β-cell apoptosis and dedifferentiation are two hotly-debated mechanisms underlying β-cell loss in type 2 diabetes; however, the molecular drivers underlying such events remain largely unclear. Here, we performed a side-by-side comparison of mice carrying β-cell-specific deletion of endoplasmic reticulum (ER)-associated degradation (ERAD) and autophagy. We reported that while autophagy was necessary for β-cell survival, the highly conserved Sel1L-Hrd1 ERAD protein complex was required for the maintenance of β-cell maturation and identity. Using single cell RNA-sequencing, we demonstrated that Sel1L deficiency was not associated with β-cell loss, but rather loss of β-cell identity. Sel1L-Hrd1 ERAD controlled β-cell identity via TGFβ signaling, in part by mediating the degradation of TGFβ receptor 1 (TGFβRI). Inhibition of TGFβ signaling in Sel1L-deficient β-cells augmented the expression of β-cell maturation markers and increased the total insulin content. Our data revealed distinct pathogenic effects of two major proteolytic pathways in β-cells, providing a new framework for therapies targeting distinct mechanisms of protein quality control.
Neha Shrestha, Tongyu Liu, Yewei Ji, Rachel Reinert, Mauricio Torres, Xin Li, Maria Zhang, Chih-Hang Anthony Tang, Chih-Chi Andrew Hu, Chengyang Liu, Ali Naji, Ming Liu, Jiandie D. Lin, Sander Kersten, Peter Arvan, Ling Qi
Plasmacytoid dendritic cells (pDC), the major producers of Type I interferon, are principally recognized as key mediators of antiviral immunity. However, their role in tumor immunity is less clear. Depending on the context, pDC can both promote or suppress antitumor immune responses. In this study, we identified a naturally occurring pDC subset expressing high levels of OX40 (OX40+ pDC) enriched in the tumor microenvironment (TME) of head and neck squamous cell carcinoma. OX40+ pDC were distinguished by a distinct immunostimulatory phenotype, cytolytic function and ability to synergize with conventional dendritic cells (cDC) in generating potent tumor antigen-specific CD8+ T cell responses. Transcriptomically, we found they selectively utilized EIF2 signaling and oxidative phosphorylation pathways. Moreover, depletion of pDC in the murine OX40+ pDC-rich tumor model accelerated tumor growth. Collectively, we present evidence of a pDC subset in the TME that favors antitumor immunity.
Kate O. Poropatich, Donye Dominguez, Wen-Ching Chan, Jorge Andrade, Yuanyuan Zha, Brian D. Wray, Jason Miska, Lei Qin, Lisa E. Cole, Sydney Coates, Urjeet A. Patel, Sandeep Samant, Bin Zhang
Glioblastoma (GBM) contains a subpopulation of cells, GBM stem cells (GSCs), that maintain the bulk tumor and represent a key therapeutic target. Norrin is a Wnt ligand that binds the Frizzled4 (FZD4) receptor to activate canonical Wnt signaling. While Norrin, encoded by NDP, has a well- described role in vascular development, its function in human tumorigenesis is largely unexplored. Here, we show that NDP expression is enriched in neurological cancers, including GBM, and its levels positively correlated with survival in a GBM subtype defined by low expression of ASCL1, a proneural factor. We investigated the function of Norrin and FZD4 in GSCs and found that it mediated opposing tumor-promoting and -suppressive effects on ASCL1lo and ASCL1hi GSCs. Consistent with a potential tumor suppressive effect of Norrin suggested by the tumour outcome data, we found that Norrin signaling through FZD4 inhibited growth in ASCL1lo GSCs. In contrast, in ASCL1hi GSCs Norrin promoted Notch signaling, independently of WNT, to promote tumor progression. Forced ASCL1 expression reversed the tumor suppressive effects of Norrin in ASCL1lo GSCs. Our results identify Norrin as a modulator of human brain cancer progression and reveal an unanticipated Notch mediated function of Norrin in regulating cancer stem cell biology.
Ahmed El-Sehemy, Hayden J. Selvadurai, Arturo Ortin-Martinez, Neno T. Pokrajac, Yasin Mamatjan, Nobuhiko Tachibana, Katherine J. Rowland, Lilian Lee, Nicole I. Park, Kenneth D. Aldape, Peter Dirks, Valerie A. Wallace
In patients with HBV and HCV coinfection, HBV reactivation leading to severe hepatitis has been reported with the use of direct-acting antivirals (DAAs) to treat HCV infection. Here we study the molecular mechanisms behind this viral interaction. In coinfected cell culture and humanized mice, HBV replication was suppressed by HCV coinfection. In vitro, HBV suppression was attenuated when interferon signaling was blocked. In vivo, HBV viremia, after initial suppression by HCV super-infection, rebounded following HCV clearance by DAA treatment that was accompanied by a reduced hepatic interferon response. Using blood samples of coinfected patients, interferon-stimulated gene products including C-X-C motif chemokine 10 (CXCL10) and C-C motif chemokine ligand 5 (CCL5), and alanine aminotransferase (ALT) were identified to have predictive value for HBV reactivation after HCV clearance. Taken together, our data suggest that HBV reactivation is a result of diminished hepatic interferon response following HCV clearance and identifies serologic markers that can predict HBV reactivation in DAA-treated HBV-HCV coinfected persons.
Xiaoming Cheng, Takuro Uchida, Yuchen Xia, Regina Umarova, Chun-Jen Liu, Pei-Jer Chen, Anuj Gaggar, Vithika Suri, Marcus Maximilian Mücke, Johannes Vermehren, Stefan Zeuzem, Yuji Teraoka, Mitsutaka Osawa, Hiroshi Aikata, Keiji Tsuji, Nami Mori, Shuhei Hige, Yoshiyasu Karino, Michio Imamura, Kazuaki Chayama, T. Jake Liang
As there is growing evidence for the tumor microenvironment’s (TME) role in tumorigenesis, we investigated the role of fibroblast-expressed kinases in triple negative breast cancer (TNBC). Using a high-throughput kinome screen combined with 3D invasion assays, we identified fibroblast-expressed PIK3Cδ (f-PIK3Cδ) as a key regulator of progression. Although PIK3Cδ was expressed in primary fibroblasts derived from TNBC patients, it was undetectable in breast cancer cell lines. Genetic and pharmacologic gain- and loss-of functions experiments verified the contribution of f-PIK3Cδ in TNBC cell invasion. Integrated secretomics and transcriptomics analyses revealed a paracrine mechanism via which f-PIK3Cδ confers its pro-tumorigenic effects. Inhibition of f-PIK3Cδ promoted the secretion of factors, including PLGF and BDNF, which led to upregulation of NR4A1 in TNBC cells where it acts as a tumor suppressor. Inhibition of PIK3Cδ in an orthotopic BC mouse model reduced tumor growth only after inoculation with fibroblasts, indicating a role of f-PIK3Cδ in cancer progression. Similar results were observed in the MMTV-PyMT transgenic BC mouse model, along with a decrease on tumor metastasis emphasizing the potential immune-independent effects of PIK3Cδ inhibition. Finally, analysis of BC patient cohorts and TCGA datasets identified f-PIK3Cδ (protein and mRNA levels) as an independent prognostic factor for overall and disease free survival, highlighting it as a therapeutic target for TNBC.
Teresa Gagliano, Kalpit Shah, Sofia Gargani, Liyan Lao, Mansour Alsaleem, Jianing Chen, Vasileios Ntafis, Penghan Huang, Angeliki Ditsiou, Viviana Vella, Kritika Yadav, Kamila Bienkowska, Giulia Bresciani, Kai Kang, Leping Li, Philip Carter, Graeme Benstead-Hume, Timothy O’Hanlon, Michael Dean, Frances M.G. Pearl, Soo Chin Lee, Emad A. Rakha, Andrew R Green, Dimitris L. Kontoyiannis, Erwei Song, Justin Stebbing, Georgios Giamas
As treatment of the early, inflammatory phase of sepsis improves, post-sepsis immunosuppression and secondary infection have increased in importance. How early inflammation drives immunosuppression remains unclear. Although IFNγ typically helps microbial clearance, we found that increased plasma IFNγ in early clinical sepsis was associated with the later development of secondary Candida infection. Consistent with this observation, we found that exogenous IFNγ suppressed macrophage phagocytosis of zymosan in vivo, and antibody blockade of IFNγ after endotoxemia improved survival of secondary candidemia. Transcriptomic analysis of innate lymphocytes during endotoxemia suggested that NKT cells drove IFNγ production by NK cells via mTORC1. Activation of iNKT cells with glycolipid antigen drove immunosuppression. Deletion of iNKT cells in Cd1d-/- mice or inhibition of mTOR by rapamycin reduced immunosuppression and susceptibility to secondary Candida infection. Thus, although rapamycin is typically an immunosuppressive medication, in the context of sepsis, rapamycin has the opposite effect. These results implicated a NKT cell-mTOR-IFNγ axis in immunosuppression following endotoxemia or sepsis. In summary, in vivo iNKT cells activated mTORC1 in NK cells to produce IFNγ , which worsened macrophage phagocytosis, clearance of secondary Candida infection and mortality.
Edy Y. Kim, Hadas Ner-Gaon, Jack Varon, Aidan M. Cullen, Jingyu Guo, Jiyoung Choi, Diana Barragan-Bradford, Angelica Higuera, Mayra Pinilla-Vera, Samuel A.P. Short, Antonio J. Arciniegas-Rubio, Tomoyoshi Tamura, David E. Leaf, Rebecca M. Baron, Tal Shay, Michael B. Brenner
To identify neurons that specifically increase blood glucose from among the diversely-functioning cell types in the ventromedial hypothalamic nucleus (VMN), we studied the cholecystokinin (CCK) receptor-B (CCKBR)-expressing VMN targets of glucose-elevating parabrachial nucleus neurons. Activating these VMNCCKBR neurons increased blood glucose. Furthermore, while silencing the broader VMN decreased energy expenditure and promoted weight gain without altering blood glucose, silencing VMNCCKBR neurons decreased hepatic glucose production (HGP), insulin-independently decreasing blood glucose without altering energy balance. Silencing VMNCCKBR neurons also impaired the counter-regulatory response (CRR) to insulin-induced hypoglycemia and glucoprivation and replicated hypoglycemia-associated autonomic failure (HAAF). Hence, VMNCCKBR cells represent a specialized subset of VMN cells that function to elevate glucose. These cells not only mediate the allostatic response to hypoglycemia, but also insulin-independently modulate the homeostatic setpoint for blood glucose, consistent with a role for the brain in the insulin-independent control of glucose homeostasis.
Jonathan N. Flak, Paulette Goforth, James Dell'Orco, Paul V. Sabatini, Chien Li, Nadejda Bozadjieva, Matthew J. Sorensen, Alec C. Valenta, Alan C. Rupp, Alison H. Affinati, Corentin Cras-Méneur, Ahsan Ansari, Jamie Sacksner, Nandan Kodur, Darleen A. Sandoval, Robert t. Kennedy, David Olson, Martin G. Myers Jr.
Neutrophil accumulation is associated with lung pathology during active tuberculosis (ATB). However, the molecular mechanism(s) by which neutrophils accumulate in the lung and contribute to TB immunopathology is not fully delineated. Using the well-established mouse model of TB, our new data provides evidence that the alarmin S100A8/A9 mediates neutrophil accumulation during progression to chronic TB. Depletion of neutrophils or S100A8/A9 deficiency resulted in improved Mycobacterium tuberculosis (Mtb) control during chronic but not acute TB. Mechanistically, we demonstrate that following Mtb infection, S100A8/A9 expression is required for upregulation of the integrin molecule CD11b specifically on neutrophils, mediating their accumulation during chronic TB disease. These findings are further substantiated by increased expression of S100A8 and S100A9 mRNA in whole blood in human TB progressors when compared to non-progressors, and rapidly decreased S100A8/A9 protein levels in the serum upon TB treatment. Furthermore, we demonstrate that S100A8/A9 serum levels along with chemokines are useful in distinguishing between ATB and asymptomatic Mtb-infected latent individuals. Thus, our results support targeting S100A8/A9 pathways as host-directed therapy for TB.
Ninecia R. Scott, Rosemary V. Swanson, Noor Al-Hammadi, Racquel Domingo-Gonzalez, Javier Rangel-Moreno, Belinda A. Kriel, Allison N. Bucsan, Shibali Das, Mushtaq Ahmed, Smriti Mehra, Puthayalai Treerat, Alfredo Cruz-Lagunas, Luis Jimenez-Alvarez, Marcela Muñoz-Torrico, Karen Bobadilla-Lozoya, Thomas Vogl, Gerhard Walzl, Nelita du Plessis, Deepak Kaushal, Thomas Scriba, Joaquin Zuñiga, Shabaana Khader
PD-1 expression is a hallmark of both early antigen-specific T-cell activation and later chronic stimulation suggesting key roles in both naive T-cell priming and memory T-cell responses. Although important similarities exist between T cells and NK cells, there are critical differences reflecting their biology and functions. The putative role of PD-1 expression in NK cell immunoregulation has been controversial. Our objective was to comprehensively assess PD-1 expression on NK cells using multiple sources and readouts. Primary human tumor samples, ex vivo culturing, mouse tumors and viral models were all assessed using flow cytometry, qRT-PCR and RNA sequencing. We demonstrate that under multiple activating conditions, highly purified human and mouse NK cells consistently lack PD-1 expression despite the marked upregulation of other regulatory markers such as TIGIT. We further show that neither NK cells from T-cell deficient Rag2-/- mice nor from transgenic PD-1 reporter mice express PD-1 using tumor or viral infection models. Asialo-GM1 (ASGM1), a receptor commonly targeted for NK-specific depletion, was also expressed on activated T cells co-expressing PD-1 contributing to in vivo effects previously attributed to NK cells. These data have important implications when attempting to discern NK from T cell effects depending on the models used and whether PD-1 blockade will directly impact NK cell therapies.
Sean J. Judge, Cordelia Dunai, Ethan G. Aguilar, Sarah C. Vick, Ian R. Sturgill, Lam T. Khuat, Kevin M. Stoffel, Jonathan Van Dyke, Dan L. Longo, Morgan A. Darrow, Stephen K. Anderson, Bruce R. Blazar, Arta M. Monjazeb, Jonathan S. Serody, Robert J. Canter, William J. Murphy
Platinum-based chemotherapy-induced peripheral neuropathy is one of the most common causes of dose reduction and discontinuation of life-saving chemotherapy in cancer treatment; it often causes permanent impairment of quality of life in cancer patients. The mechanisms that underlie this neuropathy are not defined, and effective treatment and prevention measures are not available. Here, we demonstrate that SIRT2 protected mice against cisplatin-induced peripheral neuropathy (CIPN). SIRT2 accumulated in the nuclei of dorsal root ganglion sensory neurons and prevented neuronal cell death following cisplatin treatment. Mechanistically, SIRT2, an NAD+-dependent deacetylase, protected neurons from cisplatin cytotoxicity by promoting transcription-coupled nucleotide excision repair (TC-NER) of cisplatin-induced DNA crosslinks. Consistent with this mechanism, pharmacological inhibition of NER using spironolactone abolished SIRT2-mediated TC-NER activity in differentiated neuronal cells and protection of neurons from cisplatin-induced cytotoxicity and CIPN in mice. Importantly, SIRT2’s protective effects were not evident in lung cancer cells in vitro or in tumors in vivo. Taken together, our results identified SIRT2’s function in the NER pathway as a key underlying mechanism of preventing CIPN, warranting future investigation of SIRT2 activation-mediated neuroprotection during platinum-based cancer treatment.
Manchao Zhang, Wuying Du, Scarlett M. Acklin, Shengkai Jin, Fen Xia
No posts were found with this tag.