Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI110849

Receptor-mediated Catabolism of Low Density Lipoprotein in Man. QUANTITATION USING GLUCOSYLATED LOW DENSITY LIPOPROTEIN

Y. Antero Kesaniemi, Joseph L. Witztum, and Urs P. Steinbrecher

Department of Medicine, Division of Metabolic Disease, University of California, San Diego, School of Medicine, La Jolla, California 92093

Find articles by Kesaniemi, Y. in: PubMed | Google Scholar

Department of Medicine, Division of Metabolic Disease, University of California, San Diego, School of Medicine, La Jolla, California 92093

Find articles by Witztum, J. in: PubMed | Google Scholar

Department of Medicine, Division of Metabolic Disease, University of California, San Diego, School of Medicine, La Jolla, California 92093

Find articles by Steinbrecher, U. in: PubMed | Google Scholar

Published April 1, 1983 - More info

Published in Volume 71, Issue 4 on April 1, 1983
J Clin Invest. 1983;71(4):950–959. https://doi.org/10.1172/JCI110849.
© 1983 The American Society for Clinical Investigation
Published April 1, 1983 - Version history
View PDF
Abstract

Low density lipoprotein (LDL) catabolism occurs by LDL receptor-dependent and LDL receptor-independent pathways. We have shown previously that nonenzymatic glucosylation of LDL in the presence of cyanoborohydride irreversibly blocks the lysine residues of LDL. Glucosylated LDL (GLC-LDL) was not degraded by the LDL receptor of fibroblasts, and its degradation by macrophages was similar to that of native LDL. This suggested that GLC-LDL should be a good tracer of LDL receptor-independent catabolism, and if combined with a tracer of total LDL catabolism, should enable one to calculate the extent of LDL receptor-dependent catabolism.

To determine the contribution of each pathway in man, we prepared 125I-GLC-LDL and 131I-control LDL and simultaneously determined the fractional catabolic rate (FCR) of each tracer in four subjects. In preliminary experiments, we showed that the conditions for glucosylation did not affect LDL turnover. In the four subjects, the FCR for total LDL catabolism ranged from 0.345 to 0.724 d-1 with a mean of 0.57±0.16 d-1. The FCR of GLC-LDL varied from 0.071 to 0.141 d-1 with a mean of 0.11±0.03 d-1. The latter is similar to the FCR reported for native LDL in subjects with homozygous familial hypercholesterolemia, supporting the interpretation that GLC-LDL traces only the receptor-independent pathway. Despite the wide range of total LDL catabolism in these subjects. LDL receptor-independent catabolism accounted for only 19.5-20.6% of total catabolism. In turn, LDL receptor-dependent catabolism accounted for 80% of total clearance in each person. Furthermore, while the decay curve of LDL showed the usual biphasic pattern, the decay curve of GLC-LDL was monoexponential in each subject even when followed for as long as 48 d. This suggests that LDL receptor activity is responsible for the biphasic nature of LDL decay.

These studies emphasize the central role of LDL receptor activity in normal LDL metabolism in man.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 950
page 950
icon of scanned page 951
page 951
icon of scanned page 952
page 952
icon of scanned page 953
page 953
icon of scanned page 954
page 954
icon of scanned page 955
page 955
icon of scanned page 956
page 956
icon of scanned page 957
page 957
icon of scanned page 958
page 958
icon of scanned page 959
page 959
Version history
  • Version 1 (April 1, 1983): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts