants are highly unstable and degraded by Sel1L-Hrd1 ERAD, which attenuates the pathogenicity of the mutants towards the wildtype allele. Hence, this study uncovers a critical role of Sel1L-Hrd1 ERAD in glomerular filtration barrier function and provides new insights into the pathogenesis associated with autosomal recessive disease mutants.

Authors

Sei Yoshida, Xiaoqiong Wei, Gensheng Zhang, Christopher L. O’Connor, Mauricio Torres, Zhangsen Zhou, Liangguang Lin, Rajasree Menon, Xiaoxi Xu, Wenyue Zheng, Yi Xiong, Edgar A. Otto, Chih-Hang Anthony Tang, Rui Hua, Rakesh Verma, Hiroyuki Mori, Yang Zhang, Chih-Chi Andrew Hu, Ming Liu, Puneet Garg, Jeffrey B. Hodgin, Shengyi Sun, Markus Bitzer, Ling Qi

×
  • ← Previous
  • 1
  • 2
  • 3
  • 4
  • …
  • 55
  • 56
  • Next →

No posts were found with this tag.

Advertisement

Copyright © 2021 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts