Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Metabolism

  • 641 Articles
  • 2 Posts
  • ← Previous
  • 1
  • 2
  • …
  • 47
  • 48
  • 49
  • …
  • 64
  • 65
  • Next →
The diabetes gene Pdx1 regulates the transcriptional network of pancreatic endocrine progenitor cells in mice
Jennifer M. Oliver-Krasinski, … , Klaus H. Kaestner, Doris A. Stoffers
Jennifer M. Oliver-Krasinski, … , Klaus H. Kaestner, Doris A. Stoffers
Published June 1, 2009
Citation Information: J Clin Invest. 2009. https://doi.org/10.1172/JCI37028.
View: Text | PDF

The diabetes gene Pdx1 regulates the transcriptional network of pancreatic endocrine progenitor cells in mice

  • Text
  • PDF
Abstract

Heterozygous mutations in the gene encoding the pancreatic homeodomain transcription factor pancreatic duodenal homeobox 1 (PDX1) are associated with maturity onset diabetes of the young, type 4 (MODY4) and type 2 diabetes. Pdx1 governs the early embryonic development of the pancreas and the later differentiation of the insulin-producing islet β cells of the endocrine compartment. We derived a Pdx1 hypomorphic allele that reveals a role for Pdx1 in the specification of endocrine progenitors. Mice homozygous for this allele displayed a selective reduction in endocrine lineages associated with decreased numbers of endocrine progenitors and a marked reduction in levels of mRNA encoding the proendocrine transcription factor neurogenin 3 (Ngn3). During development, Pdx1 occupies an evolutionarily conserved enhancer region of Ngn3 and interacts with the transcription factor one cut homeobox 1 (Hnf6) to activate this enhancer. Furthermore, mRNA levels of all 4 members of the transcription factor network that regulates Ngn3 expression, SRY-box containing gene 9 (Sox9), Hnf6, Hnf1b, and forkhead box A2 (Foxa2), were decreased in homozygous mice. Pdx1 also occupied regulatory sequences in Foxa2 and Hnf1b. Thus, Pdx1 contributes to specification of endocrine progenitors both by regulating expression of Ngn3 directly and by participating in a cross-regulatory transcription factor network during early pancreas development. These results provide insights that may be applicable to β cell replacement strategies involving the guided differentiation of ES cells or other progenitor cell types into the β cell lineage, and they suggest a molecular mechanism whereby human PDX1 mutations cause diabetes.

Authors

Jennifer M. Oliver-Krasinski, Margaret T. Kasner, Juxiang Yang, Michael F. Crutchlow, Anil K. Rustgi, Klaus H. Kaestner, Doris A. Stoffers

×

Antagonism of T-type calcium channels inhibits high-fat diet–induced weight gain in mice
Victor N. Uebele, … , Kenneth S. Koblan, John J. Renger
Victor N. Uebele, … , Kenneth S. Koblan, John J. Renger
Published May 18, 2009
Citation Information: J Clin Invest. 2009. https://doi.org/10.1172/JCI36954.
View: Text | PDF

Antagonism of T-type calcium channels inhibits high-fat diet–induced weight gain in mice

  • Text
  • PDF
Abstract

The epidemics of obesity and metabolic disorders have well-recognized health and economic burdens. Pharmacologic treatments for these diseases remain unsatisfactory with respect to both efficacy and side-effect profiles. Here, we have identified a potential central role for T-type calcium channels in regulating body weight maintenance and sleep. Previously, it was shown that mice lacking CaV3.1 T-type calcium channels have altered sleep/wake activity. We found that these mice were also resistant to high-fat diet–induced weight gain, without changes in food intake or sensitivity to high-fat diet–induced disruptions of diurnal rhythm. Administration of a potent and selective antagonist of T-type calcium channels, TTA-A2, to normal-weight animals prior to the inactive phase acutely increased sleep, decreased body core temperature, and prevented high-fat diet–induced weight gain. Administration of TTA-A2 to obese rodents reduced body weight and fat mass while concurrently increasing lean muscle mass. These effects likely result from better alignment of diurnal feeding patterns with daily changes in circadian physiology and potentially an increased metabolic rate during the active phase. Together, these studies reveal what we believe to be a previously unknown role for T-type calcium channels in the regulation of sleep and weight maintenance and suggest the potential for a novel therapeutic approach to treating obesity.

Authors

Victor N. Uebele, Anthony L. Gotter, Cindy E. Nuss, Richard L. Kraus, Scott M. Doran, Susan L. Garson, Duane R. Reiss, Yuxing Li, James C. Barrow, Thomas S. Reger, Zhi-Qiang Yang, Jeanine E. Ballard, Cuyue Tang, Joseph M. Metzger, Sheng-Ping Wang, Kenneth S. Koblan, John J. Renger

×

Protein phosphatase 2Cm is a critical regulator of branched-chain amino acid catabolism in mice and cultured cells
Gang Lu, … , Christopher J. Lynch, Yibin Wang
Gang Lu, … , Christopher J. Lynch, Yibin Wang
Published May 1, 2009
Citation Information: J Clin Invest. 2009. https://doi.org/10.1172/JCI38151.
View: Text | PDF

Protein phosphatase 2Cm is a critical regulator of branched-chain amino acid catabolism in mice and cultured cells

  • Text
  • PDF
Abstract

The branched-chain amino acids (BCAA) are essential amino acids required for protein homeostasis, energy balance, and nutrient signaling. In individuals with deficiencies in BCAA, these amino acids can be preserved through inhibition of the branched-chain-α-ketoacid dehydrogenase (BCKD) complex, the rate-limiting step in their metabolism. BCKD is inhibited by phosphorylation of its E1α subunit at Ser293, which is catalyzed by BCKD kinase. During BCAA excess, phosphorylated Ser293 (pSer293) becomes dephosphorylated through the concerted inhibition of BCKD kinase and the activity of an unknown intramitochondrial phosphatase. Using unbiased, proteomic approaches, we have found that a mitochondrial-targeted phosphatase, PP2Cm, specifically binds the BCKD complex and induces dephosphorylation of Ser293 in the presence of BCKD substrates. Loss of PP2Cm completely abolished substrate-induced E1α dephosphorylation both in vitro and in vivo. PP2Cm-deficient mice exhibited BCAA catabolic defects and a metabolic phenotype similar to the intermittent or intermediate types of human maple syrup urine disease (MSUD), a hereditary disorder caused by defects in BCKD activity. These results indicate that PP2Cm is the endogenous BCKD phosphatase required for nutrient-mediated regulation of BCKD activity and suggest that defects in PP2Cm may be responsible for a subset of human MSUD.

Authors

Gang Lu, Haipeng Sun, Pengxiang She, Ji-Youn Youn, Sarah Warburton, Peipei Ping, Thomas M. Vondriska, Hua Cai, Christopher J. Lynch, Yibin Wang

×

GRP78 expression inhibits insulin and ER stress–induced SREBP-1c activation and reduces hepatic steatosis in mice
Hélène L. Kammoun, … , Pascal Ferré, Fabienne Foufelle
Hélène L. Kammoun, … , Pascal Ferré, Fabienne Foufelle
Published April 13, 2009
Citation Information: J Clin Invest. 2009. https://doi.org/10.1172/JCI37007.
View: Text | PDF

GRP78 expression inhibits insulin and ER stress–induced SREBP-1c activation and reduces hepatic steatosis in mice

  • Text
  • PDF
Abstract

Hepatic steatosis is present in insulin-resistant obese rodents and is concomitant with active lipogenesis. Hepatic lipogenesis depends on the insulin-induced activation of the transcription factor SREBP-1c. Despite prevailing insulin resistance, SREBP-1c is activated in the livers of genetically and diet-induced obese rodents. Recent studies have reported the presence of an ER stress response in the livers of obese ob/ob mice. To assess whether ER stress promotes SREBP-1c activation and thus contributes to lipogenesis, we overexpressed the chaperone glucose-regulated protein 78 (GRP78) in the livers of ob/ob mice using an adenoviral vector. GRP78 overexpression reduced ER stress markers and inhibited SREBP-1c cleavage and the expression of SREBP-1c and SREBP-2 target genes. Furthermore, hepatic triglyceride and cholesterol contents were reduced, and insulin sensitivity improved, in GRP78-injected mice. These metabolic improvements were likely mediated by restoration of IRS-2 expression and tyrosine phosphorylation. Interestingly, GRP78 overexpression also inhibited insulin-induced SREBP-1c cleavage in cultured primary hepatocytes. These findings demonstrate that GRP78 inhibits both insulin-dependent and ER stress–dependent SREBP-1c proteolytic cleavage and explain the role of ER stress in hepatic steatosis in obese rodents.

Authors

Hélène L. Kammoun, Hervé Chabanon, Isabelle Hainault, Serge Luquet, Christophe Magnan, Tatsuro Koike, Pascal Ferré, Fabienne Foufelle

×

Mitochondrial H2O2 emission and cellular redox state link excess fat intake to insulin resistance in both rodents and humans
Ethan J. Anderson, … , David H. Wasserman, P. Darrell Neufer
Ethan J. Anderson, … , David H. Wasserman, P. Darrell Neufer
Published February 2, 2009
Citation Information: J Clin Invest. 2009. https://doi.org/10.1172/JCI37048.
View: Text | PDF

Mitochondrial H2O2 emission and cellular redox state link excess fat intake to insulin resistance in both rodents and humans

  • Text
  • PDF
Abstract

High dietary fat intake leads to insulin resistance in skeletal muscle, and this represents a major risk factor for type 2 diabetes and cardiovascular disease. Mitochondrial dysfunction and oxidative stress have been implicated in the disease process, but the underlying mechanisms are still unknown. Here we show that in skeletal muscle of both rodents and humans, a diet high in fat increases the H2O2-emitting potential of mitochondria, shifts the cellular redox environment to a more oxidized state, and decreases the redox-buffering capacity in the absence of any change in mitochondrial respiratory function. Furthermore, we show that attenuating mitochondrial H2O2 emission, either by treating rats with a mitochondrial-targeted antioxidant or by genetically engineering the overexpression of catalase in mitochondria of muscle in mice, completely preserves insulin sensitivity despite a high-fat diet. These findings place the etiology of insulin resistance in the context of mitochondrial bioenergetics by demonstrating that mitochondrial H2O2 emission serves as both a gauge of energy balance and a regulator of cellular redox environment, linking intracellular metabolic balance to the control of insulin sensitivity.

Authors

Ethan J. Anderson, Mary E. Lustig, Kristen E. Boyle, Tracey L. Woodlief, Daniel A. Kane, Chien-Te Lin, Jesse W. Price III, Li Kang, Peter S. Rabinovitch, Hazel H. Szeto, Joseph A. Houmard, Ronald N. Cortright, David H. Wasserman, P. Darrell Neufer

×

Macrophage-derived human resistin exacerbates adipose tissue inflammation and insulin resistance in mice
Mohammed Qatanani, … , Rexford S. Ahima, Mitchell A. Lazar
Mohammed Qatanani, … , Rexford S. Ahima, Mitchell A. Lazar
Published February 2, 2009
Citation Information: J Clin Invest. 2009. https://doi.org/10.1172/JCI37273.
View: Text | PDF

Macrophage-derived human resistin exacerbates adipose tissue inflammation and insulin resistance in mice

  • Text
  • PDF
Abstract

Resistin is an adipokine that contributes to insulin resistance in mice. In humans, however, studies investigating the link between resistin and metabolic disease are conflicting. Further complicating the matter, human resistin is produced mainly by macrophages rather than adipocytes. To address this important issue, we generated mice that lack adipocyte-derived mouse resistin but produce human resistin in a pattern similar to that found in humans, i.e., in macrophages (humanized resistin mice). When placed on a high-fat diet, the humanized resistin mice rapidly developed accelerated white adipose tissue (WAT) inflammation, leading to increased lipolysis and increased serum free fatty acids. Over time, these mice accumulated lipids, including diacylglycerols, in muscle. We found that this resulted in increased Pkcq pathway activity, leading to increased serine phosphorylation of Irs-1 and insulin resistance. Thus, although the site of resistin production differs between species, human resistin exacerbates WAT inflammation and contributes to insulin resistance.

Authors

Mohammed Qatanani, Nava R. Szwergold, David R. Greaves, Rexford S. Ahima, Mitchell A. Lazar

×

Maternal high-fat diet triggers lipotoxicity in the fetal livers of nonhuman primates
Carrie E. McCurdy, … , Jacob E. Friedman, Kevin L. Grove
Carrie E. McCurdy, … , Jacob E. Friedman, Kevin L. Grove
Published January 19, 2009
Citation Information: J Clin Invest. 2009. https://doi.org/10.1172/JCI32661.
View: Text | PDF

Maternal high-fat diet triggers lipotoxicity in the fetal livers of nonhuman primates

  • Text
  • PDF
Abstract

Maternal obesity is thought to increase the offspring’s risk of juvenile obesity and metabolic diseases; however, the mechanism(s) whereby excess maternal nutrition affects fetal development remain poorly understood. Here, we investigated in nonhuman primates the effect of chronic high-fat diet (HFD) on the development of fetal metabolic systems. We found that fetal offspring from both lean and obese mothers chronically consuming a HFD had a 3-fold increase in liver triglycerides (TGs). In addition, fetal offspring from HFD-fed mothers (O-HFD) showed increased evidence of hepatic oxidative stress early in the third trimester, consistent with the development of nonalcoholic fatty liver disease (NAFLD). O-HFD animals also exhibited elevated hepatic expression of gluconeogenic enzymes and transcription factors. Furthermore, fetal glycerol levels were 2-fold higher in O-HFD animals than in control fetal offspring and correlated with maternal levels. The increased fetal hepatic TG levels persisted at P180, concurrent with a 2-fold increase in percent body fat. Importantly, reversing the maternal HFD to a low-fat diet during a subsequent pregnancy improved fetal hepatic TG levels and partially normalized gluconeogenic enzyme expression, without changing maternal body weight. These results suggest that a developing fetus is highly vulnerable to excess lipids, independent of maternal diabetes and/or obesity, and that exposure to this may increase the risk of pediatric NAFLD.

Authors

Carrie E. McCurdy, Jacalyn M. Bishop, Sarah M. Williams, Bernadette E. Grayson, M. Susan Smith, Jacob E. Friedman, Kevin L. Grove

×

Rare loss-of-function mutations in ANGPTL family members contribute to plasma triglyceride levels in humans
Stefano Romeo, … , Helen H. Hobbs, Jonathan C. Cohen
Stefano Romeo, … , Helen H. Hobbs, Jonathan C. Cohen
Published December 15, 2008
Citation Information: J Clin Invest. 2008. https://doi.org/10.1172/JCI37118.
View: Text | PDF

Rare loss-of-function mutations in ANGPTL family members contribute to plasma triglyceride levels in humans

  • Text
  • PDF
Abstract

The relative activity of lipoprotein lipase (LPL) in different tissues controls the partitioning of lipoprotein-derived fatty acids between sites of fat storage (adipose tissue) and oxidation (heart and skeletal muscle). Here we used a reverse genetic strategy to test the hypothesis that 4 angiopoietin-like proteins (ANGPTL3, -4, -5, and -6) play key roles in triglyceride (TG) metabolism in humans. We re-sequenced the coding regions of the genes encoding these proteins and identified multiple rare nonsynonymous (NS) sequence variations that were associated with low plasma TG levels but not with other metabolic phenotypes. Functional studies revealed that all mutant alleles of ANGPTL3 and ANGPTL4 that were associated with low plasma TG levels interfered either with the synthesis or secretion of the protein or with the ability of the ANGPTL protein to inhibit LPL. A total of 1% of the Dallas Heart Study population and 4% of those participants with a plasma TG in the lowest quartile had a rare loss-of-function mutation in ANGPTL3, ANGPTL4, or ANGPTL5. Thus, ANGPTL3, ANGPTL4, and ANGPTL5, but not ANGPTL6, play nonredundant roles in TG metabolism, and multiple alleles at these loci cumulatively contribute to variability in plasma TG levels in humans.

Authors

Stefano Romeo, Wu Yin, Julia Kozlitina, Len A. Pennacchio, Eric Boerwinkle, Helen H. Hobbs, Jonathan C. Cohen

×

Deletion of the von Hippel–Lindau gene in pancreatic β cells impairs glucose homeostasis in mice
James Cantley, … , Patrick H. Maxwell, Dominic J. Withers
James Cantley, … , Patrick H. Maxwell, Dominic J. Withers
Published December 8, 2008
Citation Information: J Clin Invest. 2008. https://doi.org/10.1172/JCI26934.
View: Text | PDF

Deletion of the von Hippel–Lindau gene in pancreatic β cells impairs glucose homeostasis in mice

  • Text
  • PDF
Abstract

Defective insulin secretion in response to glucose is an important component of the β cell dysfunction seen in type 2 diabetes. As mitochondrial oxidative phosphorylation plays a key role in glucose-stimulated insulin secretion (GSIS), oxygen-sensing pathways may modulate insulin release. The von Hippel–Lindau (VHL) protein controls the degradation of hypoxia-inducible factor (HIF) to coordinate cellular and organismal responses to altered oxygenation. To determine the role of this pathway in controlling glucose-stimulated insulin release from pancreatic β cells, we generated mice lacking Vhl in pancreatic β cells (βVhlKO mice) and mice lacking Vhl in the pancreas (PVhlKO mice). Both mouse strains developed glucose intolerance with impaired insulin secretion. Furthermore, deletion of Vhl in β cells or the pancreas altered expression of genes involved in β cell function, including those involved in glucose transport and glycolysis, and isolated βVhlKO and PVhlKO islets displayed impaired glucose uptake and defective glucose metabolism. The abnormal glucose homeostasis was dependent on upregulation of Hif-1α expression, and deletion of Hif1a in Vhl-deficient β cells restored GSIS. Consistent with this, expression of activated Hif-1α in a mouse β cell line impaired GSIS. These data suggest that VHL/HIF oxygen-sensing mechanisms play a critical role in glucose homeostasis and that activation of this pathway in response to decreased islet oxygenation may contribute to β cell dysfunction.

Authors

James Cantley, Colin Selman, Deepa Shukla, Andrey Y. Abramov, Frauke Forstreuter, Miguel A. Esteban, Marc Claret, Steven J. Lingard, Melanie Clements, Sarah K. Harten, Henry Asare-Anane, Rachel L. Batterham, Pedro L. Herrera, Shanta J. Persaud, Michael R. Duchen, Patrick H. Maxwell, Dominic J. Withers

×

Expression of an activating mutation in the gene encoding the KATP channel subunit Kir6.2 in mouse pancreatic β cells recapitulates neonatal diabetes
Christophe A. Girard, … , Jens C. Brüning, Frances M. Ashcroft
Christophe A. Girard, … , Jens C. Brüning, Frances M. Ashcroft
Published December 8, 2008
Citation Information: J Clin Invest. 2008. https://doi.org/10.1172/JCI35772.
View: Text | PDF

Expression of an activating mutation in the gene encoding the KATP channel subunit Kir6.2 in mouse pancreatic β cells recapitulates neonatal diabetes

  • Text
  • PDF
Abstract

Neonatal diabetes is a rare monogenic form of diabetes that usually presents within the first six months of life. It is commonly caused by gain-of-function mutations in the genes encoding the Kir6.2 and SUR1 subunits of the plasmalemmal ATP-sensitive K+ (KATP) channel. To better understand this disease, we generated a mouse expressing a Kir6.2 mutation (V59M) that causes neonatal diabetes in humans and we used Cre-lox technology to express the mutation specifically in pancreatic β cells. These β-V59M mice developed severe diabetes soon after birth, and by 5 weeks of age, blood glucose levels were markedly increased and insulin was undetectable. Islets isolated from β-V59M mice secreted substantially less insulin and showed a smaller increase in intracellular calcium in response to glucose. This was due to a reduced sensitivity of KATP channels in pancreatic β cells to inhibition by ATP or glucose. In contrast, the sulfonylurea tolbutamide, a specific blocker of KATP channels, closed KATP channels, elevated intracellular calcium levels, and stimulated insulin release in β-V59M β cells, indicating that events downstream of KATP channel closure remained intact. Expression of the V59M Kir6.2 mutation in pancreatic β cells alone is thus sufficient to recapitulate the neonatal diabetes observed in humans. β-V59M islets also displayed a reduced percentage of β cells, abnormal morphology, lower insulin content, and decreased expression of Kir6.2, SUR1, and insulin mRNA. All these changes are expected to contribute to the diabetes of β-V59M mice. Their cause requires further investigation.

Authors

Christophe A. Girard, F. Thomas Wunderlich, Kenju Shimomura, Stephan Collins, Stephan Kaizik, Peter Proks, Fernando Abdulkader, Anne Clark, Vicky Ball, Lejla Zubcevic, Liz Bentley, Rebecca Clark, Chris Church, Alison Hugill, Juris Galvanovskis, Roger Cox, Patrik Rorsman, Jens C. Brüning, Frances M. Ashcroft

×
  • ← Previous
  • 1
  • 2
  • …
  • 47
  • 48
  • 49
  • …
  • 64
  • 65
  • Next →
Using SORLA to sort out human obesity
Vanessa Schmidt and colleagues demonstrate that the intracellular sorting receptor SORLA is an important regulator of lipid metabolism…
Published June 20, 2016
Scientific Show StopperMetabolism

Intracellular calcium leak recasts β cell landscape
Gaetano Santulli and colleagues reveal that RyR2 calcium channels in pancreatic β cells mediate insulin release and glucose homeostasis…
Published April 6, 2015
Scientific Show StopperMetabolism
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts