Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Research

  • 1,539 Articles
  • 0 Posts
  • ← Previous
  • 1
  • 2
  • …
  • 143
  • 144
  • 145
  • …
  • 153
  • 154
  • Next →
Opioid-galanin receptor heteromers mediate the dopaminergic effects of opioids
Ning-Sheng Cai, … , Annabelle M. Belcher, Sergi Ferré
Ning-Sheng Cai, … , Annabelle M. Belcher, Sergi Ferré
Published March 26, 2019
Citation Information: J Clin Invest. 2019. https://doi.org/10.1172/JCI126912.
View: Text | PDF

Opioid-galanin receptor heteromers mediate the dopaminergic effects of opioids

  • Text
  • PDF
Abstract

Identifying non-addictive opioid medications is a high priority in medical sciences, but μ-opioid receptors mediate both the analgesic and addictive effects of opioids. We found a significant pharmacodynamic difference between morphine and methadone that is determined entirely by heteromerization of μ-opioid receptors with galanin Gal1 receptors, rendering a profound decrease in the potency of methadone. This was explained by methadone’s weaker proficiency to activate the dopaminergic system as compared to morphine and predicted a dissociation of therapeutic versus euphoric effects of methadone, which was corroborated by a significantly lower incidence of self-report of “high” in methadone-maintained patients. These results suggest that μ-opioid-Gal1 receptor heteromers mediate the dopaminergic effects of opioids that may lead to a lower addictive liability of opioids with selective low potency for the μ-opioid-Gal1 receptor heteromer, exemplified by methadone.

Authors

Ning-Sheng Cai, César Quiroz, Jordi Bonaventura, Alessandro Bonifazi, Thomas O. Cole, Julia Purks, Amy S. Billing, Ebonie Massey, Michael Wagner, Eric D. Wish, Xavier Guitart, William Rea, Sherry Lam, Estefanía Moreno, Verònica Casadó-Anguera, Aaron D. Greenblatt, Arthur E. Jacobson, Kenner C. Rice, Vicent Casadó, Amy H. Newman, John W. Winkelman, Michael Michaelides, Eric Weintraub, Nora D. Volkow, Annabelle M. Belcher, Sergi Ferré

×

Post-transplantation cyclophosphamide prevents graft-versus-host disease by inducing alloreactive T cell dysfunction and suppression
Lucas P. Wachsmuth, … , Ronald E. Gress, Christopher G. Kanakry
Lucas P. Wachsmuth, … , Ronald E. Gress, Christopher G. Kanakry
Published March 26, 2019
Citation Information: J Clin Invest. 2019. https://doi.org/10.1172/JCI124218.
View: Text | PDF

Post-transplantation cyclophosphamide prevents graft-versus-host disease by inducing alloreactive T cell dysfunction and suppression

  • Text
  • PDF
Abstract

Post-transplantation cyclophosphamide (PTCy) recently has had a marked impact on human allogeneic hematopoietic cell transplantation (HCT). Yet, our understanding of how PTCy prevents graft-versus-host disease (GVHD) largely has been extrapolated from major histocompatibility complex (MHC)-matched murine skin allografting models that were highly contextual in their efficacy. Herein, we developed a T-cell-replete, MHC-haploidentical, murine HCT model (B6C3F1→B6D2F1) to test the putative underlying mechanisms: alloreactive T-cell elimination, alloreactive T-cell intrathymic clonal deletion, and suppressor T-cell induction. In this model and confirmed in four others, PTCy did not eliminate alloreactive T cells identified using either specific Vβs or the 2C or 4C T-cell receptors. Furthermore, the thymus was not necessary for PTCy’s efficacy. Rather, PTCy induced alloreactive T-cell functional impairment which was supported by highly active suppressive mechanisms established within one day after PTCy that were sufficient to prevent new donor T cells from causing GVHD. These suppressive mechanisms included the rapid, preferential recovery of CD4+CD25+Foxp3+ regulatory T cells, including those that were alloantigen-specific, which served an increasingly critical function over time. Our results prompt a paradigm-shift in our mechanistic understanding of PTCy. These results have direct clinical implications for understanding tolerance induction and for rationally developing novel strategies to improve patient outcomes.

Authors

Lucas P. Wachsmuth, Michael T. Patterson, Michael A. Eckhaus, David J. Venzon, Ronald E. Gress, Christopher G. Kanakry

×

RhoBTB1 protects against hypertension and arterial stiffness by restraining phosphodiesterase 5 activity
Masashi Mukohda, … , Frederick W. Quelle, Curt D. Sigmund
Masashi Mukohda, … , Frederick W. Quelle, Curt D. Sigmund
Published March 21, 2019
Citation Information: J Clin Invest. 2019. https://doi.org/10.1172/JCI123462.
View: Text | PDF

RhoBTB1 protects against hypertension and arterial stiffness by restraining phosphodiesterase 5 activity

  • Text
  • PDF
Abstract

Mice selectively expressing PPARγ dominant negative mutation in vascular smooth muscle exhibit RhoBTB1-deficiency and hypertension. Our rationale was to employ genetic complementation to uncover the mechanism of action of RhoBTB1 in vascular smooth muscle. Inducible smooth muscle-specific restoration of RhoBTB1 fully corrected the hypertension and arterial stiffness by improving vasodilator function. Notably, the cardiovascular protection occurred despite preservation of increased agonist-mediated contraction and RhoA/Rho kinase activity, suggesting RhoBTB1 selectively controls vasodilation. RhoBTB1 augmented the cGMP response to nitric oxide by restraining the activity of phosphodiesterase 5 (PDE5) by acting as a substrate adaptor delivering PDE5 to the Cullin-3 E3 Ring ubiquitin ligase complex for ubiquitination inhibiting PDE5. Angiotensin-II infusion also caused RhoBTB1-deficiency and hypertension which was prevented by smooth muscle specific RhoBTB1 restoration. We conclude that RhoBTB1 protected from hypertension, vascular smooth muscle dysfunction, and arterial stiffness in at least two models of hypertension.

Authors

Masashi Mukohda, Shi Fang, Jing Wu, Larry N. Agbor, Anand R. Nair, Stella-Rita C. Ibeawuchi, Chunyan Hu, Xuebo Liu, Ko-Ting Lu, Deng-Fu Guo, Deborah R. Davis, Henry L. Keen, Frederick W. Quelle, Curt D. Sigmund

×

Brown fat activation mitigates alcohol-induced liver steatosis and injury in mice
Hong Shen, … , M. Bishr Omary, Liangyou Rui
Hong Shen, … , M. Bishr Omary, Liangyou Rui
Published March 19, 2019
Citation Information: J Clin Invest. 2019. https://doi.org/10.1172/JCI124376.
View: Text | PDF

Brown fat activation mitigates alcohol-induced liver steatosis and injury in mice

  • Text
  • PDF
Abstract

Chronic alcohol consumption causes liver injury, inflammation and fibrosis, thereby increasing morbidity and mortality. Paradoxically, modest drinking is believed to confer metabolic improvement, but the underlying mechanism remains elusive. Here, we have identified a novel hepatoprotective brain/brown adipose tissue (BAT)/liver axis. Alcohol consumption or direct alcohol administration into the brain stimulated hypothalamic neural circuits and sympathetic nerves innervating BAT, and dramatically increased BAT uncoupling protein 1 (Ucp1) expression and activity in a BAT sympathetic nerve-dependent manner. BAT and beige fat oxidized fatty acids to fuel Ucp1-mediated thermogenesis, thereby inhibiting lipid trafficking into the liver. BAT also secreted several adipokines, including adiponectin that suppressed hepatocyte injury and death. Genetic deletion of Ucp1 profoundly augmented alcohol-induced liver steatosis, injury, inflammation and fibrosis in male and female mice. Conversely, activation of BAT and beige fat through cold exposure suppressed alcoholic liver disease development. Our results unravel an unrecognized brain alcohol-sensing/sympathetic nerve/BAT/liver axis that counteracts liver steatosis and injury.

Authors

Hong Shen, Lin Jiang, Jiandie D. Lin, M. Bishr Omary, Liangyou Rui

×

Anti-Neurofascin-155 IgG4 antibodies prevent paranodal complex formation in vivo
Constance Manso, … , Isabel Illa, Jerome J. Devaux
Constance Manso, … , Isabel Illa, Jerome J. Devaux
Published March 14, 2019
Citation Information: J Clin Invest. 2019. https://doi.org/10.1172/JCI124694.
View: Text | PDF

Anti-Neurofascin-155 IgG4 antibodies prevent paranodal complex formation in vivo

  • Text
  • PDF
Abstract

Neurofascin-155 (Nfasc155) is an essential glial cell adhesion molecule expressed in paranodal septate-like junctions of peripheral and central myelinated axons. The genetic deletion of Nfasc155 results in the loss of septate-like junctions and in conduction slowing. In humans, IgG4 antibodies against Nfasc155 are implicated in the pathogenesis of chronic inflammatory demyelinating polyneuropathy (CIDP). These antibodies are associated with an aggressive onset, a refractoriness to intravenous immunoglobulin, and tremor of possible cerebellar origin. Here, we examined the pathogenic effects of patient-derived anti-Nfasc155 IgG4. These antibodies did not inhibit the ability of Nfasc155 to complex with its axonal partners contactin-1/CASPR1 or induce target internalization. Passive transfer experiments revealed that IgG4 antibodies target Nfasc155 on Schwann cell surface, and diminished Nfasc155 protein levels and prevented paranodal complex formation in neonatal animals. In adult animals, chronic intrathecal infusions of antibodies also induced the loss of Nfasc155 and of paranodal specialization and resulted in conduction alterations in motor nerves. These results indicate that anti-Nfasc155 IgG4 perturb conduction in absence of demyelination, validating the existence of paranodopathy. These results also shed light on the mechanisms regulating protein insertion at paranodes.

Authors

Constance Manso, Luis Querol, Cinta Lleixà, Mallory Poncelet, Mourad Mekaouche, Jean-Michel Vallat, Isabel Illa, Jerome J. Devaux

×

Heterologous prime-boost vaccination protects from EBV antigen expressing lymphomas
Julia Rühl, … , Carol S. Leung, Christian Münz
Julia Rühl, … , Carol S. Leung, Christian Münz
Published March 12, 2019
Citation Information: J Clin Invest. 2019. https://doi.org/10.1172/JCI125364.
View: Text | PDF

Heterologous prime-boost vaccination protects from EBV antigen expressing lymphomas

  • Text
  • PDF
Abstract

The Epstein Barr virus (EBV) is one of the predominant tumor viruses in humans, but so far no therapeutic or prophylactic vaccination against this transforming pathogen is available. We demonstrated that heterologous prime-boost vaccination with the nuclear antigen 1 of EBV (EBNA1) either targeted to the DEC205 receptor on dendritic cells or expressed from a recombinant modified vaccinia virus Ankara (MVA) vector improved priming of antigen-specific CD4+ T-cell help. This help supported the expansion and maintenance of EBNA1 specific CD8+ T cells that are most efficiently primed by recombinant adenoviruses that encode EBNA1. These combined CD4+ and CD8+ T-cell responses protected from EBNA1 expressing T and B cell lymphomas, including lymphoproliferations that emerge spontaneously after EBNA1 expression. In particular the heterologous EBNA1-expressing adenovirus, boosted by EBNA1-encoding MVA vaccination, demonstrated protection as prophylactic and therapeutic treatment of the respective lymphoma challenges. Therefore, we suggest that such heterologous prime-boost vaccinations should be further explored for clinical development against EBV-associated malignancies as well as symptomatic primary EBV infection.

Authors

Julia Rühl, Carmen Citterio, Christine Engelmann, Tracey A. Haigh, Andrzej Dzionek, Johannes H. Dreyer, Rajiv Khanna, Graham S. Taylor, Joanna B. Wilson, Carol S. Leung, Christian Münz

×

Blocking expression of inhibitory receptor NKG2A overcomes tumor resistance to NK cells
Takahiro Kamiya, … , Murray Robinson, Dario Campana
Takahiro Kamiya, … , Murray Robinson, Dario Campana
Published March 12, 2019
Citation Information: J Clin Invest. 2019. https://doi.org/10.1172/JCI123955.
View: Text | PDF

Blocking expression of inhibitory receptor NKG2A overcomes tumor resistance to NK cells

  • Text
  • PDF
Abstract

A key mechanism of tumor resistance to immune cells is mediated by expression of peptide-loaded HLA-E in tumor cells, which suppresses natural killer (NK) cell activity via ligation of the NK inhibitory receptor CD94/NKG2A. Gene expression data from approximately 10,000 tumor samples showed widespread HLAE expression, with levels correlating with those of KLRC1 (NKG2A) and KLRD1 (CD94). To bypass HLA-E inhibition, we developed a way to generate highly functional NK cells lacking NKG2A. Constructs containing a single-chain variable fragment derived from an anti-NKG2A antibody were linked to endoplasmic reticulum-retention domains. After retroviral transduction in human peripheral blood NK cells, these NKG2A Protein Expression Blockers (PEBLs) abrogated NKG2A expression. The resulting NKG2Anull NK cells had higher cytotoxicity against HLA-E-expressing tumor cells. Transduction of anti-NKG2A PEBL produced more potent cytotoxicity than interference with an anti-NKG2A antibody and prevented de novo NKG2A expression, without affecting NK cell proliferation. In immunodeficient mice, NKG2Anull NK cells were significantly more powerful than NKG2A+ NK cells against HLA-E-expressing tumors. Thus, NKG2A downregulation evades the HLA-E cancer immune-checkpoint, and increases the anti-tumor activity of NK cell infusions. Because this strategy is easily adaptable to current protocols for clinical-grade immune cell processing, its clinical testing is feasible and warranted.

Authors

Takahiro Kamiya, See Voon Seow, Desmond Wong, Murray Robinson, Dario Campana

×

Cleavage factor 25 deregulation contributes to pulmonary fibrosis through alternative polyadenylation
Tingting Weng, … , Eric J. Wagner, Michael R. Blackburn
Tingting Weng, … , Eric J. Wagner, Michael R. Blackburn
Published February 28, 2019
Citation Information: J Clin Invest. 2019. https://doi.org/10.1172/JCI122106.
View: Text | PDF

Cleavage factor 25 deregulation contributes to pulmonary fibrosis through alternative polyadenylation

  • Text
  • PDF
Abstract

Idiopathic pulmonary fibrosis (IPF) is a chronic and deadly disease with a poor prognosis and few treatment options. Pathological remodeling of the extracellular matrix (ECM) by myofibroblasts is a key factor that drives disease pathogenesis, although the underlying mechanisms remain unknown. Alternative polyadenylation (APA) has recently been shown to play a major role in cellular responses to stress by driving the expression of fibrotic factors and ECMs through altering microRNA sensitivity, but a connection to IPF has not been established. Here, we demonstrate that CFIm25, a global regulator of APA, is down-regulated in the lungs of patients with IPF and mice with pulmonary fibrosis, with its expression selectively reduced in alpha-smooth muscle actin (α-SMA) positive fibroblasts. Following the knockdown of CFIm25 in normal human lung fibroblasts, we identified 808 genes with shortened 3′UTRs, including those involved in the transforming growth factor-β signaling pathway, the Wnt signaling pathway, and cancer pathways. The expression of key pro-fibrotic factors can be suppressed by CFIm25 overexpression in IPF fibroblasts. Finally, we demonstrate that deletion of CFIm25 in fibroblasts or myofibroblast precursors using either the Col1a1 or the Foxd1 promoter enhances pulmonary fibrosis after bleomycin exposure in mice. Taken together, our results identified CFIm25 down-regulation as a novel mechanism to elevate pro-fibrotic gene expression in pulmonary fibrosis.

Authors

Tingting Weng, Junsuk Ko, Chioniso P. Masamha, Zheng Xia, Yu Xiang, Ning-yuan Chen, Jose G. Molina, Scott Collum, Tinne C. Mertens, Fayong Luo, Kemly Philip, Jonathan Davies, Jingjing Huang, Cory Wilson, Rajarajan A. Thandavarayan, Brian A. Bruckner, Soma S.K. Jyothula, Kelly A. Volcik, Lei Li, Leng Han, Wei Li, Shervin Assassi, Harry Karmouty-Quintana, Eric J. Wagner, Michael R. Blackburn

×

Lkb1 deletion in periosteal mesenchymal progenitors induces osteogenic tumors through mTORC1 activation
Yujiao Han, … , Tiebang Kang, Weiguo Zou
Yujiao Han, … , Tiebang Kang, Weiguo Zou
Published February 26, 2019
Citation Information: J Clin Invest. 2019. https://doi.org/10.1172/JCI124590.
View: Text | PDF

Lkb1 deletion in periosteal mesenchymal progenitors induces osteogenic tumors through mTORC1 activation

  • Text
  • PDF
Abstract

Bone osteogenic sarcoma has a poor prognosis as the exact cell of origin and the signaling pathways underling tumor formation remain undefined. Here, we report an osteogenic tumor mouse model based on the conditional knockout of liver kinase b1 (Lkb1; also known as Stk11) in Cathepsin K (Ctsk)-Cre expressing cells. Lineage tracing studies demonstrated that Ctsk-Cre could label a population of periosteal cells. The cells functioned as mesenchymal progenitors with regard to markers and functional properties. LKB1 deficiency increased proliferation and osteoblast differentiation of Ctsk+ periosteal cells, while downregulation of mTORC1 activity, using Raptor genetic mouse model or mTORC1 inhibitor treatment, ameliorated tumor progression of Ctsk-Cre Lkb1fllfl mice. Xenograft mouse models, using human osteosarcoma cell lines, also demonstrated that LKB1 deficiency promoted tumor formation, while mTOR inhibition suppressed xenograft tumor growth. In summary, we identified periosteum-derived Ctsk-Cre expressing cells as a cell of origin for osteogenic tumor and suggested the LKB1-mTORC1 pathway as a promising target for treatment of osteogenic tumor.

Authors

Yujiao Han, Heng Feng, Jun Sun, Xiaoting Liang, Zhuo Wang, Wenhui Xing, Qinggang Dai, Yang Yang, Anjia Han, Zhanying Wei, Qing Bi, Hongbin Ji, Tiebang Kang, Weiguo Zou

×

Ferroptotic cell death and TLR4/Trif signaling initiate neutrophil recruitment after heart transplantation
Wenjun Li, … , Kory J. Lavine, Daniel Kreisel
Wenjun Li, … , Kory J. Lavine, Daniel Kreisel
Published February 26, 2019
Citation Information: J Clin Invest. 2019. https://doi.org/10.1172/JCI126428.
View: Text | PDF

Ferroptotic cell death and TLR4/Trif signaling initiate neutrophil recruitment after heart transplantation

  • Text
  • PDF
Abstract

Non-apoptotic forms of cell death can trigger sterile inflammation through the release of danger-associated molecular patterns, which are recognized by innate immune receptors. However, despite years of investigation the mechanisms which initiate inflammatory responses after heart transplantation remain elusive. Here, we demonstrate that ferrostatin-1 (Fer-1), a specific inhibitor of ferroptosis, decreases the level of pro-ferroptotic hydroperoxy-arachidonoyl-phosphatidylethanolamine, reduces cardiomyocyte cell death and blocks neutrophil recruitment following heart transplantation. Inhibition of necroptosis had no effect on neutrophil trafficking in cardiac grafts. We extend these observations to a model of coronary artery ligation-induced myocardial ischemia reperfusion injury where inhibition of ferroptosis resulted in reduced infarct size, improved left ventricular systolic function, and reduced left ventricular remodeling. Using intravital imaging of cardiac transplants, we uncover that ferroptosis orchestrates neutrophil recruitment to injured myocardium by promoting adhesion of neutrophils to coronary vascular endothelial cells through a TLR4/TRIF/type I IFN signaling pathway. Thus, we have discovered that inflammatory responses after cardiac transplantation are initiated through ferroptotic cell death and TLR4/Trif-dependent signaling in graft endothelial cells. These findings provide a platform for the development of therapeutic strategies for heart transplant recipients and patients, who are vulnerable to ischemia reperfusion injury following restoration of coronary blood flow.

Authors

Wenjun Li, Guoshuai Feng, Jason M. Gauthier, Inessa Lokshina, Ryuji Higashikubo, Sarah Evans, Xinping Liu, Adil Hassan, Satona Tanaka, Markus Cicka, Hsi-Min Hsiao, Daniel Ruiz-Perez, Andrea Bredemeyer, Richard W. Gross, Douglas L. Mann, Yulia Y. Tyurina, Andrew E. Gelman, Valerian E. Kagan, Andreas Linkermann, Kory J. Lavine, Daniel Kreisel

×
  • ← Previous
  • 1
  • 2
  • …
  • 143
  • 144
  • 145
  • …
  • 153
  • 154
  • Next →

No posts were found with this tag.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts