Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Research

  • 1,604 Articles
  • 0 Posts
  • ← Previous
  • 1
  • 2
  • …
  • 154
  • 155
  • 156
  • …
  • 160
  • 161
  • Next →
Peptide-based PET quantifies target engagement of PD-L1 therapeutics
Dhiraj Kumar, … , Martin G. Pomper, Sridhar Nimmagadda
Dhiraj Kumar, … , Martin G. Pomper, Sridhar Nimmagadda
Published November 20, 2018
Citation Information: J Clin Invest. 2018. https://doi.org/10.1172/JCI122216.
View: Text | PDF

Peptide-based PET quantifies target engagement of PD-L1 therapeutics

  • Text
  • PDF
Abstract

Immune checkpoint therapies have shown tremendous promise in cancer therapy. However, tools to assess their target engagement, and hence ability to predict their efficacy, have been lacking. Here, we show that target engagement and tumor residence kinetics of antibody therapeutics targeting the programmed death ligand-1 (PD-L1) can be quantified non-invasively. In computational docking studies, we observed that PD-L1-targeted antibodies (atezolizumab, avelumab, durvalumab) and a high affinity PD-L1 binding peptide, WL12, have common interaction sites on PD-L1. Using the peptide radiotracer [64Cu]WL12 in vivo, we employed positron emission tomography (PET) imaging and biodistribution studies, in multiple xenograft models and demonstrated that variable PD-L1 expression and its saturation by atezolizumab, avelumab, and durvalumab can be quantified independent of biophysical properties and pharmacokinetics of antibodies. Next, we used [64Cu]WL12 to evaluate the impact of time and dose on free fraction of tumor PD-L1 levels during treatment. These quantitative measures enabled, by mathematical modeling, prediction of antibody doses needed to achieve therapeutically effective occupancy (defined as >90%). Thus, we show that peptide-based PET is a promising tool for optimizing dose and therapeutic regimens employing PD-L1 checkpoint antibodies, and can be used for improving therapeutic efficacy.

Authors

Dhiraj Kumar, Ala Lisok, Elyes Dahmane, Matthew D. McCoy, Sagar Shelake, Samit Chatterjee, Viola Allaj, Polina Sysa-Shah, Bryan Wharram, Wojciech G. Lesniak, Ellen Tully, Edward Gabrielson, Elizabeth M. Jaffee, John T. Poirier, Charles M. Rudin, Jogarao V.S. Gobburu, Martin G. Pomper, Sridhar Nimmagadda

×

Lactate inhibits ATP6V0d2 expression in tumor-associated macrophages to promote HIF-2α-mediated tumor progression
Na Liu, … , Guoping Wang, Xiang-Ping Yang
Na Liu, … , Guoping Wang, Xiang-Ping Yang
Published November 15, 2018
Citation Information: J Clin Invest. 2018. https://doi.org/10.1172/JCI123027.
View: Text | PDF

Lactate inhibits ATP6V0d2 expression in tumor-associated macrophages to promote HIF-2α-mediated tumor progression

  • Text
  • PDF
Abstract

Macrophages perform key functions in tissue homeostasis that are influenced by the local tissue environment. Within the tumor microenvironment tumor associated macrophages can be altered to acquire properties that enhance tumor growth. Here, we found lactate, a metabolite found in high concentration within the anaerobic tumor environment, activated mTORC1 that subsequently suppressed TFEB-mediated expression of a macrophage-specific vacuolar ATPase subunit ATP6V0d2. Atp6v0d2-/- mice were more susceptible to tumor growth with enhanced HIF-2α-mediated VEGF production in macrophages that display a more protumoral phenotype. We found that ATP6V0d2 targeted HIF-2α but not HIF-1α for lysosome-mediated degradation. Blockade of HIF-2α transcriptional activity reversed the susceptibility of Atp6v0d2-/- mice to tumor development. Furthermore, in a cohort of patients with lung adenocarcinoma, expression of ATP6V0d2 and HIF-2α was positively and negatively correlated with survival respectively, suggesting a critical role of the macrophage lactate-ATP6V0d2-HIF-2α axis in maintaining tumor growth in human patients. Together, our results highlight the ability of tumor cells to modify the function of tumor-infiltrating macrophages to optimize the microenvironment for tumor growth.

Authors

Na Liu, Jing Luo, Dong Kuang, Sanpeng Xu, Yaqi Duan, Yu Xia, Zhengping Wei, Xiuxiu Xie, Bingjiao Yin, Fang Chen, Shunqun Luo, Huicheng Liu, Jing Wang, Kan Jiang, Feili Gong, Zhao-hui Tang, Xiang Cheng, Huabin Li, Zhuoya Li, Arian Laurence, Guoping Wang, Xiang-Ping Yang

×

Cardiac CaV1.2 channels require β subunits for β-adrenergic–mediated modulation but not trafficking
Lin Yang, … , Henry M. Colecraft, Steven O. Marx
Lin Yang, … , Henry M. Colecraft, Steven O. Marx
Published November 13, 2018
Citation Information: J Clin Invest. 2018. https://doi.org/10.1172/JCI123878.
View: Text | PDF

Cardiac CaV1.2 channels require β subunits for β-adrenergic–mediated modulation but not trafficking

  • Text
  • PDF
Abstract

Ca2+ channel β-subunit interactions with pore-forming α-subunits are long-thought to be obligatory for channel trafficking to the cell surface and for tuning of basal biophysical properties in many tissues. Unexpectedly, we demonstrate that transgenic expression of mutant cardiac α1C subunits lacking capacity to bind CaVβ because of alanine-substitutions of three conserved residues — Y467, W470, and I471 in the α-interaction domain of rabbit α1C — can traffic to the sarcolemma in adult cardiomyocytes in vivo and sustain normal excitation-contraction coupling. However, these β-less Ca2+ channels cannot be stimulated by β-adrenergic pathway agonists, and thus adrenergic-augmentation of contractility is markedly impaired in isolated cardiomyocytes and in hearts. Similarly, viral-mediated expression of a β-subunit-sequestering-peptide sharply curtailed β-adrenergic stimulation of wild-type Ca2+ channels, identifying an approach to specifically modulate β-adrenergic regulation of cardiac contractility. Our data demonstrate that β subunits are required for β-adrenergic regulation of CaV1.2 channels and positive inotropy in the heart, but are dispensable for CaV1.2 trafficking to the adult cardiomyocyte cell surface, and for basal function and excitation-contraction coupling.

Authors

Lin Yang, Alexander Katchman, Jared S. Kushner, Alexander Kushnir, Sergey I. Zakharov, Bi-xing Chen, Zunaira Shuja, Prakash Subramanyam, Guoxia Liu, Arianne Papa, Daniel D. Roybal, Geoffrey S. Pitt, Henry M. Colecraft, Steven O. Marx

×

In vivo hematopoietic stem cell gene therapy ameliorates murine thalassemia intermedia
Hongjie Wang, … , Evangelia Yannaki, André Lieber
Hongjie Wang, … , Evangelia Yannaki, André Lieber
Published November 13, 2018
Citation Information: J Clin Invest. 2018. https://doi.org/10.1172/JCI122836.
View: Text | PDF

In vivo hematopoietic stem cell gene therapy ameliorates murine thalassemia intermedia

  • Text
  • PDF
Abstract

Current thalassemia gene therapy protocols require the collection of hematopoietic stem/progenitor cells (HSPCs), in vitro culture, lentivirus vector transduction, and retransplantation into myelo-ablated patients. Because of cost and technical complexity, it is unlikely that such protocols will be applicable in developing countries where the greatest demand for a beta-thalassemia therapy lies. We have developed a simple in vivo HSPC gene therapy approach that involved HSPC mobilization and an intravenous injection of integrating HDAd5/35++ vectors. Transduced HSPCs homed back to the bone marrow where they persisted long-term. HDAd5/35++ vectors for in vivo gene therapy of thalassemia had a unique capsid that targeted primitive HSPCs through human CD46, a relatively safe SB100X transposase-based integration machinery, a micro-LCR driven gamma-globin gene and, a MGMT(P140K) system that allowed for increasing the therapeutic effect by short-term treatment with low-dose O6BG/BCNU. We showed in “healthy” human CD46 transgenic mice and in a mouse model of thalassemia intermedia that our in vivo approach resulted in stable gamma-globin expression in the majority of circulating red blood cells. The high marking frequency was maintained in secondary recipients. In the thalassemia model, a near complete phenotypic correction was achieved. The treatment was well tolerated. This cost-efficient and “portable” approach could permit a broader clinical application of thalassemia gene therapy.

Authors

Hongjie Wang, Aphrodite Georgakopoulou, Nikoletta Psatha, Chang Li, Chrysi Capsali, Himanshu Bhusan Samal, Achilles Anagnostopoulos, Anja Ehrhardt, Zsuzsanna Izsvák, Thalia Papayannopoulou, Evangelia Yannaki, André Lieber

×

Endothelial progerin expression causes cardiovascular pathology through an impaired mechanoresponse
Selma Osmanagic-Myers, … , Maria Eriksson, Roland Foisner
Selma Osmanagic-Myers, … , Maria Eriksson, Roland Foisner
Published November 13, 2018
Citation Information: J Clin Invest. 2018. https://doi.org/10.1172/JCI121297.
View: Text | PDF

Endothelial progerin expression causes cardiovascular pathology through an impaired mechanoresponse

  • Text
  • PDF
Abstract

Hutchinson-Gilford progeria syndrome (HGPS) is a premature aging disorder characterized by accelerated cardiovascular disease with extensive fibrosis. It is caused by a mutation in LMNA leading to expression of truncated prelamin A (progerin) in the nucleus. To investigate the contribution of the endothelium to cardiovascular HGPS pathology, we generated an endothelium-specific HGPS mouse model with selective endothelial progerin expression. Transgenic mice develop interstitial myocardial and perivascular fibrosis and left ventricular hypertrophy associated with diastolic dysfunction and premature death. Endothelial cells show impaired shear stress response and reduced levels of endothelial nitric oxide synthase (eNOS) and NO. On the molecular level, progerin impairs nucleocytoskeletal coupling in endothelial cells through changes in mechanoresponsive components at the nuclear envelope, increased F-/G-actin ratios and deregulation of mechanoresponsive myocardin-related transcription factor-A (MRTFA). MRTFA binds to the Nos3 promoter reducing eNOS expression, thereby mediating a pro-fibrotic paracrine response in fibroblasts. MRTFA inhibition rescues eNOS levels and ameliorates the pro-fibrotic effect of endothelial cells in vitro. Although this murine model lacks the key anatomical feature of vascular smooth muscle cell loss seen in HGPS patients, our data show that progerin-induced impairment of mechanosignaling in endothelial cells contributes to excessive fibrosis and cardiovascular disease in HGPS patients.

Authors

Selma Osmanagic-Myers, Attila Kiss, Christina Manakanatas, Ouafa Hamza, Franziska Sedlmayer, Petra L. Szabo, Irmgard Fischer, Petra Fichtinger, Bruno K. Podesser, Maria Eriksson, Roland Foisner

×

Type I IFN blockade uncouples immunotherapy-induced antitumor immunity and autoimmune toxicity
Scott R. Walsh, … , John C. Bell, Yonghong Wan
Scott R. Walsh, … , John C. Bell, Yonghong Wan
Published November 13, 2018
Citation Information: J Clin Invest. 2018. https://doi.org/10.1172/JCI121004.
View: Text | PDF

Type I IFN blockade uncouples immunotherapy-induced antitumor immunity and autoimmune toxicity

  • Text
  • PDF
Abstract

Despite showing success in treating melanoma and haematological malignancies, adoptive cell therapy (ACT) has generated only limited effects in solid tumors. This is, in part, due to a lack of specific antigen targets, poor trafficking/infiltration and immunosuppression in the tumor microenvironment. In this study, we combined ACT with oncolytic virus vaccines (OVV) to drive expansion and tumor infiltration of transferred antigen-specific T cells, and demonstrated that the combination is highly potent for the eradication of established solid tumors. Consistent with other successful immunotherapies, this approach elicited severe autoimmune consequence when the antigen targeted was a self-protein. However, modulation of IFNα/β signaling, either by functional blockade or rational choice of an OVV backbone, ameliorated autoimmune side effects without compromising antitumor efficacy. Our study uncovers a pathogenic role for IFNα/β in facilitating autoimmune toxicity during cancer immunotherapy and offers a safe and powerful combinatorial regimen with immediate translational applications.

Authors

Scott R. Walsh, Donald Bastin, Lan Chen, Andrew Nguyen, Christopher J. Storbeck, Charles Lefebvre, David Stojdl, Jonathan L. Bramson, John C. Bell, Yonghong Wan

×

Rescue of recurrent deep intronic mutation underlying cell type–dependent quantitative NEMO deficiency
Bertrand Boisson, … , Masatoshi Hagiwara, Takahiro Yasumi
Bertrand Boisson, … , Masatoshi Hagiwara, Takahiro Yasumi
Published November 13, 2018
Citation Information: J Clin Invest. 2018. https://doi.org/10.1172/JCI124011.
View: Text | PDF

Rescue of recurrent deep intronic mutation underlying cell type–dependent quantitative NEMO deficiency

  • Text
  • PDF
Abstract

X-linked dominant incontinentia pigmenti (IP) and X-linked recessive anhidrotic ectodermal dysplasia with immunodeficiency (EDA-ID) are caused by loss-of-function and hypomorphic NEMO mutations, respectively. We describe a European mother with mild IP and a Japanese mother without IP, whose three boys with EDA-ID died of immunodeficiency. We identify the same private variant in an intron of IKBKG/NEMO, IVS4+866 C>T, which was inherited from and occurred de novo in the European and Japanese mothers, respectively. This mutation creates a new splicing donor site, giving rise to a 44-nucleotide pseudo-exon generating a frameshift. Its leakiness accounts for NF-κB activation being impaired, but not abolished in the boys’ cells. However, aberrant splicing rates differ between cell types, with WT NEMO mRNA and protein levels ranging from barely detectable in leukocytes to residual amounts in iPSC-derived macrophages, and higher levels in fibroblasts and iPSC-derived neuronal precursor cells. Finally, SRSF6 binds to the pseudo-exon, facilitating its inclusion. Moreover, SRSF6 knockdown or CLK inhibition restores WT NEMO expression and function in mutant cells. A recurrent deep intronic splicing mutation in IKBKG/NEMO underlies a purely quantitative NEMO defect in males that is most severe in leukocytes and can be rescued by the inhibition of SRSF6 or CLK.

Authors

Bertrand Boisson, Yoshitaka Honda, Masahiko Ajiro, Jacinta Bustamante, Matthieu Bendavid, Andrew R. Gennery, Yuri Kawasaki, Jose Ichishima, Mitsujiro Osawa, Hiroshi Nihira, Takeshi Shiba, Takayuki Tanaka, Maya Chrabieh, Benedetta Bigio, Hong Hur, Yuval Itan, Yupu Liang, Satoshi Okada, Kazushi Izawa, Ryuta Nishikomori, Osamu Ohara, Toshio Heike, Laurent Abel, Anne Puel, Megumu K. Saito, Jean-Laurent Casanova, Masatoshi Hagiwara, Takahiro Yasumi

×

Dominant negative SERPING1 variants cause intracellular retention of C1-inhibitor in hereditary angioedema
Didde Haslund, … , Lene N. Nejsum, Jacob Giehm Mikkelsen
Didde Haslund, … , Lene N. Nejsum, Jacob Giehm Mikkelsen
Published November 6, 2018
Citation Information: J Clin Invest. 2018. https://doi.org/10.1172/JCI98869.
View: Text | PDF

Dominant negative SERPING1 variants cause intracellular retention of C1-inhibitor in hereditary angioedema

  • Text
  • PDF
Abstract

Hereditary angioedema (HAE) is an autosomal dominant disease characterized by recurrent edema attacks associated with morbidity and mortality. HAE results from variations in the SERPING1 gene encoding C1 inhibitor (C1INH), a serine protease inhibitor (serpin). Reduced plasma levels of C1INH lead to enhanced activation of the contact system triggering high levels of bradykinin and increased vascular permeability, but the cellular mechanisms leading to low C1INH levels (20-30% of normal) in heterozygous HAE type I patients remain obscure. Here, we showed that C1INH encoded by a subset of HAE-causing SERPING1 alleles affected secretion of normal C1INH protein in a dominant negative fashion by triggering formation of protein-protein interactions between normal and mutant C1INH leading to creation of larger intracellular C1INH aggregates that were trapped in the endoplasmic reticulum (ER). Notably, intracellular aggregation of C1INH and ER abnormality were observed in fibroblasts from a heterozygous carrier of a dominant negative SERPING1 gene variant, but the condition was ameliorated by viral delivery of the SERPING1 gene. Collectively, our data link abnormal accumulation of serpins, a hallmark of serpinopathies, with dominant negative disease mechanisms affecting C1INH plasma levels in HAE type I patients and may pave the way for new treatments of HAE.

Authors

Didde Haslund, Laura Barrett Ryø, Sara Seidelin Majidi, Iben Kløvgaard Rose, Kristian Alsbjerg Skipper, Tue Fryland, Anja Bille Bohn, Claus Koch, Martin K. Thomsen, Yaseelan Palarasah, Thomas J. Corydon, Anette Bygum, Lene N. Nejsum, Jacob Giehm Mikkelsen

×

Sialic acid is a critical fetal defense against maternal complement attack
Markus Abeln, … , Anja Münster-Kühnel, Birgit Weinhold
Markus Abeln, … , Anja Münster-Kühnel, Birgit Weinhold
Published November 1, 2018
Citation Information: J Clin Invest. 2018. https://doi.org/10.1172/JCI99945.
View: Text | PDF

Sialic acid is a critical fetal defense against maternal complement attack

  • Text
  • PDF
Abstract

The negatively charged sugar sialic acid (Sia) occupies the outermost position in the bulk of cell surface glycans. Lack of sialylated glycans due to genetic ablation of the Sia activating enzyme CMP-sialic acid synthase (CMAS) resulted in embryonic lethality around day 9.5 post coitum (E9.5) in mice. Developmental failure was caused by complement activation on trophoblasts in Cmas-/- implants accompanied by infiltration of maternal neutrophils at the fetal-maternal interface, intrauterine growth restriction, impaired placental development and a thickened Reichert’s membrane. This phenotype, which shared features with complement-recepter-1 related protein Y (Crry) depletion, was rescued in E8.5 Cmas-/- mice upon injection of cobra venom factor resulting in exhaustion of the maternal complement component C3. Here we show that Sia is dispensable for early development of the embryo proper, but pivotal for fetal-maternal immune homeostasis during pregnancy, i.e. for protecting the allograft implant against attack by the maternal innate immune system. Finally, embryos devoid of cell surface sialylation suffered from malnutrition due to inadequate placentation as secondary effect.

Authors

Markus Abeln, Iris Albers, Ulrike Peters-Bernard, Kerstin Flächsig-Schulz, Elina Kats, Andreas Kispert, Stephen Tomlinson, Rita Gerardy-Schahn, Anja Münster-Kühnel, Birgit Weinhold

×

Acetaldehyde dehydrogenase 2 interactions with LDLR and AMPK regulate foam cell formation
Shanshan Zhong, … , Yun-Cheng Wu, Huiyong Yin
Shanshan Zhong, … , Yun-Cheng Wu, Huiyong Yin
Published October 30, 2018
Citation Information: J Clin Invest. 2018. https://doi.org/10.1172/JCI122064.
View: Text | PDF

Acetaldehyde dehydrogenase 2 interactions with LDLR and AMPK regulate foam cell formation

  • Text
  • PDF
Abstract

Aldehyde dehydrogenase 2 (ALDH2) is a mitochondrial enzyme detoxifying acetaldehyde and endogenous lipid aldehydes; previous studies suggest a protective role of ALDH2 against cardiovascular disease (CVD). Around 40% of East Asians carrying a single nucleotide polymorphism (SNP) ALDH2 rs671 have increased incidences of CVD. However, the role of ALDH2 in CVD beyond alcohol consumption remains poorly defined. Here we report that ALDH2/LDLR DKO mice have decreased atherosclerosis compared to LDLR KO mice, whereas ALDH2/APOpoE DKO have increased atherosclerosis, suggesting an unexpected interaction of ALDH2 with LDLR. Further studies demonstrate that in the absence of LDLR, AMPK phosphorylates ALDH2 at threonine 356 and enables its nuclear translocation. Nuclear ALDH2 interacts with HDAC3 and represses transcription of a lysosomal proton pump protein ATP6Vv0Ee2, critical for maintaining lysosomal function, autophagy and degradation of oxLDL. Interestingly, an interaction of cytosolic LDLR C-terminus with AMPK blocks ALDH2 phosphorylation and subsequent nuclear translocation, whereas ALDH2 rs671 mutant in human macrophages attenuates this interaction, which releases ALDH2 to nucleus to suppress ATP6Vv0Ee2 expression, resulting in increased foam cells due to impaired lysosomal function. Our studies reveal a novel role of ALDH2 and LDLR in atherosclerosis and provide a molecular mechanism by which ALDH2 rs671 SNP increases CVD.

Authors

Shanshan Zhong, Luxiao Li, Yu-Lei Zhang, Lili Zhang, Jianhong Lu, Shuyuan Guo, Ningning Liang, Jing Ge, Mingjiang Zhu, Yongzhen Tao, Yun-Cheng Wu, Huiyong Yin

×
  • ← Previous
  • 1
  • 2
  • …
  • 154
  • 155
  • 156
  • …
  • 160
  • 161
  • Next →

No posts were found with this tag.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts