Cancer-related cognitive impairment (CRCI) is a major neurotoxicity affecting more than 50% of cancer survivors. The underpinning mechanisms are mostly unknown, and there are no FDA-approved interventions. Sphingolipidomic analysis of mouse prefrontal cortex and hippocampus, key sites of cognitive function, revealed that cisplatin increased levels of the potent signaling molecule sphingosine-1-phosphate (S1P) and led to cognitive impairment. At the biochemical level, S1P induced mitochondrial dysfunction, activation of NOD-, LRR-, and pyrin domain–containing protein 3 inflammasomes, and increased IL-1β formation. These events were attenuated by systemic administration of the functional S1P receptor 1 (S1PR1) antagonist FTY720, which also attenuated cognitive impairment without adversely affecting locomotor activity. Similar attenuation was observed with ozanimod, another FDA-approved functional S1PR1 antagonist. Mice with astrocyte-specific deletion of S1pr1 lost their ability to respond to FTY720, implicating involvement of astrocytic S1PR1. Remarkably, our pharmacological and genetic approaches, coupled with computational modeling studies, revealed that cisplatin increased S1P production by activating TLR4. Collectively, our results identify the molecular mechanisms engaged by the S1P/S1PR1 axis in CRCI and establish S1PR1 antagonism as an approach to target CRCI with therapeutics that have fast-track clinical application.
Silvia Squillace, Michael L. Niehoff, Timothy M. Doyle, Michael Green, Emanuela Esposito, Salvatore Cuzzocrea, Christopher K. Arnatt, Sarah Spiegel, Susan A. Farr, Daniela Salvemini
Although first-line epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (TKI) therapy is effective for treating EGFR-mutant non-small cell lung cancer (NSCLC), it is now understood that drug-tolerant persister (DTP) cells escaping from initial treatment eventually drives drug resistance. Here, through integration of metabolomics and transcriptomics, we found that the neurotransmitter acetylcholine (ACh) was specifically accumulated in DTP cells, and illustrated that treatment with EGFR-TKI heightens the expression of the rate-limiting enzyme choline acetyltransferase (ChAT) in ACh biosynthesis via YAP mediation. Genetic and pharmacological manipulation of ACh biosynthesis or ACh signaling could predictably regulate the extent of DTP formation in vitro and in vivo. Strikingly, pharmacologically targeting ACh/M3R signaling with an FDA-approved drug, Darifenacin, retarded tumor relapse in vivo. Mechanistically, upregulated ACh metabolism mediated drug tolerance in part through activating WNT signaling via ACh muscarinic receptor-3 (M3R). Importantly, aberrant ACh metabolism in NSCLC patients represented a potential role in predicting EGFR-TKI response rate and progression-free survival. Our study therefore defines a new therapeutic strategy—targeting ACh-M3R-WNT axis—for manipulating EGFR TKI drug tolerance in the treatment of NSCLC.
Meng Nie, Na Chen, Huanhuan Pang, Tao Jiang, Wei Jiang, Panwen Tian, LiAng Yao, Yangzi Chen, Ralph J. DeBerardinis, Weimin Li, Qitao Yu, Caicun Zhou, Zeping Hu
Characterization of the dynamic change of immunological landscape during malignant transformation from precancerous lesion to cancerous lesion in squamous cell carcinoma (SCC) is critical for the application of immunotherapy. Here we performed single-cell RNA sequencing (scRNA-seq) of 131,702 cells from 13 cancerous tissues of oral squamous cell carcinoma (OSCC), 3 precancerous oral leukoplakia and 8 adjacent normal samples. We revealed that tumor infiltrating CD4+ and CD8+ T cells were functionally inhibited by immunosuppressive ligands expressed on various kinds of myeloid cells or neutrophils in the process of oral carcinogenesis. Notably, we identified a subset of myofibroblasts that exclusively expressed tryptophan 2,3-dioxygenase (TDO2). These TDO2+ myofibroblast were located distally from tumor nests and both CD4+ and CD8+ T cells were enriched around them. Functional experiments revealed that TDO2+ myofibroblasts were more likely to possess the chemotactic ability for T cells, but induced transformation of CD4+ T cells into regulatory T cells and caused CD8+ T cell dysfunction. We further showed that the use of TDO2 inhibitor LM10 attenuated the inhibitory states of T cells, restored T cells anti-tumor response and prevented the progression of OSCC malignant transformation in murine models. Our study provides a multi-step transcriptomic landscape of OSCC and demonstrates that TDO2+ myofibroblasts are potential targets for immunotherapy.
Simeng Hu, Huanzi Lu, Wenqiang Xie, Dikan Wang, Zhongyan Shan, Xudong Xing, Xiang-Ming Wang, Juan Fang, Wei Dong, Wenxiao Dai, Junyi Guo, Yanshu Zhang, Shuqiong Wen, Xin-Yu Guo, Qianming Chen, Fan Bai, Zhi Wang
The in vivo persistence of adoptively transferred T cells is predictive of anti-tumor response. Identifying functional properties of infused T cells that lead to in vivo persistence and tumor eradication has remained elusive. We profiled CD19-specific CAR T cells that comprise the infusion products used to treat large B cell lymphomas using high-throughput single-cell technologies based on Timelapse Imaging Microscopy In Nanowell Grids (TIMING) that integrates killing, cytokine secretion, and transcriptional profiling. Our results show that the directional migration of CD19-specific CAR T cells is correlated with multifunctionality. We identified that CD2 on T cells is associated with directional migration and that the interaction between CD2 on T cells and CD58 on lymphoma cells accelerates killing and serial killing. Consistent with this, we observed elevated CD58 expression on pre-treatment tumor samples in patients with relapsed or refractory large B cell lymphomas treated with CD19-specific CAR T cell therapy was associated with complete clinical response and survival. These results highlight the importance of studying dynamic T-cell tumor cell interactions in identifying optimal antitumor responses.
Gabrielle Romain, Paolo Strati, Ali Rezvan, Mohsen Fathi, Irfan N. Bandey, Jay R.T. Adolacion, Darren S. Heeke, Ivan Liadi, Mario L. Marques-Piubelli, Luisa M. Solis Soto, Ankit Mahendra, Francisco Vega, Laurence J.N. Cooper, Harjeet Singh, Mike Mattie, Adrian Bot, Sattva Neelapu, Navin Varadarajan
Immune checkpoint blockade (ICB) has demonstrated clinical success in “inflamed” tumors with substantial T-cell infiltrates, but tumors with an immune-desert tumor microenvironment (TME) fail to benefit. The tumor cell-intrinsic molecular mechanisms of the immune-desert phenotype remain poorly understood. Here, we demonstrated that inactivation of the Polycomb-repressive complex 2 (PRC2) core components, EED or SUZ12, a prevalent genetic event in malignant peripheral nerve sheath tumor (MPNST) and sporadically in other cancers, drove a context-dependent immune-desert TME. PRC2 inactivation reprogramed the chromatin landscape that led to a cell-autonomous shift from primed baseline signaling-dependent cellular responses (e.g., interferon γ) to PRC2-regulated development and cellular differentiation transcriptional programs. Further, PRC2 inactivation led to diminished tumor immune infiltrates through reduced chemokine production and impaired antigen presentation and T-cell priming, resulting in primary resistance to ICB. Intratumoral delivery of inactivated modified vaccinia virus Ankara (MVA) enhanced tumor immune infiltrates and sensitized PRC2-loss tumors to ICB. Our results provide molecular mechanisms of PRC2-inactivation-mediated context-dependent epigenetic reprogramming that underline the immune-desert phenotype in cancer. Our studies also point to intratumoral delivery of immunogenic viruses as an initial therapeutic strategy to modulate the immune-desert TME and capitalize on the clinical benefit of ICB.
Juan Yan, Yuedan Chen, Amish J. Patel, Sarah Warda, Cindy J. Lee, Briana G. Nixon, Elissa W.P. Wong, Miguel A. Miranda-Román, Ning Yang, Yi Wang, Mohini R. Pachai, Jessica Sher, Emily Giff, Fanying Tang, Ekta Khurana, Samuel Singer, Yang Liu, Phillip M. Galbo Jr., Jesper L.V. Maag, Richard P. Koche, Deyou Zheng, Cristina Antonescu, Liang Deng, Ming Li, Yu Chen, Ping Chi
The metabolic dependencies of cancer cells have substantial potential to be exploited to improve the diagnosis and treatment of cancer. Creatine riboside (CR) is identified as a urinary metabolite associated with risk and prognosis in lung and liver cancer. However, the source of high CR levels in patients with cancer as well as their implications for the treatment of these aggressive cancers remain unclear. By integrating multiomics data on lung and liver cancer, we have shown that CR is a cancer cell–derived metabolite. Global metabolomics and gene expression analysis of human tumors and matched liquid biopsies, together with functional studies, revealed that dysregulation of the mitochondrial urea cycle and a nucleotide imbalance were associated with high CR levels and indicators of a poor prognosis. This metabolic phenotype was associated with reduced immune infiltration and supported rapid cancer cell proliferation that drove aggressive tumor growth. CRhi cancer cells were auxotrophic for arginine, revealing a metabolic vulnerability that may be exploited therapeutically. This highlights the potential of CR not only as a poor-prognosis biomarker but also as a companion biomarker to inform the administration of arginine-targeted therapies in precision medicine strategies to improve survival for patients with cancer.
Amelia L. Parker, Leila Toulabi, Takahiro Oike, Yasuyuki Kanke, Daxeshkumar Patel, Takeshi Tada, Sheryse Taylor, Jessica A. Beck, Elise Bowman, Michelle L. Reyzer, Donna Butcher, Skyler Kuhn, Gary T. Pauly, Kristopher W. Krausz, Frank J. Gonzalez, S. Perwez Hussain, Stefan Ambs, Bríd M. Ryan, Xin Wei Wang, Curtis C. Harris
The switch from anchorage-dependent to anchorage-independent growth is essential for epithelial metastasis. The underlying mechanism, however, is not fully understood. Here in this study, we identified growth factor independent-1 (GFI1), a transcription factor that drives transition from adherent endothelial cells to suspended hematopoietic cells during hematopoiesis, as a critical regulator of anchorage-independence in lung cancer cells. GFI1 elevated the numbers of circulating and lung infiltrating tumor cells in xenograft models and predicted poor prognosis of lung cancer patients. Mechanistically, GFI1 inhibited the expression of multiple adhesion molecules and facilitated substrate detachment. Concomitantly, GFI1 reconfigured chromatin structure of the RASGRP2 gene and increased its expression, causing Rap1 activation and subsequent sustained ERK activation upon detachment, and this leaded to ERK signaling dependency in tumor cells. Our studies unveiled a mechanism by which carcinoma cells hijacked a hematopoietic factor to gain anchorage independence and suggested that the intervention of ERK signaling may suppress metastasis and improve the therapeutic outcome of GFI1-positive lung cancer patients.
Hao Wang, Zhenzhen Lin, Zhe Nian, Wei Zhang, Wenxu Liu, Fei Yan, Zengtuan Xiao, Xia Wang, Zhenfa Zhang, Zhenyi Ma, Zhe Liu
Accurately identifying patients that respond to immunotherapy remains clinically challenging. A noninvasive method that can longitudinally capture information about immune cell function and assist in the early assessment of tumor responses is highly desirable for precision immunotherapy. Here, we show that positron emission tomography (PET) imaging using a granzyme B-targeted radiotracer, named 68Ga-grazytracer, can noninvasively and effectively predict tumor responses to immune checkpoint inhibitors and adoptive T-cell transfer therapy in multiple tumor models. 68Ga-grazytracer was designed and selected from several non-aldehyde peptidomimetic-based radiotracers and exhibited excellent in vivo metabolic stability and favorable targeting efficiency to granzyme B secreted by effector CD8+ T cells upon immune responses. 68Ga-grazytracer permits more sensitive discrimination of responders and non-responders than 18F-fluorodeoxyglucose, thereby distinguishing between tumor pseudoprogression and true progression upon immune checkpoint blockade therapy in mouse models with varying immunogenicity. In a preliminary clinical trial with five patients, no adverse event was observed after 68Ga-grazytracer injection, and clinical responses in cancer patients undergoing immunotherapy were favorably correlated with 68Ga-grazytracer PET results. These results highlight the potential of 68Ga-grazytracer PET for enhancing the clinical applications of granzyme B secretion-related immunotherapies by supporting early response assessment and precise patient stratification in a noninvasive and longitudinal manner.
Haoyi Zhou, Yanpu Wang, Hongchuang Xu, Xiuling Shen, Ting Zhang, Xin Zhou, Yuwen Zeng, Kui Li, Li Zhang, Hua Zhu, Xing Yang, Nan Li, Zhi Yang, Zhaofei Liu
Cancers avoid immune surveillance through an array of mechanisms, including perturbation of HLA class I antigen presentation. Merkel cell carcinoma (MCC) is an aggressive, HLA-I–low, neuroendocrine carcinoma of the skin often caused by the Merkel cell polyomavirus (MCPyV). Through the characterization of 11 newly generated MCC patient-derived cell lines, we identified transcriptional suppression of several class I antigen presentation genes. To systematically identify regulators of HLA-I loss in MCC, we performed parallel, genome-scale, gain- and loss-of-function screens in a patient-derived MCPyV-positive cell line and identified MYCL and the non-canonical Polycomb repressive complex 1.1 (PRC1.1) as HLA-I repressors. We observed physical interaction of MYCL with the MCPyV small T viral antigen, supporting a mechanism of virally mediated HLA-I suppression. We further identify the PRC1.1 component USP7 as a pharmacologic target to restore HLA-I expression in MCC.
Patrick C. Lee, Susan Klaeger, Phuong M. Le, Keegan Korthauer, Jingwei Cheng, Varsha Ananthapadmanabhan, Thomas C. Frost, Jonathan D. Stevens, Alan Y.L. Wong, J. Bryan Iorgulescu, Anna Y. Tarren, Vipheaviny A. Chea, Isabel P. Carulli, Camilla K. Lemvigh, Christina B. Pedersen, Ashley K. Gartin, Siranush Sarkizova, Kyle T. Wright, Letitia W. Li, Jason Nomburg, Shuqiang Li, Teddy Huang, Xiaoxi Liu, Lucas Pomerance, Laura M. Doherty, Annie M. Apffel, Luke J. Wallace, Suzanna Rachimi, Kristen D. Felt, Jacquelyn O. Wolff, Elizabeth Witten, Wandi Zhang, Donna Neuberg, William J. Lane, Guanglan Zhang, Lars R. Olsen, Manisha Thakuria, Scott J. Rodig, Karl R. Clauser, Gabriel J. Starrett, John G. Doench, Sara J. Buhrlage, Steven A. Carr, James A. DeCaprio, Catherine J. Wu, Derin B. Keskin
BACKGROUND. Adoptive cell therapy (ACT) with tumor-infiltrating lymphocytes (TILs) has achieved remarkable clinical efficacy in metastatic cancers such as melanoma and cervical cancer (CC). Here we explored the safety, feasibility and preliminary tumor response and performed translational investigations of adjuvant immunotherapy using infusion of autogenous (auto)-TILs following concurrent chemoradiotherapy (CCRT) in CC patients with locally advanced disease. METHODS. Twenty-seven CC patients with stage III to IV disease were recruited in this single-center, phase I study. TILs were isolated from lesions in the uterine cervix and generated under good manufacturing practices (GMP) conditions and then infused after CCRT plus intramuscular interleukin (IL)-2 injections. RESTULTS. From 27 patients, TILs were successfully expanded from 20 patients, with a feasibility of 74.1%. Twelve patients received TILs following CCRT. Adverse events (AEs) were primarily attributable to CCRT. Only 1 (8.3%) patient experienced severe toxicity with a grade 3 hypersensitivity reaction after TIL infusion. No autoimmune AEs, such as pneumonitis, hepatitis, or myocarditis, occurred, and there was no treatment-related mortality. Nine of 12 patients (75.0%) attained complete response, with a disease control duration of 9 to 22 months. Translational investigation showed that the transcriptomic characteristics of the infused TIL products and some immune biomarkers in the tumor microenvironment and serum of CC patients at baseline were correlated with the clinical response. CONCULSION. TIL-based ACT following CCRT was safe in an academic center setting, with potential effective responses in locally advanced CC patients. ‘Hot’ inflammatory immune environments are beneficial to the clinical efficacy of TIL-based ACT as adjuvant therapy. TRIAL REGISTRATION. ClinicalTrials.gov NCT04443296. FUNDING. Natinoal Key R&D Program: Sci-Tech Key Program of the Guangzhou City Science Foundation; the Guangdong Provinve Sci-Tech International Key Program; the National Natural Science Foundation of China.
He Huang, Caiping Nie, Xiu-feng Liu, Bin Song, Jian-hui Yue, Jingxiao Xu, Jia He, Kui Li, Yan-ling Feng, Ting Wan, Min Zheng, Yanna Zhang, Wei-jun Ye, Jun-dong Li, Yan-fang Li, Jun-yun Li, Xin-Ping Cao, Zhi-min Liu, Xiao-Shi Zhang, Qing Liu, Xi Zhang, Ji-Hong Liu, Jiang Li